New software speed records for cryptographic
pairings

Michael Naehrig, Ruben Niederhagen, Peter Schwabe
August 9, 2010

Latincrypt 2010, Puebla, México

Technische Universiteit
e Eindhoven
University of Technology

Apologies

» Mistake in the paper as appeared in the proceedings
» Wrong choice of curve parameters
» Corrected in current version online

> Software (of course) also corrected

Thanks to Francisco for pointing this out.

New software speed records for cryptographic pairings 2

TU/ L?;::E:::Universiteit
Pairings — the obligatory slide Univrsiy of Technology

» Let G1, G5, and G5 be finite abelian groups.
» A pairing is a bilinear, nondegenerate map

€:G1XG2—)03

New software speed records for cryptographic pairings 3

TU/ TEei’cI:r'l'ios:::Universiteil
Pairings — the obligatory slide Univrsiy of Technology

» Let G1, G5, and G5 be finite abelian groups.
» A pairing is a bilinear, nondegenerate map

€:G1XG2—)03

» Different pairings derived from the Tate pairing

New software speed records for cryptographic pairings 3

TU/ TEei’cI::i;:::Universiteil
Pairings — the obligatory slide Univrsiy of Technology

v

Let G1, G, and G5 be finite abelian groups.

v

A pairing is a bilinear, nondegenerate map

€:G1XG2—)G;3

v

Different pairings derived from the Tate pairing

v

For practical applications: based on elliptic-curve arithmetic

v

Need “special’ curves

New software speed records for cryptographic pairings 3

TU/ TEei’cI::i;:::Universiteil
Pairings — the obligatory slide Univrsiy of Technology

v

Let G1, G, and G5 be finite abelian groups.

v

A pairing is a bilinear, nondegenerate map
e: G1 X GQ — G3
Different pairings derived from the Tate pairing

For practical applications: based on elliptic-curve arithmetic
Need “special’ curves

vV v v v

For 128-bit security level: Barreto-Naehrig curves (BN curves)

New software speed records for cryptographic pairings 3

TU/ TEei’cI::i;:::Universiteil
Pairings — the obligatory slide Univrsiy of Technology

v

Let G1, G, and G5 be finite abelian groups.

v

A pairing is a bilinear, nondegenerate map

€:G1XG2—)G3

Different pairings derived from the Tate pairing

For practical applications: based on elliptic-curve arithmetic
Need “special’ curves

For 128-bit security level: Barreto-Naehrig curves (BN curves)

vV v v v Y

Currently fastest: optimal ate pairing, r-ate pairing

New software speed records for cryptographic pairings 3

TU/ TEei;Zr;Iij:::Universiteit
Optimal ate pairing over BN curves University of Technology

“Definition” for this talk
The ate pairing over a BN curve is a sequence of operations in a field [,

New software speed records for cryptographic pairings 4

TU/ TEei’cI::ios:::Universiteil
Optimal ate pairing over BN curves University ofTechnology
“Definition” for this talk
The ate pairing over a BN curve is a sequence of operations in a field [,
» BN-curve construction: Find u such that
p = p(u) = 36u* + 36u> + 24u* + 6u + 1

n = n(u) = 36u + 36u® + 18u* 4 6u + 1
are prime

» For 128-bit security level: n should have 256 bits, p will also have
256 bits

New software speed records for cryptographic pairings 4

TU/ TEei’cI::i;:::Universiteil
Optimal ate pairing over BN curves University of Technology

“Definition” for this talk
The ate pairing over a BN curve is a sequence of operations in a field [,

» BN-curve construction: Find u such that
p = p(u) = 36u” + 36u> 4 24u> + 6u + 1
n = n(u) = 36u + 36u® + 18u* 4 6u + 1

are prime

» For 128-bit security level: n should have 256 bits, p will also have
256 bits

» The choice of u influences the sequence of operations in F,»
> Details on high-level algorithms in the paper

