


Quantum computers – should we be worried?

“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m
thinking like it’s 15 or a little more. It’s within reach. It’s within our
lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers
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Quantum computers – should we be worried?

“Now, we’re aiming to build the first quantum integrated circuit, which
we’re aiming for by 2020.

Beyond that, we must do error correction, so that if errors come into the
chip, you can run multiple processes in parallel to eliminate those errors
and that error correction will take another five years or so.”

—Michelle Simmons (UNSW), Jan. 2016
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NSA’s data center in Bluffdale
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NSA’s data center in Bluffdale

Estimated numbers

◮ Electricity consumption: 65MW

◮ Energy bill: US$40, 000, 000/year

◮ Storage: 3–12EB

The attack scenario

◮ Store encrypted data now

◮ Decrypt in 15 (?) years

◮ Consequence:

Need post-quantum (ephemeral) encryption keys now!

◮ Combine with pre-quantum key exchange to not lower security
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Ring-Learning-with-errors (RLWE)

◮ Let Rq = Zq[X ]/(Xn + 1)

◮ Let χ be an error distribution on Rq

◮ Let s ∈ Rq be secret

◮ Attacker is given pairs (a, as + e) with
◮ a uniformly random from Rq

◮ e sampled from χ

◮ Task for the attacker: find s
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Ring-Learning-with-errors (RLWE)

◮ Let Rq = Zq[X ]/(Xn + 1)

◮ Let χ be an error distribution on Rq

◮ Let s ∈ Rq be secret

◮ Attacker is given pairs (a, as + e) with
◮ a uniformly random from Rq

◮ e sampled from χ

◮ Task for the attacker: find s

◮ Common choice for χ: discrete Gaussian

◮ Common optimization for protocols: fix a
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Peikert’s RLWE-based KEM

Parameters: q, n, χ

KEM.Setup() :

a
$

←Rq

Alice (server) Bob (client)

KEM.Gen(a) : KEM.Encaps(a,b) :

s, e
$

← χ s
′, e′, e′′

$

← χ

b←as+ e
b
−→ u←as

′ + e
′

v←bs
′ + e

′′

v̄
$

← dbl(v)

KEM.Decaps(s, (u,v′)) :
u,v′

←−−− v
′ = 〈v̄〉2

µ←rec(2us,v′) µ←⌊v̄⌉2
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BCNS key exchange

◮ Bos, Costello, Naehrig, Stebila, IEEE S&P 2015:
◮ Phrase the KEM as key exchange
◮ Instantiate with concrete parameters
◮ Integrate with OpenSSL → post-quantum TLS key exchange
◮ Also: combined ECDH+RLWE key exchange
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BCNS key exchange

◮ Bos, Costello, Naehrig, Stebila, IEEE S&P 2015:
◮ Phrase the KEM as key exchange
◮ Instantiate with concrete parameters
◮ Integrate with OpenSSL → post-quantum TLS key exchange
◮ Also: combined ECDH+RLWE key exchange

◮ Parameters chosen by BCNS:
◮ Rq = Zq [X]/(Xn + 1)
◮ n = 1024
◮ q = 232 − 1
◮ χ = DZ,σ

◮ σ = 8
√
2π ≈ 3.192

◮ Claimed security level: 128 bits pre-quantum

◮ Failure probability: ≈ 2−131072
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A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

7



A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

7



A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

◮ Analysis of post-quantum security

7



A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (
∑k

i=1
bi − b

′

i for bi, b
′

i ∈ {0, 1})

7



A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (
∑k

i=1
bi − b

′

i for bi, b
′

i ∈ {0, 1})

◮ Choose a fresh parameter a for every protocol run

7



A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (
∑k

i=1
bi − b

′

i for bi, b
′

i ∈ {0, 1})

◮ Choose a fresh parameter a for every protocol run

◮ Encode polynomials in NTT domain

7



A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (
∑k

i=1
bi − b

′

i for bi, b
′

i ∈ {0, 1})

◮ Choose a fresh parameter a for every protocol run

◮ Encode polynomials in NTT domain

◮ Multiple implementations
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A new hope – protocol

Parameters: q = 12289 < 214, n = 1024

Error distribution: ψ16

Alice (server) Bob (client)

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e
$← ψn

16 s
′, e′, e′′ $← ψn

16

b←as+ e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as
′ + e

′

v←bs
′ + e

′′

v
′←us

(u,r)←−−− r
$← HelpRec(v)

k←Rec(v′, r) k←Rec(v, r)

µ←SHA3-256(k) µ←SHA3-256(k)
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Error reconciliation

◮ After running the protocol
◮ Alice has xA = ass

′ + e
′
s

◮ Bob has xB = ass
′ + es

′ + e
′′

◮ Those elments are similar, but not the same

◮ Problem: How to agree on the same key from these noisy vectors?
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Error reconciliation

◮ After running the protocol
◮ Alice has xA = ass

′ + e
′
s

◮ Bob has xB = ass
′ + es

′ + e
′′

◮ Those elments are similar, but not the same

◮ Problem: How to agree on the same key from these noisy vectors?

