Who is afraid of vectors?
 Optimizing cryptography using SSE, AVX, NEON and Co.

Peter Schwabe

Radboud University Nijmegen, The Netherlands

August 26, 2013
Microsoft Research
"Thus we arbitrarily select a reference organization : the IBM 704-70927090. This organization is then regarded as the prototype of the class of machines which we label:

1) Single Instruction Stream-Single Data Stream (SISD).

Three additional organizational classes are evident.
2) Single Instruction Stream-Multiple Data Stream (SIMD)
3) Multiple Instruction Stream-Single Data Stream (MISD)
4) Multiple Instruction Stream-Multiple Data Stream (MIMD)"

- Michael J. Flynn. Very high-speed computing systems. 1966.

```
int64 a
int64 b
a = mem32[addr1 + 0]
b = mem32[addr2 + 0]
(uint32) a += b
mem32[addr3 + 0] = a
```


SIMD with vector instructions

Example: 4 32-bit integer additions

```
reg128 a
reg128 b
a = mem128[addr1 + 0]
b = mem128[addr2 + 0]
4x a += b
mem128[addr3 + 0] = a
```


Why would you care?

- Consider the Intel Nehalem processor

Why would you care?

- Consider the Intel Nehalem processor
- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- 32-bit store throughput: 1 per cycle

Why would you care?

- Consider the Intel Nehalem processor
- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- 32-bit store throughput: 1 per cycle
- 128-bit load throughput: 1 per cycle
- 4×32-bit add throughput: 2 per cycle
- 128-bit store throughput: 1 per cycle

Why would you care?

- Consider the Intel Nehalem processor
- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- 32-bit store throughput: 1 per cycle
- 128-bit load throughput: 1 per cycle
- 4×32-bit add throughput: 2 per cycle
- 128-bit store throughput: 1 per cycle
- Vector instructions are almost as fast as scalar instructions but do $4 \times$ the work

Why would you care?

- Consider the Intel Nehalem processor
- 32-bit load throughput: 1 per cycle
- 32-bit add throughput: 3 per cycle
- 32-bit store throughput: 1 per cycle
- 128-bit load throughput: 1 per cycle
- 4×32-bit add throughput: 2 per cycle
- 128-bit store throughput: 1 per cycle
- Vector instructions are almost as fast as scalar instructions but do $4 \times$ the work
- Situation on other architectures/microarchitectures is similar

Why would you care? (Part II)

- Data-dependent branches are expensive in SIMD
- Variably indexed loads (lookups) into vectors are expensive
- Need to rewrite algorithms to eliminate branches and lookups

Why would you care? (Part II)

- Data-dependent branches are expensive in SIMD
- Variably indexed loads (lookups) into vectors are expensive
- Need to rewrite algorithms to eliminate branches and lookups
- Secret-data-dependent branches and secret branch conditions are the major sources of timing-attack vulnerabilities

Why would you care? (Part II)

- Data-dependent branches are expensive in SIMD
- Variably indexed loads (lookups) into vectors are expensive
- Need to rewrite algorithms to eliminate branches and lookups
- Secret-data-dependent branches and secret branch conditions are the major sources of timing-attack vulnerabilities
- Strong synergies between speeding up code with vector instructions and protecting code!

Multiple Data Streams

- Where does the data-level parallelism come from?
- Easy case: High-level batching
- Encrypt n messages instead of one message
- Compute n signatures instead of one
- Do cryptanalysis

Multiple Data Streams

- Where does the data-level parallelism come from?
- Easy case: High-level batching
- Encrypt n messages instead of one message
- Compute n signatures instead of one
- Do cryptanalysis
- Requires rewriting (interleaving) basic data structures, e.g.:

```
typedef struct{ typedef struct{
    uint64_t x[4]; uint64_t x[16];
} bigint256; } bigint256x4;
bigint256 a,b,c,d; // (a[0],b[0],c[0],d[0],a[1],...,d[3])
    bigint256x4 abcd;
```