New software speed records for cryptographic pairings 4

TU/ TEei’cI::i;:::Universiteil
Optimal ate pairing over BN curves University of Technology

“Definition” for this talk
The ate pairing over a BN curve is a sequence of operations in a field [,

» BN-curve construction: Find u such that
p = p(u) = 36u* + 36u> + 24u* + 6u + 1

n = n(u) = 36u + 36u® + 18u* 4 6u + 1
are prime

» For 128-bit security level: n should have 256 bits, p will also have
256 bits

» The choice of u influences the sequence of operations in F,»
> Details on high-level algorithms in the paper

Question: Can we exploit the special shape of p for faster arithmetic in
IFP or Fp2?

New software speed records for cryptographic pairings 4

Exploiting the shape of p TU/ Eindhoven

University of Technology

Answer 1, Scott, May 2009

“exploit the form of p(x) for a faster modular arithmetic [...] Not really
demonstrated successfully, (except recently in hardware?).”

New software speed records for cryptographic pairings

Technische Universiteit
- Eindhoven
Exploltlng the Sha pe Of p TU/ University of Technology

Answer 1, Scott, May 2009

“exploit the form of p(x) for a faster modular arithmetic [...] Not really
demonstrated successfully, (except recently in hardware?).”

Answer 2, Fan, Vercauteren, Verbauwhede, Sep. 2009

Faster Fy,-arithmetic for Cryptographic Pairings on Barreto-Naehrig

Curves, presented at CHES 2009, exploiting the special structure of p in
hardware

New software speed records for cryptographic pairings 5

Technische Universiteit
- Eindhoven
Exploltlng the Sha pe Of p TU/ University of Technology

Answer 1, Scott, May 2009
“exploit the form of p(x) for a faster modular arithmetic [...] Not really
demonstrated successfully, (except recently in hardware?).”

Answer 2, Fan, Vercauteren, Verbauwhede, Sep. 2009

Faster Fy,-arithmetic for Cryptographic Pairings on Barreto-Naehrig

Curves, presented at CHES 2009, exploiting the special structure of p in
hardware

How about software?

New software speed records for cryptographic pairings 5

TU/ TEei;z:ios:::Universiteit
Polynomial representation Universy ofTechnology
(Inspired by Bernstein’s curve25519 paper)

Consider the ring R = Z[z] N Z[v/6ux] and the element

P = 36u*z* + 36ud2® + 24u%2? + 6uz + 1
= (V6uz)* + V6(V6uz)® + 4(vV6uz)? + V6(V6uz) + 1.

Then P(1) = p.

New software speed records for cryptographic pairings 6

TU/ TEei’cI::ios:::Universiteil
Polynomial representation Uriversty of echnology
(Inspired by Bernstein’s curve25519 paper)

Consider the ring R = Z[z] N Z[v/6ux] and the element

P = 36u*z* + 36uls® + 24u%2? 4 6ux + 1
= (V6uz)* + V6(V6uz)® + 4(vV6uz)? + V6(V6uz) + 1.
Then P(1) = p.

> Represent f € F, as polynomial in R:

F o= o+ fi-V6(Vouz) + fo- (Vouz)® + f5 - V6(v6ua)’
= fo+f1-(6u)z + fo- (6u”)z® + f5 - (36u”)z®

» Then: f = F(1)
» For implementation needs to store 4 coefficients fy, f1, f2, f3.