◮ Known: Extract one bit from each coefficient

◮ Also known: Extract multiple bits from each coefficient (decrease
security)

◮ Newhope: extract one bit from multiple coefficients (increase
security)

◮ Specifically: 1 bit from 4 coefficients → 256-bit key from 1024
coefficients

◮ In the following: 2-dimensional intuition (4-dim. case very similar)

◮ “Scale” vector x to [0, 1)2
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2D Error reconciliation

(0, 0) (1, 0)

(0, 1) (1, 1)

(1
2
, 1
2
)
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2D Error reconciliation

(0, 0) (1, 0)

(0, 1) (1, 1)

(1
2
, 1
2
)

◮ If x is in the grey Voronoi cell: pick key bit 1
◮ If x is in the white Voronoi cell: pick key bit 0
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2D Error reconciliation

(0, 0) (1, 0)

(0, 1) (1, 1)

(1
2
, 1
2
)

◮ If x is in the grey Voronoi cell: pick key bit 1
◮ If x is in the white Voronoi cell: pick key bit 0
◮ Reconciliation: Bob sends difference vector from xB to center of his

Voronoi cell
◮ Alice adds this difference vector to her vector xA
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Discretization of reconciliation

(1
2
, 1
2
)

◮ Sending difference vector means doubling communcation
◮ Idea: chop Voronoi cell into 2dr subcells

◮ d: dimension (4 for NewHope)
◮ r: discretization level

◮ Need to send only rd bits per d coefficients
◮ NewHope: r = 2; hence 256 bytes of reconciliation information
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“Blurring the edges”

◮ This would all work if x was continuous uniform from [0, 1)

◮ We start with x ∈ {0, . . . , q − 1}2, q odd

◮ Odd number of possible values; no way to pick key bit without bias!

◮ This is the same for dimension 4
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“Blurring the edges”

◮ This would all work if x was continuous uniform from [0, 1)

◮ We start with x ∈ {0, . . . , q − 1}2, q odd

◮ Odd number of possible values; no way to pick key bit without bias!

◮ This is the same for dimension 4

◮ Idea: randomly “blur the edges”

◮ Add vector (1/2q, 1/2q) with probability 1/2 before reconciliation

◮ This is a generalization of Peikert’s “randomized doubling” trick
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“Blurring the edges”

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b
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Security analysis

◮ Consider RLWE instance as LWE instance

◮ Attack using BKZ

◮ BKZ uses SVP oracle in smaller dimension

◮ Consider only the cost of one call to that oracle (“core-SVP
hardness”)
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Security analysis

◮ Consider RLWE instance as LWE instance

◮ Attack using BKZ

◮ BKZ uses SVP oracle in smaller dimension

◮ Consider only the cost of one call to that oracle (“core-SVP
hardness”)

◮ Consider quantum sieve as SVP oracle
◮ Best-known quantum cost (BKC): 20.265n

◮ Best-plausible quantum cost (BPC): 20.2075n

◮ Primal attack: unique-SVP from LWE; solve using BKZ

◮ Dual attack: find short vector in dual lattice

◮ Length determines complexity and attacker’s advantage ǫ
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JarJar

“I don’t like is the way that the parameters are set [. . . ] I think that
setting them too high impedes research.”

—anonymous reviewer
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JarJar

“I don’t like is the way that the parameters are set [. . . ] I think that
setting them too high impedes research.”

—anonymous reviewer

◮ JarJar: instantiation with n = 512

◮ Same q = 12289

◮ Use root lattice D2 instead of D4

◮ Use k = 24 for the centered binomial distribution

JarJar is not recommended for use!
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Post-quantum security

Known Known Best

Attack m b Classical Quantum Plausible

BCNS proposal: q = 232 − 1, n = 1024, σ = 3.192

Primal 1062 296 86 77 61

Dual 1042 259 84 76 62

JarJar: q = 12289, n = 512, σ =
√
12

Primal 623 449 131 117 93

Dual 531 341 106 95 77

NewHope: q = 12289, n = 1024, σ =
√
8

Primal 1100 967 282 253 200

Dual 938 761 229 206 165

◮ b: Block size for BKZ

◮ m: Number of used samples
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Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
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Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

◮ Even without backdoor:
◮ Perform massive precomputation based on a

◮ Use precomputation to break all key exchanges
◮ Infeasible today, but who knows. . .
◮ Attack in the spirit of Logjam