Multiple Data Streams

- Where does the data-level parallelism come from?
- Easy case: High-level batching
- Encrypt n messages instead of one message
- Compute n signatures instead of one
- Do cryptanalysis
- Requires rewriting (interleaving) basic data structures, e.g.:

```
typedef struct{ typedef struct{
    uint64_t x[4]; uint64_t x[16];
} bigint256; } bigint256x4;
bigint256 a,b,c,d; // (a[0],b[0],c[0],d[0],a[1],...,d[3])
bigint256x4 abcd;
```

- Harder: Exploit parallelism inside one computation
- This is the topic of this talk

Salsa20 in NEON

- Joint work with Dan Bernstein (CHES 2012)
- NEON:
- Vector instruction set of ARMv7 processors
- 16 128-bit vector registers (e.g.)
- On Cortex-A8: At most one arithmetic instruction, one load/store/shuffle instruction per cycle
- Salsa20:
- Stream cipher designed by Bernstein in 2005
- In the eSTREAM software portfolio
- Generates stream in 64-byte blocks, works on 32-bit integers
- Per block: 20 rounds; each round doing 16 add-rotate-xor sequences, such as

$$
\begin{aligned}
& s 4=x 0+x 12 \\
& x 4-=(s 4 \text { >>> 25) }
\end{aligned}
$$

- These sequences are 4-way parallel!

A first approach

- Per round do $4 \times$ something like:

$$
\begin{gathered}
4 \mathrm{x} \text { a0 }=\operatorname{diag} 1+\operatorname{diag} 0 \\
4 \mathrm{x} \text { b0 }=\mathrm{a0} \ll 7 \\
4 \mathrm{x} \text { a0 unsigned } \gg=25 \\
\text { diag3 }=\mathrm{b} 0 \\
\text { diag3 }=\mathrm{a} 0 \\
+ \text { some (free) shuffles }
\end{gathered}
$$

A first approach

- Per round do $4 \times$ something like:

$$
\begin{aligned}
& 4 \mathrm{x} \text { a0 }=\operatorname{diag} 1+\text { diag0 } \\
& 4 \mathrm{x} \text { b0 }=\mathrm{a} 0 \ll 7 \\
& 4 \mathrm{x} \text { a0 unsigned >>= } 25 \\
& \text { diag3 }=\mathrm{b0} \\
& \text { diag3 }=\mathrm{a0}
\end{aligned}
$$

- + some (free) shuffles
- Intuitive cycle lower bound: $(5 \cdot 4 \cdot 20) / 64=6.25$ cycles/byte

A first approach

- Per round do $4 \times$ something like:

$$
\begin{aligned}
& 4 \mathrm{x} \text { a0 }=\operatorname{diag} 1+\text { diag0 } \\
& 4 \mathrm{x} \text { b0 }=\mathrm{a} 0 \ll 7 \\
& 4 \mathrm{x} \text { a0 unsigned >>= } 25 \\
& \text { diag3 }=\mathrm{b0} \\
& \text { diag3 }=\mathrm{a0}
\end{aligned}
$$

- + some (free) shuffles
- Intuitive cycle lower bound: $(5 \cdot 4 \cdot 20) / 64=6.25$ cycles/byte
- Problem: The above sequence has a 9-cycle latency, thus: $(9 \cdot 4 \cdot 20) / 64=11.25$ cycles/byte

Trading parallelism

- Salsa20 rounds have 4-way data-level parallelism
- In a scalar implementations this turns into 4-way instruction-level parallelism

Trading parallelism

- Salsa20 rounds have 4-way data-level parallelism
- In a scalar implementations this turns into 4-way instruction-level parallelism
- Good for pipelined and superscalar execution

Trading parallelism

- Salsa20 rounds have 4-way data-level parallelism
- In a scalar implementations this turns into 4-way instruction-level parallelism
- Good for pipelined and superscalar execution
- The vector implementation needs 4 -way data parallelism, there is (almost) no instruction-level parallelism left
- Bad for pipelined and superscalar execution

