
New software speed records for cryptographic

pairings

Michael Naehrig, Ruben Niederhagen, Peter Schwabe

August 9, 2010

Latincrypt 2010, Puebla, México



Apologies

I Mistake in the paper as appeared in the proceedings

I Wrong choice of curve parameters

I Corrected in current version online

I Software (of course) also corrected

Thanks to Francisco for pointing this out.

New software speed records for cryptographic pairings 2



Pairings � the obligatory slide

I Let G1, G2, and G3 be �nite abelian groups.

I A pairing is a bilinear, nondegenerate map

e : G1 ×G2 → G3

I Di�erent pairings derived from the Tate pairing

I For practical applications: based on elliptic-curve arithmetic

I Need �special� curves

I For 128-bit security level: Barreto-Naehrig curves (BN curves)

I Currently fastest: optimal ate pairing, r-ate pairing

New software speed records for cryptographic pairings 3



Pairings � the obligatory slide

I Let G1, G2, and G3 be �nite abelian groups.

I A pairing is a bilinear, nondegenerate map

e : G1 ×G2 → G3

I Di�erent pairings derived from the Tate pairing

I For practical applications: based on elliptic-curve arithmetic

I Need �special� curves

I For 128-bit security level: Barreto-Naehrig curves (BN curves)

I Currently fastest: optimal ate pairing, r-ate pairing

New software speed records for cryptographic pairings 3



Pairings � the obligatory slide

I Let G1, G2, and G3 be �nite abelian groups.

I A pairing is a bilinear, nondegenerate map

e : G1 ×G2 → G3

I Di�erent pairings derived from the Tate pairing

I For practical applications: based on elliptic-curve arithmetic

I Need �special� curves

I For 128-bit security level: Barreto-Naehrig curves (BN curves)

I Currently fastest: optimal ate pairing, r-ate pairing

New software speed records for cryptographic pairings 3



Pairings � the obligatory slide

I Let G1, G2, and G3 be �nite abelian groups.

I A pairing is a bilinear, nondegenerate map

e : G1 ×G2 → G3

I Di�erent pairings derived from the Tate pairing

I For practical applications: based on elliptic-curve arithmetic

I Need �special� curves

I For 128-bit security level: Barreto-Naehrig curves (BN curves)

I Currently fastest: optimal ate pairing, r-ate pairing

New software speed records for cryptographic pairings 3



Pairings � the obligatory slide

I Let G1, G2, and G3 be �nite abelian groups.

I A pairing is a bilinear, nondegenerate map

e : G1 ×G2 → G3

I Di�erent pairings derived from the Tate pairing

I For practical applications: based on elliptic-curve arithmetic

I Need �special� curves

I For 128-bit security level: Barreto-Naehrig curves (BN curves)

I Currently fastest: optimal ate pairing, r-ate pairing

New software speed records for cryptographic pairings 3



Optimal ate pairing over BN curves

�De�nition� for this talk
The ate pairing over a BN curve is a sequence of operations in a �eld Fp2

I BN-curve construction: Find u such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are prime

I For 128-bit security level: n should have 256 bits, p will also have
256 bits

I The choice of u in�uences the sequence of operations in Fp2

I Details on high-level algorithms in the paper

Question: Can we exploit the special shape of p for faster arithmetic in
Fp or Fp2?

New software speed records for cryptographic pairings 4



Optimal ate pairing over BN curves

�De�nition� for this talk
The ate pairing over a BN curve is a sequence of operations in a �eld Fp2

I BN-curve construction: Find u such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are prime

I For 128-bit security level: n should have 256 bits, p will also have
256 bits

I The choice of u in�uences the sequence of operations in Fp2

I Details on high-level algorithms in the paper

Question: Can we exploit the special shape of p for faster arithmetic in
Fp or Fp2?

New software speed records for cryptographic pairings 4



Optimal ate pairing over BN curves

�De�nition� for this talk
The ate pairing over a BN curve is a sequence of operations in a �eld Fp2

I BN-curve construction: Find u such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are prime

I For 128-bit security level: n should have 256 bits, p will also have
256 bits

I The choice of u in�uences the sequence of operations in Fp2

I Details on high-level algorithms in the paper

Question: Can we exploit the special shape of p for faster arithmetic in
Fp or Fp2?