New software speed records for cryptographic pairings 6

TU/ L?;::E:::Universiteil
Multiplication and degree reduction Univrsiy of Technology

Polynomial multiplication of f and g yields 7 coefficients tq, ..., s
Reduction mod p to rg,...,73:

ro <= to — t4 + 6t5 — 2tg
ry 11 —tqg+ 5t5 — tg
T9 < to — 4ty + 18t5 — 3ig
rg <—t3 —t4 + 2t5 + 3tg

New software speed records for cryptographic pairings 7

| TU / s e
Four coefficients are not enough B Technology

256-bit numbers in 4 coefficients: Each coefficient 64 bits
Coefficients do not have exactly the same size
Small multiples in the reduction are larger than 128 bits

Easy to realize in hardware, not in software

vV v v v Y

For software we need more coefficients

New software speed records for cryptographic pairings 8

| TU / s e
Four coefficients are not enough B Technology

256-bit numbers in 4 coefficients: Each coefficient 64 bits
Coefficients do not have exactly the same size

Small multiples in the reduction are larger than 128 bits
Easy to realize in hardware, not in software

For software we need more coefficients
3

vV vVv.v v v .Y

Idea: Consider u = v*, use 12 coefficients fo, ..., f11

f=fo+6ufi +60%fo + 60 f3 + 60" f4 + 60° f5 + 60° f+-
3607 f7 + 3608 fs + 360 fo + 36010 f10 + 360 f11

New software speed records for cryptographic pairings 8

| TU / s e
Four coefficients are not enough B Technology

vV vVv.v v v .Y

256-bit numbers in 4 coefficients: Each coefficient 64 bits
Coefficients do not have exactly the same size

Small multiples in the reduction are larger than 128 bits
Easy to realize in hardware, not in software

For software we need more coefficients

3

Idea: Consider u = v*, use 12 coefficients fo, ..., f11

f=fo+6ufi +60%fo + 60 f3 + 60" f4 + 60° f5 + 60° f+-
3607 f7 + 3608 fs + 360 fo + 36010 f10 + 360 f11

v has about 21 bits, products have about 42 bits

» Double-precision floats have 53-bit mantissa

Use double-precision floats, still some space to add up coefficients
and compute small multiples

New software speed records for cryptographic pairings 8

Technische Universiteit
. - Eindhoven
Reducn’]g Coeffl(:lents TU/ University of Technology

» At some point the coefficients will overflow (become larger than 53
bits)
> Need to do coefficient reduction (carry)

New software speed records for cryptographic pairings 9

Technische Universiteit
. - Eindhoven
Reducn’]g CoefﬁClentS TU/ University of Technology

v

At some point the coefficients will overflow (become larger than 53
bits)

Need to do coefficient reduction (carry)

v

v

Carry from fy to f1
¢ < round(f/6v)
f() — f() —c-6v
fih+ec

Carry from f; to fo
¢ < round(f1/v)
h<fi—cw
Lo fate

v

New software speed records for cryptographic pairings 9

Technische Universiteit
. - Eindhoven
Reducn’]g CoefﬁClentS TU/ University of Technology

v

At some point the coefficients will overflow (become larger than 53
bits)

Need to do coefficient reduction (carry)

v

v

Carry from fy to f1
¢ < round(f/6v)
fo < fo—c-6v
fih+ec
Carry from f; to fo
¢ < round(f1/v)
h<fi—cw
Lo fate
fo € [-3v,3v], f1 € [-v/2,v/2]
Carry from fi1 goes to fo, f3, f6, and fg

v

v

v

New software speed records for cryptographic pairings 9

TU/ L?;::E:::Universiteil
Implementation on a Core 2 processor Universy of Technology

» Use fast vector instructions mulpd and addpd
» 2 multiplications/ 2 additions in one instruction
» 1 mulpd and 1 addpd (and one mov) per cycle

New software speed records for cryptographic pairings 10

TU/ TEei’cI::ios:::Universiteil
Implementation on a Core 2 processor Universy of Technology

Use fast vector instructions mulpd and addpd
2 multiplications/ 2 additions in one instruction
1 mulpd and 1 addpd (and one mov) per cycle

vV v v v

Problem: F, arithmetic requires a lot of shuffeling, combining etc.