Trading parallelism

- Salsa20 rounds have 4-way data-level parallelism
- In a scalar implementations this turns into 4-way instruction-level parallelism
- Good for pipelined and superscalar execution
- The vector implementation needs 4 -way data parallelism, there is (almost) no instruction-level parallelism left
- Bad for pipelined and superscalar execution
- Idea: Blocks are independent, use this to re-introduce instruction-level parallelism

Trading parallelism

- Salsa20 rounds have 4-way data-level parallelism
- In a scalar implementations this turns into 4 -way instruction-level parallelism
- Good for pipelined and superscalar execution
- The vector implementation needs 4 -way data parallelism, there is (almost) no instruction-level parallelism left
- Bad for pipelined and superscalar execution
- Idea: Blocks are independent, use this to re-introduce instruction-level parallelism
- Lower bound when interleaving 2 blocks: 6.875 cycles/byte
- Lower bound when interleaving 3 blocks: 6.25 cycles/byte

Going even further

- NEON is basically a coprocessor to the ARM core
- ARM decodes instructions, forwards NEON instructions to the NEON unit

Going even further

- NEON is basically a coprocessor to the ARM core
- ARM decodes instructions, forwards NEON instructions to the NEON unit
- Idea: Also keep the ARM core busy with Salsa20 computations
- New bottleneck: ARM core decodes at most 2 instructions per cycle

Going even further

- NEON is basically a coprocessor to the ARM core
- ARM decodes instructions, forwards NEON instructions to the NEON unit
- Idea: Also keep the ARM core busy with Salsa20 computations
- New bottleneck: ARM core decodes at most 2 instructions per cycle
- Add-rotate-xor is only 2 ARM instructions
- Best tradeoff: One block on ARM, two blocks on NEON

A flavor of the code

$$
\begin{aligned}
& 4 \mathrm{x} \mathrm{a0}=\operatorname{diag} 1+\operatorname{diag} 0 \\
& 4 \mathrm{x} \text { next_a0 }=\text { next_diag1 + next_diag0 } \\
& \mathrm{s} 4=\mathrm{x} 0+\mathrm{x} 12 \\
& \text { s9 = x5 + x1 } \\
& 4 \mathrm{x} \text { b0 }=\mathrm{aO} \ll 7 \\
& 4 \mathrm{x} \text { next_b0 = next_a0 << } 7 \\
& 4 \mathrm{x} \text { a0 unsigned>>= } 25 \\
& \text { 4x next_a0 unsigned>>= } 25 \\
& \text { x4 ~= (s4 >>> 25) } \\
& \text { x9 ~= (s9 >>> 25) } \\
& \mathrm{s} 8=\mathrm{x} 4+\mathrm{x} 0 \\
& \text { s13 = x9 + x5 } \\
& \text { diag3 ~= b0 } \\
& \text { next_diag3 ^= next_b0 } \\
& \text { diag3 ~ = a0 } \\
& \text { next_diag3 ~= next_a0 } \\
& \text { x8 ~= (s8 >>> 23) } \\
& \mathrm{x} 13 \text { ~ }=(\mathrm{s} 13 \text { >>> 23) }
\end{aligned}
$$

Result

5.47 cycles/byte for Salsa20 encryption on ARM Cortex-A8 with NEON
http://cryptojedi.org/crypto/\#neoncrypto

ECDH on the Cell Broadband Engine

- Joint work with Neil Costigan (Africacrypt 2009)
- Cell Broadband Engine (CBE):
- Processor in the PS 3 and in IBM Cell Blades
- Has one Power G5 core and 8 (6) "Synergistic Processor Units" (SPUs)
- SPU: all instructions are vector instructions, 128 128-bit registers
- At most one arithmetic instruction, one load/store/shuffle instruction per cycle
- Largest multiplier: $16 \times 16 \rightarrow 32$ bits (4-way parallel)
- Curve25519
- Elliptic-curve DH key exchange proposed by Bernstein in 2006
- Uses Montgomery curve over $\mathbb{F}_{2^{255}-19}$
- Main computation: 255 Montgomery ladder steps, each with $5 \mathrm{M}+4 \mathrm{~S}+8 \mathrm{~A}+1 \mathrm{~d}$