New software speed records for cryptographic pairings 4



Optimal ate pairing over BN curves

�De�nition� for this talk
The ate pairing over a BN curve is a sequence of operations in a �eld Fp2

I BN-curve construction: Find u such that

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1

are prime

I For 128-bit security level: n should have 256 bits, p will also have
256 bits

I The choice of u in�uences the sequence of operations in Fp2

I Details on high-level algorithms in the paper

Question: Can we exploit the special shape of p for faster arithmetic in
Fp or Fp2?

New software speed records for cryptographic pairings 4



Exploiting the shape of p

Answer 1, Scott, May 2009
�exploit the form of p(x) for a faster modular arithmetic [...] Not really
demonstrated successfully, (except recently in hardware?).�

Answer 2, Fan, Vercauteren, Verbauwhede, Sep. 2009
Faster Fp-arithmetic for Cryptographic Pairings on Barreto-Naehrig

Curves, presented at CHES 2009, exploiting the special structure of p in
hardware

How about software?

New software speed records for cryptographic pairings 5



Exploiting the shape of p

Answer 1, Scott, May 2009
�exploit the form of p(x) for a faster modular arithmetic [...] Not really
demonstrated successfully, (except recently in hardware?).�

Answer 2, Fan, Vercauteren, Verbauwhede, Sep. 2009
Faster Fp-arithmetic for Cryptographic Pairings on Barreto-Naehrig

Curves, presented at CHES 2009, exploiting the special structure of p in
hardware

How about software?

New software speed records for cryptographic pairings 5



Exploiting the shape of p

Answer 1, Scott, May 2009
�exploit the form of p(x) for a faster modular arithmetic [...] Not really
demonstrated successfully, (except recently in hardware?).�

Answer 2, Fan, Vercauteren, Verbauwhede, Sep. 2009
Faster Fp-arithmetic for Cryptographic Pairings on Barreto-Naehrig

Curves, presented at CHES 2009, exploiting the special structure of p in
hardware

How about software?

New software speed records for cryptographic pairings 5



Polynomial representation
(Inspired by Bernstein's curve25519 paper)

Consider the ring R = Z[x] ∩ Z[
√
6ux] and the element

P = 36u4x4 + 36u3x3 + 24u2x2 + 6ux+ 1

= (
√
6ux)4 +

√
6(
√
6ux)3 + 4(

√
6ux)2 +

√
6(
√
6ux) + 1.

Then P (1) = p.

I Represent f ∈ Fp as polynomial in R:

F = f0 + f1 ·
√
6(
√
6ux) + f2 · (

√
6ux)2 + f3 ·

√
6(
√
6ux)3

= f0 + f1 · (6u)x+ f2 · (6u2)x2 + f3 · (36u3)x3

I Then: f = F (1)

I For implementation needs to store 4 coe�cients f0, f1, f2, f3.

New software speed records for cryptographic pairings 6



Polynomial representation
(Inspired by Bernstein's curve25519 paper)

Consider the ring R = Z[x] ∩ Z[
√
6ux] and the element

P = 36u4x4 + 36u3x3 + 24u2x2 + 6ux+ 1

= (
√
6ux)4 +

√
6(
√
6ux)3 + 4(

√
6ux)2 +

√
6(
√
6ux) + 1.

Then P (1) = p.

I Represent f ∈ Fp as polynomial in R:

F = f0 + f1 ·
√
6(
√
6ux) + f2 · (

√
6ux)2 + f3 ·

√
6(
√
6ux)3

= f0 + f1 · (6u)x+ f2 · (6u2)x2 + f3 · (36u3)x3

I Then: f = F (1)

I For implementation needs to store 4 coe�cients f0, f1, f2, f3.

New software speed records for cryptographic pairings 6



Multiplication and degree reduction

Polynomial multiplication of f and g yields 7 coe�cients t0, . . . , t6
Reduction mod p to r0, . . . , r3:

r0 ← t0 − t4 + 6t5 − 2t6
r1 ← t1 − t4 + 5t5 − t6
r2 ← t2 − 4t4 + 18t5 − 3t6
r3 ← t3 − t4 + 2t5 + 3t6

New software speed records for cryptographic pairings 7



Four coe�cients are not enough

I 256-bit numbers in 4 coe�cients: Each coe�cient 64 bits

I Coe�cients do not have exactly the same size

I Small multiples in the reduction are larger than 128 bits

I Easy to realize in hardware, not in software

I For software we need more coe�cients

I Idea: Consider u = v3, use 12 coe�cients f0, . . . , f11

f =f0 + 6vf1 + 6v2f2 + 6v3f3 + 6v4f4 + 6v5f5 + 6v6f6+

36v7f7 + 36v8f8 + 36v9f9 + 36v10f10 + 36v11f11

I v has about 21 bits, products have about 42 bits

I Double-precision �oats have 53-bit mantissa

I Use double-precision �oats, still some space to add up coe�cients
and compute small multiples