◮ Solution in NewHope: Choose a fresh a every time

◮ Use SHAKE-128 to expand a 32-byte seed

◮ Server can cache a for some time (e.g., 1h)

◮ Must not reuse keys/noise!
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Implementation

◮ Very fast multiplication in Rq: use NTT

◮ Define message format:
◮ Send polynomials in NTT domain
◮ Eliminate two of the required NTTs
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Implementation

◮ Very fast multiplication in Rq: use NTT

◮ Define message format:
◮ Send polynomials in NTT domain
◮ Eliminate two of the required NTTs

◮ C reference implementation:
◮ Arithmetic on 16-bit and 32-bit integers
◮ No division (/) or modulo (%) operator
◮ Use Montgomery reductions inside NTT
◮ Use ChaCha20 for noise sampling

◮ AVX2 implementation:
◮ Speed up NTT using vectorized double arithmetic
◮ Use AES-256 for noise sampling
◮ Use AVX2 for centered binomial
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The protocol revisited
Parameters: q = 12289 < 214, n = 1024

Error distribution: ψn
16

Alice (server) Bob (client)

seed
$← {0, . . . , 255}32

â←Parse(SHAKE-128(seed))

s, e
$← ψn

16 s
′, e′, e′′ $← ψn

16

ŝ←NTT(s)

b̂←â ◦ ŝ+ NTT(e)
ma=encodeA(seed,b̂)−−−−−−−−−−−−−→

1824 Bytes
(b̂, seed)←decodeA(ma)

â←Parse(SHAKE-128(seed))

t̂←NTT(s′)

û←â ◦ t̂+ NTT(e′)

v←NTT−1(b̂ ◦ t̂) + e
′′

(û, r)←decodeB(mb)
mb=encodeB(û,r)←−−−−−−−−−−−

2048 Bytes
r

$← HelpRec(v)

v
′←NTT−1(û ◦ ŝ) k←Rec(v, r)

k←Rec(v′, r) µ←SHA3-256(k)

µ←SHA3-256(k)
18



Vector computations

Scalar computation

◮ Load 32-bit integer a

◮ Load 32-bit integer b

◮ Perform addition
c←a+ b

◮ Store 32-bit integer c

Vectorized computation

◮ Load 8 consecutive 32-bit integers
(a0, a1, . . . , a7)

◮ Load 8 consecutive 32-bit integers
(b0, b1, . . . , b7)

◮ Perform addition
(c0, c1, . . . , c7)←(a0 + b0, a1 +
b1, . . . , a7 + b7)

◮ Store 256-bit vector (c0, c1, . . . , c7)
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◮ Compilers will not really help with vectorization
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◮ Consider the Intel Haswell processor
◮ 32-bit load throughput: 2 per cycle
◮ 32-bit add throughput: 4 per cycle
◮ 32-bit store throughput: 1 per cycle
◮ 256-bit load throughput: 1 per cycle
◮ 8× 32-bit add throughput: 2 per cycle
◮ 256-bit store throughput: 1 per cycle

◮ Vector instructions are almost as fast as scalar instructions but
do 4–8× the work

◮ Situation on other architectures/microarchitectures is similar

20



Why would you care? (Part II)

◮ Data-dependent branches are expensive in SIMD

◮ Variably indexed loads (lookups) into vectors are expensive

◮ Need to rewrite algorithms to eliminate branches and lookups
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Why would you care? (Part II)

◮ Data-dependent branches are expensive in SIMD

◮ Variably indexed loads (lookups) into vectors are expensive

◮ Need to rewrite algorithms to eliminate branches and lookups

◮ Secret-data-dependent branches and secret branch conditions are the
major sources of timing-attack vulnerabilities

◮ Strong synergies between speeding up code with vector instructions
and protecting code!

21



Vectorizing the NTT
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Vectorizing the NTT

◮ Essentially reuse code from PQCrypto 2013

◮ Represent elements of Zq as double-precision floats

◮ Reduction mod q:
◮ Multiply by approximate inverse of q
◮ Round/Truncate
◮ Multiply by q
◮ Subtract

◮ Performance: ≈ 11, 000 cycles,
◮ including multiplication by powers of γ
◮ excluding bit reversal

◮ TODO: Revisit NTT, use integer arithmetic
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Performance

BCNS C ref AVX2

Key generation (server) ≈ 2 477 958 271 650 115 414

(272 174) (115 746)

Key gen + shared key (client) ≈ 3 995 977 402 058 144 788

(402 285) (144 957)

Shared key (server) ≈ 481 937 86 584 23 988

◮ Benchmarks on one core of an Intel i7-4770K (Haswell)

◮ BCNS benchmarks are derived from openssl speed

◮ Numbers in parantheses are average; all other numbers are median.