Representing elements of $\mathbb{F}_{2^{255}-19}$

- Intuitive: Use 1616 -bit integers a_{0}, \ldots, a_{15} in 2 registers to represent

$$
A=\sum_{i=0}^{15} a_{i} 2^{16 \cdot i}
$$

Representing elements of $\mathbb{F}_{2^{255}-19}$

- Intuitive: Use 1616 -bit integers a_{0}, \ldots, a_{15} in 2 registers to represent

$$
A=\sum_{i=0}^{15} a_{i} 2^{16 \cdot i}
$$

- Schoolbook multiplication gives 25616×16-bit multiplications, 224 32-bit additions

Representing elements of $\mathbb{F}_{2^{255}-19}$

- Intuitive: Use 1616 -bit integers a_{0}, \ldots, a_{15} in 2 registers to represent

$$
A=\sum_{i=0}^{15} a_{i} 2^{16 \cdot i}
$$

- Schoolbook multiplication gives 25616×16-bit multiplications, 224 32-bit additions
- But wait, what happens to carries?
- Answer on the Cell SPU: extra instruction (and muladd cannot add in carries)
- Answer for most other vector instruction sets: they're gone

Representing elements of $\mathbb{F}_{2^{255}-19}$

- Intuitive: Use 1616 -bit integers a_{0}, \ldots, a_{15} in 2 registers to represent

$$
A=\sum_{i=0}^{15} a_{i} 2^{16 \cdot i}
$$

- Schoolbook multiplication gives 25616×16-bit multiplications, 224 32-bit additions
- But wait, what happens to carries?
- Answer on the Cell SPU: extra instruction (and muladd cannot add in carries)
- Answer for most other vector instruction sets: they're gone
- Carry-safe representation: Use $\left(a_{0}, \ldots, a_{19}\right)$ with

$$
A=\sum_{i=0}^{19} a_{i} 2^{\lceil 12.75 \cdot i\rceil}
$$

Multiplication in carry-safe representation

- Start with reduced elements $\left(a_{0}, \ldots, a_{19}\right)$ and $\left(b_{0}, \ldots, b_{19}\right)$, i.e.,

$$
a_{i}, b_{i} \in\left[0,2^{13}-1\right], \quad i=0, \ldots, 19
$$

- Use 100 mul and muladd instructions to produce result $\left(r_{0}, \ldots, r_{38}\right)$,

$$
r_{i} \in\left[0,2^{32}-1\right], \quad i=0, \ldots, 38
$$

Multiplication in carry-safe representation

- Start with reduced elements $\left(a_{0}, \ldots, a_{19}\right)$ and $\left(b_{0}, \ldots, b_{19}\right)$, i.e.,

$$
a_{i}, b_{i} \in\left[0,2^{13}-1\right], \quad i=0, \ldots, 19
$$

- Use 100 mul and muladd instructions to produce result $\left(r_{0}, \ldots, r_{38}\right)$,

$$
r_{i} \in\left[0,2^{32}-1\right], \quad i=0, \ldots, 38
$$

- + lots of shuffles (free)
- + overhead from non-integer radix
- + overhead to combine intermediate results

Multiplication in carry-safe representation

- Start with reduced elements $\left(a_{0}, \ldots, a_{19}\right)$ and $\left(b_{0}, \ldots, b_{19}\right)$, i.e.,

$$
a_{i}, b_{i} \in\left[0,2^{13}-1\right], \quad i=0, \ldots, 19
$$

- Use 100 mul and muladd instructions to produce result $\left(r_{0}, \ldots, r_{38}\right)$,

$$
r_{i} \in\left[0,2^{32}-1\right], \quad i=0, \ldots, 38
$$

- + lots of shuffles (free)
- + overhead from non-integer radix
- + overhead to combine intermediate results
- Total: 145 arithmetic instructions, 145 cycles

Handling the carries

- Need to get reduced r from $\left(r_{0}, \ldots, r_{38}\right)$
- Standard carry chain:
- Carry from r_{20} to r_{21}, from r_{21} to r_{22} etc., finally from r_{38} to r_{39}
- Add $19 \cdot r_{20}$ to $r_{0}, 19 \cdot r_{21}$ to r_{1} etc.
- Carry from r_{0} to r_{1}, from r_{1} to r_{2} etc.