New software speed records for cryptographic pairings 8



Four coe�cients are not enough

I 256-bit numbers in 4 coe�cients: Each coe�cient 64 bits

I Coe�cients do not have exactly the same size

I Small multiples in the reduction are larger than 128 bits

I Easy to realize in hardware, not in software

I For software we need more coe�cients

I Idea: Consider u = v3, use 12 coe�cients f0, . . . , f11

f =f0 + 6vf1 + 6v2f2 + 6v3f3 + 6v4f4 + 6v5f5 + 6v6f6+

36v7f7 + 36v8f8 + 36v9f9 + 36v10f10 + 36v11f11

I v has about 21 bits, products have about 42 bits

I Double-precision �oats have 53-bit mantissa

I Use double-precision �oats, still some space to add up coe�cients
and compute small multiples

New software speed records for cryptographic pairings 8



Four coe�cients are not enough

I 256-bit numbers in 4 coe�cients: Each coe�cient 64 bits

I Coe�cients do not have exactly the same size

I Small multiples in the reduction are larger than 128 bits

I Easy to realize in hardware, not in software

I For software we need more coe�cients

I Idea: Consider u = v3, use 12 coe�cients f0, . . . , f11

f =f0 + 6vf1 + 6v2f2 + 6v3f3 + 6v4f4 + 6v5f5 + 6v6f6+

36v7f7 + 36v8f8 + 36v9f9 + 36v10f10 + 36v11f11

I v has about 21 bits, products have about 42 bits

I Double-precision �oats have 53-bit mantissa

I Use double-precision �oats, still some space to add up coe�cients
and compute small multiples

New software speed records for cryptographic pairings 8



Reducing coe�cients

I At some point the coe�cients will over�ow (become larger than 53
bits)

I Need to do coe�cient reduction (carry)

I Carry from f0 to f1
c← round(f0/6v)
f0 ← f0 − c · 6v
f1 ← f1 + c

I Carry from f1 to f2

c← round(f1/v)
f1 ← f1 − c · v
f2 ← f2 + c

I f0 ∈ [−3v, 3v], f1 ∈ [−v/2, v/2]
I Carry from f11 goes to f0, f3, f6, and f9

New software speed records for cryptographic pairings 9



Reducing coe�cients

I At some point the coe�cients will over�ow (become larger than 53
bits)

I Need to do coe�cient reduction (carry)

I Carry from f0 to f1

c← round(f0/6v)
f0 ← f0 − c · 6v
f1 ← f1 + c

I Carry from f1 to f2

c← round(f1/v)
f1 ← f1 − c · v
f2 ← f2 + c

I f0 ∈ [−3v, 3v], f1 ∈ [−v/2, v/2]
I Carry from f11 goes to f0, f3, f6, and f9

New software speed records for cryptographic pairings 9



Reducing coe�cients

I At some point the coe�cients will over�ow (become larger than 53
bits)

I Need to do coe�cient reduction (carry)

I Carry from f0 to f1

c← round(f0/6v)
f0 ← f0 − c · 6v
f1 ← f1 + c

I Carry from f1 to f2

c← round(f1/v)
f1 ← f1 − c · v
f2 ← f2 + c

I f0 ∈ [−3v, 3v], f1 ∈ [−v/2, v/2]
I Carry from f11 goes to f0, f3, f6, and f9

New software speed records for cryptographic pairings 9



Implementation on a Core 2 processor

I Use fast vector instructions mulpd and addpd

I 2 multiplications/ 2 additions in one instruction

I 1 mulpd and 1 addpd (and one mov) per cycle

I Problem: Fp arithmetic requires a lot of shu�eling, combining etc.

I Solution: Implement arithmetic in Fp2

I Use schoolbook multiplication in Fp2 yielding 4 multiplications in Fp

I For squaring in Fp2 use complex method: 2 multiplications in Fp

I Perform 2 Fp multiplications in parallel using vector instructions

I Fp polynomial reduction after Fp2 polynomial reduction

I Only two Fp polynomial reductions and two coe�cient reductions
per multiplication in Fp2

I Those reductions also done in SIMD way

New software speed records for cryptographic pairings 10



Implementation on a Core 2 processor

I Use fast vector instructions mulpd and addpd

I 2 multiplications/ 2 additions in one instruction

I 1 mulpd and 1 addpd (and one mov) per cycle

I Problem: Fp arithmetic requires a lot of shu�eling, combining etc.