New software speed records for cryptographic pairings 10

TU/ TEei’cI::i;:::Universiteil
Implementation on a Core 2 processor Universy of Technology

Use fast vector instructions mulpd and addpd

2 multiplications/ 2 additions in one instruction

1 mulpd and 1 addpd (and one mov) per cycle

Problem: F, arithmetic requires a lot of shuffeling, combining etc.
Solution: Implement arithmetic in IF

Use schoolbook multiplication in I, yielding 4 multiplications in F,,
For squaring in F,> use complex method: 2 multiplications in IF,,

vV V. vV vV vV v Vv Y

Perform 2 [F,, multiplications in parallel using vector instructions

New software speed records for cryptographic pairings 10

TU/ TEel;:wos::: Universiteit
Implementation on a Core 2 processor Universy of Technology

vV V. vV vV vV vV vV VvV VY

Use fast vector instructions mulpd and addpd

2 multiplications/ 2 additions in one instruction

1 mulpd and 1 addpd (and one mov) per cycle

Problem: F, arithmetic requires a lot of shuffeling, combining etc.
Solution: Implement arithmetic in IF

Use schoolbook multiplication in I, yielding 4 multiplications in F,,
For squaring in F,> use complex method: 2 multiplications in IF,,
Perform 2 [F,, multiplications in parallel using vector instructions

IF,, polynomial reduction after IF,,> polynomial reduction

Only two F,, polynomial reductions and two coefficient reductions
per multiplication in IF 2

Those reductions also done in SIMD way

New software speed records for cryptographic pairings 10

TU/ TEei’cI::ios:::Universiteil
Detecting and avoiding overflows Univrsiy of Technology

After each multiplication we need to reduce coefficients
Sometimes also before a multiplication after several additions
Problem: How to detect where?

vV v v v

Need to detect overflow in the worst case

New software speed records for cryptographic pairings 11

TU/ TEei’cI::i;:::Universiteil
Detecting and avoiding overflows Univrsiy of Technology

After each multiplication we need to reduce coefficients
Sometimes also before a multiplication after several additions
Problem: How to detect where?

Need to detect overflow in the worst case

Implement software in C

Replace double with C++ class CheckDouble

Perform arithmetic on values and in parallel on worst-case values

vV vV vV vV VvV VvV Vv Y

Abort at overflow (allows backtrace in debugger)

New software speed records for cryptographic pairings 11

TU/ TEei’cI::i;:::Universiteil
Detecting and avoiding overflows Univrsiy of Technology

After each multiplication we need to reduce coefficients
Sometimes also before a multiplication after several additions
Problem: How to detect where?

Need to detect overflow in the worst case

Implement software in C

Replace double with C++ class CheckDouble

Perform arithmetic on values and in parallel on worst-case values
Abort at overflow (allows backtrace in debugger)

Re-implement algorithms in assembly (ghasm)

vV V. vV vV vV YV V. VvV VY

Would be good to have overflow checks in assembly

New software speed records for cryptographic pairings 11

Technische Universiteit
Eindhoven
ReSU |tS University of Technology

Performance of dclxvi software

» Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,134,643 cycles
» Similar for other 64-bit Intel processors

New software speed records for cryptographic pairings 12

Technische Universiteit
Eindhoven
University of Technology

Results

Performance of dclxvi software
Cycles on an Intel Core 2 Quad Q6600 (65 nm): 4,134,643 cycles

Similar for other 64-bit Intel processors

v

v

v

Comparison: Fastest published pairing benchmark (on one core)
before: 10,000,000 cycles on a Core 2 by Hankerson, Menezes,
Scott, 2008

Unpublished: 7,850,000 cycles on a Core 2 T5500 (Scott 2010)

v

New software speed records for cryptographic pairings 12

Technische Universiteit
Eindhoven
University of Technology

Even faster pairings

New paper by Beuchat, Gonzélez Diaz, Mitsunari, Okamoto,
Rodriguez-Henriquez, and Teruya:
"High-Speed Software Implementation of the Optimal Ate Pairing over

Barreto-Naehrig Curves”
Claims: 2,490,000 cycles on a Core i7, 3,140,000 cycles on a Core 2 with
Visual Studio 2008