Handling the carries

- Need to get reduced r from $\left(r_{0}, \ldots, r_{38}\right)$
- Standard carry chain:
- Carry from r_{20} to r_{21}, from r_{21} to r_{22} etc., finally from r_{38} to r_{39}
- Add $19 \cdot r_{20}$ to $r_{0}, 19 \cdot r_{21}$ to r_{1} etc.
- Carry from r_{0} to r_{1}, from r_{1} to r_{2} etc.
- Two problems with this:
- No data-level parallelism (cannot really make use of vector instructions)

Handling the carries

- Need to get reduced r from $\left(r_{0}, \ldots, r_{38}\right)$
- Standard carry chain:
- Carry from r_{20} to r_{21}, from r_{21} to r_{22} etc., finally from r_{38} to r_{39}
- Add $19 \cdot r_{20}$ to $r_{0}, 19 \cdot r_{21}$ to r_{1} etc.
- Carry from r_{0} to r_{1}, from r_{1} to r_{2} etc.
- Two problems with this:
- No data-level parallelism (cannot really make use of vector instructions)
- (Almost) no instruction-level parallelism (arithmetic happens only about every 4th cycle)

Interleaved reduction

- Four independent parallel reduction chains
- Carry $r_{20} \rightarrow r_{21}, r_{24} \rightarrow r_{25}, r_{28} \rightarrow r_{29}, r_{32} \rightarrow r_{33}$

Interleaved reduction

- Four independent parallel reduction chains
\rightarrow Carry $r_{20} \rightarrow r_{21}, r_{24} \rightarrow r_{25}, r_{28} \rightarrow r_{29}, r_{32} \rightarrow r_{33}$
\rightarrow Carry $r_{21} \rightarrow r_{22}, r_{25} \rightarrow r_{26}, r_{29} \rightarrow r_{30}, r_{33} \rightarrow r_{34}$

Interleaved reduction

- Four independent parallel reduction chains
\rightarrow Carry $r_{20} \rightarrow r_{21}, r_{24} \rightarrow r_{25}, r_{28} \rightarrow r_{29}, r_{32} \rightarrow r_{33}$
\rightarrow Carry $r_{21} \rightarrow r_{22}, r_{25} \rightarrow r_{26}, r_{29} \rightarrow r_{30}, r_{33} \rightarrow r_{34}$
- ...
\rightarrow Carry $r_{24} \rightarrow r_{25}, r_{28} \rightarrow r_{29}, r_{32} \rightarrow r_{33}, r_{36} \rightarrow r_{37}$ - ...

Interleaved reduction

- Four independent parallel reduction chains
- Carry $r_{20} \rightarrow r_{21}, r_{24} \rightarrow r_{25}, r_{28} \rightarrow r_{29}, r_{32} \rightarrow r_{33}$
- Carry $r_{21} \rightarrow r_{22}, r_{25} \rightarrow r_{26}, r_{29} \rightarrow r_{30}, r_{33} \rightarrow r_{34}$
- ...
- Carry $r_{24} \rightarrow r_{25}, r_{28} \rightarrow r_{29}, r_{32} \rightarrow r_{33}, r_{36} \rightarrow r_{37}$
- ...
- Looks stupid (increasing reduction steps from 20 to 32)
- But: Do arithmetic every cycle, increase speed by a factor of $4 \cdot 20 / 32=2.5$

Exploit higher-level parallelism

- Many field operations in one Montgomery ladder step are independent
- Group 2×4 multiplications together (squarings as multiplications)
- Group additions/subtractions in blocks of 4
- Always process 4 operations at a time
- Leaves just one single multiplication at the end