I Solution: Implement arithmetic in Fp2

I Use schoolbook multiplication in Fp2 yielding 4 multiplications in Fp

I For squaring in Fp2 use complex method: 2 multiplications in Fp

I Perform 2 Fp multiplications in parallel using vector instructions

I Fp polynomial reduction after Fp2 polynomial reduction

I Only two Fp polynomial reductions and two coe�cient reductions
per multiplication in Fp2

I Those reductions also done in SIMD way

New software speed records for cryptographic pairings 10



Implementation on a Core 2 processor

I Use fast vector instructions mulpd and addpd

I 2 multiplications/ 2 additions in one instruction

I 1 mulpd and 1 addpd (and one mov) per cycle

I Problem: Fp arithmetic requires a lot of shu�eling, combining etc.

I Solution: Implement arithmetic in Fp2

I Use schoolbook multiplication in Fp2 yielding 4 multiplications in Fp

I For squaring in Fp2 use complex method: 2 multiplications in Fp

I Perform 2 Fp multiplications in parallel using vector instructions

I Fp polynomial reduction after Fp2 polynomial reduction

I Only two Fp polynomial reductions and two coe�cient reductions
per multiplication in Fp2

I Those reductions also done in SIMD way

New software speed records for cryptographic pairings 10



Implementation on a Core 2 processor

I Use fast vector instructions mulpd and addpd

I 2 multiplications/ 2 additions in one instruction

I 1 mulpd and 1 addpd (and one mov) per cycle

I Problem: Fp arithmetic requires a lot of shu�eling, combining etc.

I Solution: Implement arithmetic in Fp2

I Use schoolbook multiplication in Fp2 yielding 4 multiplications in Fp

I For squaring in Fp2 use complex method: 2 multiplications in Fp

I Perform 2 Fp multiplications in parallel using vector instructions

I Fp polynomial reduction after Fp2 polynomial reduction

I Only two Fp polynomial reductions and two coe�cient reductions
per multiplication in Fp2

I Those reductions also done in SIMD way

New software speed records for cryptographic pairings 10



Detecting and avoiding over�ows

I After each multiplication we need to reduce coe�cients

I Sometimes also before a multiplication after several additions

I Problem: How to detect where?

I Need to detect over�ow in the worst case

I Implement software in C

I Replace double with C++ class CheckDouble

I Perform arithmetic on values and in parallel on worst-case values

I Abort at over�ow (allows backtrace in debugger)

I Re-implement algorithms in assembly (qhasm)

I Would be good to have over�ow checks in assembly

New software speed records for cryptographic pairings 11



Detecting and avoiding over�ows

I After each multiplication we need to reduce coe�cients

I Sometimes also before a multiplication after several additions

I Problem: How to detect where?

I Need to detect over�ow in the worst case

I Implement software in C

I Replace double with C++ class CheckDouble

I Perform arithmetic on values and in parallel on worst-case values

I Abort at over�ow (allows backtrace in debugger)

I Re-implement algorithms in assembly (qhasm)

I Would be good to have over�ow checks in assembly

New software speed records for cryptographic pairings 11



Detecting and avoiding over�ows

I After each multiplication we need to reduce coe�cients

I Sometimes also before a multiplication after several additions

I Problem: How to detect where?

I Need to detect over�ow in the worst case

I Implement software in C

I Replace double with C++ class CheckDouble

I Perform arithmetic on values and in parallel on worst-case values

I Abort at over�ow (allows backtrace in debugger)

I Re-implement algorithms in assembly (qhasm)

I Would be good to have over�ow checks in assembly

New software speed records for cryptographic pairings 11



Results

Performance of dclxvi software

I Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,134,643 cycles

I Similar for other 64-bit Intel processors

I Comparison: Fastest published pairing benchmark (on one core)
before: 10,000,000 cycles on a Core 2 by Hankerson, Menezes,
Scott, 2008

I Unpublished: 7,850,000 cycles on a Core 2 T5500 (Scott 2010)

New software speed records for cryptographic pairings 12



Results

Performance of dclxvi software

I Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,134,643 cycles

I Similar for other 64-bit Intel processors

I Comparison: Fastest published pairing benchmark (on one core)
before: 10,000,000 cycles on a Core 2 by Hankerson, Menezes,
Scott, 2008

I Unpublished: 7,850,000 cycles on a Core 2 T5500 (Scott 2010)