New software speed records for cryptographic pairings 13

Even faster pairings

TU/

New paper by Beuchat, Gonzélez Diaz, Mitsunari, Okamoto,

Rodriguez-Henriquez, and Teruya:

Technische Universiteit
Eindhoven
University of Technology

"High-Speed Software Implementation of the Optimal Ate Pairing over

Barreto-Naehrig Curves”

Claims: 2,490,000 cycles on a Core i7, 3,140,000 cycles on a Core 2 with

Visual Studio 2008

Cycle counts on a Core 2 Q6600 with gcc-4.3.3

dclxvi [BGM+10]
multiplication in IF 2 ~ 585 ~ 588
squaring in IF,» ~ 359 ~ 487
optimal ate pairing ~ 4,135,000 | ~ 3,269,000

New software speed records for cryptographic pairings 13

TU/ TEei;:r;Iij:::Universiteit
Why is our software slower? UniversiyofTechnolosy

[BGM+10] uses Montgomery arithmetic in F,, and fast 64 x 64-bit
integer multiplier.

Three reasons why we are slower

New software speed records for cryptographic pairings 14

TU/ L?;::E:::Universiteit
Why is our software slower? UniversiyofTechnolosy

[BGM+10] uses Montgomery arithmetic in F,, and fast 64 x 64-bit
integer multiplier.

Three reasons why we are slower

1. Restricted choice of u: Need more operations in F»

New software speed records for cryptographic pairings 14

TU/ TEei’cI:r'l'ios:::Universiteil
Why is our software slower? UniversiyofTechnolosy

[BGM+10] uses Montgomery arithmetic in F,, and fast 64 x 64-bit
integer multiplier.

Three reasons why we are slower

1. Restricted choice of u: Need more operations in F»

2. Additional coefficient reductions take quite a bit of time (> 400, 000
cycles)

New software speed records for cryptographic pairings 14

Technische Universiteit
Eindhoven
University of Technology

Why is our software slower?

[BGM+10] uses Montgomery arithmetic in F,, and fast 64 x 64-bit
integer multiplier.

Three reasons why we are slower
1. Restricted choice of u: Need more operations in F»
2. Additional coefficient reductions take quite a bit of time (> 400, 000
cycles)
3. Multiplication is not (much) faster

New software speed records for cryptographic pairings 14

Technische Universiteit
Eindhoven
University of Technology

Why is our multiplication not faster?

v

Fast multiplication (and squaring) was the target of our
implementation
Always need to perform even number of [, multiplications

Have to use schoolbook instead of Karatsuba in)2

v

v

4 instead of 3 multiplications in F),

v

New software speed records for cryptographic pairings 15

TU/ TEei’cI::i;:::Universiteil
Why is our multiplication not faster? UniversiyofTecnology

» Fast multiplication (and squaring) was the target of our
implementation

Always need to perform even number of [, multiplications
Have to use schoolbook instead of Karatsuba in)2
4 instead of 3 multiplications in F),

Using vector instructions still requires quite some shuffeling

vV v v v Y

Overhead: 60 cycles per IF,,> multiplication

New software speed records for cryptographic pairings 15

Technische Universiteit
Eindhoven
University of Technology

Conclusion

» Fastest (current) implementation based on double-precision
floating-point arithmetic exploits special p

» On Intel (and AMD) processors: integer-based approach (with
Montgomery arithmetic) is faster

» But: several architectures have much faster double-precision
floating-point than integer arithmetic

New software speed records for cryptographic pairings 16

Technische Universiteit
T U Eindhoven
References Emeriy of Technolosy

Paper: http://cryptojedi.org/users/peter/#dclxvi
Software: http://cryptojedi.org/crypto/#dclxvi
(public domain)

New software speed records for cryptographic pairings 17

http://cryptojedi.org/users/peter/#dclxvi
http://cryptojedi.org/crypto/#dclxvi