Exploit higher-level parallelism

- Many field operations in one Montgomery ladder step are independent
- Group 2×4 multiplications together (squarings as multiplications)
- Group additions/subtractions in blocks of 4
- Always process 4 operations at a time
- Leaves just one single multiplication at the end
- Reduces number of arithmetic instructions for 4 multiplications from 580 to 420

Exploit higher-level parallelism

- Many field operations in one Montgomery ladder step are independent
- Group 2×4 multiplications together (squarings as multiplications)
- Group additions/subtractions in blocks of 4
- Always process 4 operations at a time
- Leaves just one single multiplication at the end
- Reduces number of arithmetic instructions for 4 multiplications from 580 to 420
- Uses SIMD for reduction: speed up by a factor of 4

696240 cycles for Curve25519 on one SPU of the CBE

http://cryptojedi.org/crypto/\#celldh

Lattice-based signatures in AVX

- Joint work with Güneysu, Oder, and Pöppelmann (PQCrypto 2013)
- AVX:
- Vector-instruction set for recent Intel and AMD processors
- 16 256-bit registers
- Only single-precision and double-precision float arithmetic
- One 4-way-parallel double-precision multiplication and addition every cycle (on Sandy Bridge and Ivy Bridge)
- Lattice-based signatures
- Consider scheme introduced by Lyubashevsky at Eurocrypt 2012
- Aim at 100-bit security
- Arithmetic in $R=\mathbb{F}_{p}[X] /\left(X^{512}+1\right)$, with $p=8383489$
- p has 23 bits and $p \equiv 1(\bmod 1024)$

Lattice-based signatures in AVX

- Joint work with Güneysu, Oder, and Pöppelmann (PQCrypto 2013)
- AVX:
- Vector-instruction set for recent Intel and AMD processors
- 16 256-bit registers
- Only single-precision and double-precision float arithmetic
- One 4-way-parallel double-precision multiplication and addition every cycle (on Sandy Bridge and Ivy Bridge)
- Lattice-based signatures
- Consider scheme introduced by Lyubashevsky at Eurocrypt 2012
- Aim at 100-bit 80-bit security
- Arithmetic in $R=\mathbb{F}_{p}[X] /\left(X^{512}+1\right)$, with $p=8383489$
- p has 23 bits and $p \equiv 1(\bmod 1024)$

Lattice-based signatures in AVX

- Joint work with Güneysu, Oder, and Pöppelmann (PQCrypto 2013)
- AVX:
- Vector-instruction set for recent Intel and AMD processors
- 16 256-bit registers
- Only single-precision and double-precision float arithmetic
- One 4-way-parallel double-precision multiplication and addition every cycle (on Sandy Bridge and Ivy Bridge)
- Lattice-based signatures
- Consider scheme introduced by Lyubashevsky at Eurocrypt 2012
- Aim at 100 -bit 80 -bit (?) security
- Arithmetic in $R=\mathbb{F}_{p}[X] /\left(X^{512}+1\right)$, with $p=8383489$
- p has 23 bits and $p \equiv 1(\bmod 1024)$

Representation of elements of R

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$: typedef double __attribute__ ((aligned (32))) r_elem[512];

Representation of elements of R

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$:
typedef double __attribute__ ((aligned (32))) r_elem[512];
- Use AVX double-precision instructions for addition and multiplication of coefficients

Representation of elements of R

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$:
typedef double __attribute__ ((aligned (32))) r_elem[512];
- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a :
- Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}

Representation of elements of R

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$:
typedef double __attribute__ ((aligned (32))) r_elem[512];
- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a :
- Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}
- Compute $c \leftarrow a \cdot \overline{p^{-1}}$
- Round c (high-throughput vroundpd instruction)
- Compute $c \leftarrow c \cdot p$
- Subtract c from a