New software speed records for cryptographic pairings 12



Even faster pairings

New paper by Beuchat, González Díaz, Mitsunari, Okamoto,
Rodríguez-Henríquez, and Teruya:
�High-Speed Software Implementation of the Optimal Ate Pairing over

Barreto-Naehrig Curves�

Claims: 2,490,000 cycles on a Core i7, 3,140,000 cycles on a Core 2 with
Visual Studio 2008

Cycle counts on a Core 2 Q6600 with gcc-4.3.3

dclxvi [BGM+10]
multiplication in Fp2 ∼ 585 ∼ 588
squaring in Fp2 ∼ 359 ∼ 487
optimal ate pairing ∼ 4, 135, 000 ∼ 3, 269, 000

New software speed records for cryptographic pairings 13



Even faster pairings

New paper by Beuchat, González Díaz, Mitsunari, Okamoto,
Rodríguez-Henríquez, and Teruya:
�High-Speed Software Implementation of the Optimal Ate Pairing over

Barreto-Naehrig Curves�

Claims: 2,490,000 cycles on a Core i7, 3,140,000 cycles on a Core 2 with
Visual Studio 2008

Cycle counts on a Core 2 Q6600 with gcc-4.3.3

dclxvi [BGM+10]
multiplication in Fp2 ∼ 585 ∼ 588
squaring in Fp2 ∼ 359 ∼ 487
optimal ate pairing ∼ 4, 135, 000 ∼ 3, 269, 000

New software speed records for cryptographic pairings 13



Why is our software slower?

[BGM+10] uses Montgomery arithmetic in Fp and fast 64× 64-bit
integer multiplier.

Three reasons why we are slower

1. Restricted choice of u: Need more operations in Fp2

2. Additional coe�cient reductions take quite a bit of time (> 400, 000
cycles)

3. Multiplication is not (much) faster

New software speed records for cryptographic pairings 14



Why is our software slower?

[BGM+10] uses Montgomery arithmetic in Fp and fast 64× 64-bit
integer multiplier.

Three reasons why we are slower

1. Restricted choice of u: Need more operations in Fp2

2. Additional coe�cient reductions take quite a bit of time (> 400, 000
cycles)

3. Multiplication is not (much) faster

New software speed records for cryptographic pairings 14



Why is our software slower?

[BGM+10] uses Montgomery arithmetic in Fp and fast 64× 64-bit
integer multiplier.

Three reasons why we are slower

1. Restricted choice of u: Need more operations in Fp2

2. Additional coe�cient reductions take quite a bit of time (> 400, 000
cycles)

3. Multiplication is not (much) faster

New software speed records for cryptographic pairings 14



Why is our software slower?

[BGM+10] uses Montgomery arithmetic in Fp and fast 64× 64-bit
integer multiplier.

Three reasons why we are slower

1. Restricted choice of u: Need more operations in Fp2

2. Additional coe�cient reductions take quite a bit of time (> 400, 000
cycles)

3. Multiplication is not (much) faster

New software speed records for cryptographic pairings 14



Why is our multiplication not faster?

I Fast multiplication (and squaring) was the target of our
implementation

I Always need to perform even number of Fp multiplications

I Have to use schoolbook instead of Karatsuba in Fp2

I 4 instead of 3 multiplications in Fp

I Using vector instructions still requires quite some shu�eling

I Overhead: 60 cycles per Fp2 multiplication

New software speed records for cryptographic pairings 15



Why is our multiplication not faster?

I Fast multiplication (and squaring) was the target of our
implementation

I Always need to perform even number of Fp multiplications

I Have to use schoolbook instead of Karatsuba in Fp2

I 4 instead of 3 multiplications in Fp

I Using vector instructions still requires quite some shu�eling

I Overhead: 60 cycles per Fp2 multiplication

New software speed records for cryptographic pairings 15



Conclusion

I Fastest (current) implementation based on double-precision
�oating-point arithmetic exploits special p

I On Intel (and AMD) processors: integer-based approach (with
Montgomery arithmetic) is faster

I But: several architectures have much faster double-precision
�oating-point than integer arithmetic

New software speed records for cryptographic pairings 16



References

Paper: http://cryptojedi.org/users/peter/#dclxvi
Software: http://cryptojedi.org/crypto/#dclxvi
(public domain)

New software speed records for cryptographic pairings 17

http://cryptojedi.org/users/peter/#dclxvi
http://cryptojedi.org/crypto/#dclxvi