◮ Includes around ≈ 57 000 cycles for generation of a on each side
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BCNS C ref AVX2

Key generation (server) ≈ 2 477 958 271 650 115 414

(272 174) (115 746)

Key gen + shared key (client) ≈ 3 995 977 402 058 144 788

(402 285) (144 957)

Shared key (server) ≈ 481 937 86 584 23 988

◮ Benchmarks on one core of an Intel i7-4770K (Haswell)

◮ BCNS benchmarks are derived from openssl speed

◮ Numbers in parantheses are average; all other numbers are median.

◮ Includes around ≈ 57 000 cycles for generation of a on each side

◮ Faster than state-of-the art ECC
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NewHope on ARM Cortex M*

◮ Joint work with Erdem Alkim and Philipp Jakubeit

◮ Optimize NewHope on Cortex M0 and M4

◮ 32-bit state-of-the art microcontrollers
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NewHope on ARM Cortex M*

◮ Joint work with Erdem Alkim and Philipp Jakubeit

◮ Optimize NewHope on Cortex M0 and M4

◮ 32-bit state-of-the art microcontrollers

◮ Start with C reference implementation

◮ New speed records for NTT from:
◮ Montgomery reductions after constant multiplications
◮ “Short Barrett reductions” after additions
◮ Lazy reductions
◮ Serious hand optimization in assembly

◮ Also optimize other building blocks of NewHope
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The NTT (in C)

◮ 10 levels of butterfly transformations

◮ Each level uses 512 Gentleman-Sande Butterflies

W = omega[jTwiddle++]; // W is in Montgomery domain

t = a[j];

a[j] = barrett_red(t + a[j+d]);

a[j+d] = montgomery_red(W * ((uint32_t)t + 3*12289 - a[j+d]));
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The NTT (in C)

◮ 10 levels of butterfly transformations

◮ Each level uses 512 Gentleman-Sande Butterflies

W = omega[jTwiddle++]; // W is in Montgomery domain

t = a[j];

a[j] = barrett_red(t + a[j+d]);

a[j+d] = montgomery_red(W * ((uint32_t)t + 3*12289 - a[j+d]));

◮ Every second level omits the barrett_red
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Montgomery reduction

uint16_t montgomery_red(uint32_t a) {

uint32_t u;

u = (a * 12287);

u &= ((1 << 18) - 1);

a += u * 12289;

return a >> 18;

}

◮ Use Montgomery parameter R = 218

◮ Works for inputs in {0, . . . , 232 − q(R− 1)− 1}

◮ Output is guaranteed to have at most 14 bits
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Short Barrett reduction

uint16_t barrett_red(uint16_t a) {

uint32_t u;

u = ((uint32_t) a * 5) >> 16;

a -= u * 12289;

return a;

}

◮ Accepts any 16-bit unsigned int as input

◮ Produces outputs of at most 14 bits
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ARM Cortex-M0 results

◮ Server side: ≈ 1.68Mio cycles (M0) and ≈ 870 000 cycles (M4)

◮ Client side: ≈ 2.05Mio cycles (M0) and ≈ 985 000 cycles (M4)
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ARM Cortex-M0 results

◮ Server side: ≈ 1.68Mio cycles (M0) and ≈ 870 000 cycles (M4)

◮ Client side: ≈ 2.05Mio cycles (M0) and ≈ 985 000 cycles (M4)

◮ Comparison to ECC: ≈ 3.59 cycles for X25519 scalar mult on M0

◮ Comparison to HECC: ≈ 2.63 cycles on Kummer surface on M0

28



Newhope questions

◮ Try error-correcting codes for reconciliation?
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Newhope questions

◮ Try error-correcting codes for reconciliation?

◮ Send polynomials in “normal” domain?
◮ Decouple protocol from multiplication algorithm
◮ Possibly drop least significant bits

◮ Use smaller q?
◮ Smaller messages
◮ Higher security
◮ Does not support efficient negacyclic NTT

◮ How about Nussbaumer’s algorithm for multiplication?

◮ How about Karatsuba + Toom for multiplication?

◮ How about smaller n (e.g., n ≈ 800)?
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NewHope online

Paper: https://cryptojedi.org/papers/#newhope

Software: https://cryptojedi.org/crypto/#newhope

ARM software: https://github.com/newhopearm/newhopearm.git

Newhope in Go: https://github.com/Yawning/newhope

(by Yawning Angel)

Newhope in Rust: https://code.ciph.re/isis/newhopers

(by Isis Lovecruft)

Newhope in D: https://cryptojedi.org/crypto/#newhope (?)

(soon???)
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