Representation of elements of R

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$:
typedef double __attribute__ ((aligned (32))) r_elem[512];
- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a :
- Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}
- Compute $c \leftarrow a \cdot \overline{p^{-1}}$
- Round c (high-throughput vroundpd instruction)
- Compute $c \leftarrow c \cdot p$
- Subtract c from a
- Rounding mode determines whether this maps to

$$
\left[-\frac{p-1}{2}, \frac{p-1}{2}\right] \text { or to }[0, p-1]
$$

Representation of elements of R

- represent $a=\sum_{i=0}^{511} a_{i} X^{i}$ as $\left(a_{0}, \ldots, a_{511}\right)$:
typedef double __attribute__ ((aligned (32))) r_elem[512];
- Use AVX double-precision instructions for addition and multiplication of coefficients
- Modular reduction of a coefficient a :
- Precompute double-precision approximation $\overline{p^{-1}}$ of p^{-1}
- Compute $c \leftarrow a \cdot \overline{p^{-1}}$
- Round c (high-throughput vroundpd instruction)
- Compute $c \leftarrow c \cdot p$
- Subtract c from a
- Rounding mode determines whether this maps to

$$
\left[-\frac{p-1}{2}, \frac{p-1}{2}\right] \text { or to }[0, p-1]
$$

- Use lazy reduction: product of two 22-bit numbers has 44 bits, quite some space in the 53 -bit mantissa

Multiplication in R

- Let ω be a 512 th root of unity in \mathbb{F}_{p} and $\psi^{2}=\omega$
- The number-theoretic transform NTT_{ω} of $a=\left(a_{0}, \ldots, a_{511}\right)$ is defined as

$$
\operatorname{NTT}_{\omega}(a)=\left(A_{0}, \ldots, A_{511}\right) \text { with } A_{i}=\sum_{j=0}^{511} a_{j} \omega^{i j}
$$

Multiplication in R

- Let ω be a 512 th root of unity in \mathbb{F}_{p} and $\psi^{2}=\omega$
- The number-theoretic transform NTT_{ω} of $a=\left(a_{0}, \ldots, a_{511}\right)$ is defined as

$$
\operatorname{NTT}_{\omega}(a)=\left(A_{0}, \ldots, A_{511}\right) \text { with } A_{i}=\sum_{j=0}^{511} a_{j} \omega^{i j}
$$

- Consider multiplication $d=a \cdot b$ in R
- Compute

$$
\begin{aligned}
& \bar{a}=\left(a_{0}, \psi a_{1}, \ldots, \psi^{511} a_{511}\right) \text { and } \\
& \bar{b}=\left(b_{0}, \psi b_{1}, \ldots, \psi^{511} b_{511}\right)
\end{aligned}
$$

Multiplication in R

- Let ω be a 512 th root of unity in \mathbb{F}_{p} and $\psi^{2}=\omega$
- The number-theoretic transform NTT_{ω} of $a=\left(a_{0}, \ldots, a_{511}\right)$ is defined as

$$
\operatorname{NTT}_{\omega}(a)=\left(A_{0}, \ldots, A_{511}\right) \text { with } A_{i}=\sum_{j=0}^{511} a_{j} \omega^{i j}
$$

- Consider multiplication $d=a \cdot b$ in R
- Compute

$$
\begin{aligned}
& \bar{a}=\left(a_{0}, \psi a_{1}, \ldots, \psi^{511} a_{511}\right) \text { and } \\
& \bar{b}=\left(b_{0}, \psi b_{1}, \ldots, \psi^{511} b_{511}\right)
\end{aligned}
$$

- Obtain $\bar{d}=\left(d_{0}, \psi d_{1}, \ldots, \psi^{511} d_{511}\right)$ as

$$
\bar{d}=\operatorname{NTT}_{\omega}^{-1}\left(\operatorname{NTT}_{\omega}(\bar{a}) \circ \operatorname{NTT}_{\omega}(\bar{b})\right),
$$

where \circ denotes component-wise multiplication

Multiplication in R

- Let ω be a 512 th root of unity in \mathbb{F}_{p} and $\psi^{2}=\omega$
- The number-theoretic transform NTT_{ω} of $a=\left(a_{0}, \ldots, a_{511}\right)$ is defined as

$$
\operatorname{NTT}_{\omega}(a)=\left(A_{0}, \ldots, A_{511}\right) \text { with } A_{i}=\sum_{j=0}^{511} a_{j} \omega^{i j}
$$

- Consider multiplication $d=a \cdot b$ in R
- Compute

$$
\begin{aligned}
& \bar{a}=\left(a_{0}, \psi a_{1}, \ldots, \psi^{511} a_{511}\right) \text { and } \\
& \bar{b}=\left(b_{0}, \psi b_{1}, \ldots, \psi^{511} b_{511}\right)
\end{aligned}
$$

- Obtain $\bar{d}=\left(d_{0}, \psi d_{1}, \ldots, \psi^{511} d_{511}\right)$ as

$$
\bar{d}=\operatorname{NTT}_{\omega}^{-1}\left(\operatorname{NTT}_{\omega}(\bar{a}) \circ \mathrm{NTT}_{\omega}(\bar{b})\right),
$$

where \circ denotes component-wise multiplication

- Component-wise multiplication is trivially vectorizable

NTT in AVX (Part I)

- Perform 9 levels with 256 "butterfly transformations" each
- Butterfly on level k :
- Pick up a_{i} and $a_{i+2^{k}}$
- Multiply $a_{i+2^{k}}$ by a power of ω to obtain t
- Compute $a_{i+2^{k}} \leftarrow a_{i}-t$
- Compute $a_{i} \leftarrow a_{i}+t$
- Easy vectorization on levels $k=2, \ldots, 8$:
- Pick up $v_{0}=a_{i}, a_{i+1}, a_{i+2}, a_{i+3}$ and $v_{1}=a_{i+2^{k}}, a_{i+2^{k}+1}, a_{i+2^{k}+2}, a_{i+2^{k}+3}$
- Perform all operations on v_{0} and v_{1}
- Levels 0 and 1: More tricky: Use permutation instructions and "horizontal additions"

NTT in AVX (Part II)

- Main bottleneck of NTT: memory access

NTT in AVX (Part II)

- Main bottleneck of NTT: memory access
- On one level of butterfly, pairs of values interact
- Through two levels, 4 -tuples interact
- Through three levels, 8 -tuples interact, etc.

NTT in AVX (Part II)

- Main bottleneck of NTT: memory access
- On one level of butterfly, pairs of values interact
- Through two levels, 4 -tuples interact
- Through three levels, 8 -tuples interact, etc.
- Merge 3 levels: Load $8 \cdot 4=32$ values, perform arithmetic, store the results

NTT in AVX (Part II)

- Main bottleneck of NTT: memory access
- On one level of butterfly, pairs of values interact
- Through two levels, 4 -tuples interact
- Through three levels, 8 -tuples interact, etc.
- Merge 3 levels: Load $8 \cdot 4=32$ values, perform arithmetic, store the results
- Final performance for NTT: 4484 cycles on Ivy Bridge

Result

634988 cycles on average to sign a 59-byte message on Ivy Bridge 45036 cycles to verify a signature on Ivy Bridge
http://cryptojedi.org/crypto/\#lattisigns

Going binary

- So far: considered vectors of integers and floats
- How about arithmetic in binary fields?

Going binary

- So far: considered vectors of integers and floats
- How about arithmetic in binary fields?
- Think of an n-bit register as a vector register with $n 1$-bit entries
- Operations are now bitwise XOR, AND, OR, etc.

Going binary

- So far: considered vectors of integers and floats
- How about arithmetic in binary fields?
- Think of an n-bit register as a vector register with $n 1$-bit entries
- Operations are now bitwise XOR, AND, OR, etc.
- This is called bitslicing, introduced by Biham in 1997 for DES

Going binary

- So far: considered vectors of integers and floats
- How about arithmetic in binary fields?
- Think of an n-bit register as a vector register with $n 1$-bit entries
- Operations are now bitwise XOR, AND, OR, etc.
- This is called bitslicing, introduced by Biham in 1997 for DES
- Other views on bitslicing:
- Simulation of hardware implementations in software

Going binary

- So far: considered vectors of integers and floats
- How about arithmetic in binary fields?
- Think of an n-bit register as a vector register with $n 1$-bit entries
- Operations are now bitwise XOR, AND, OR, etc.
- This is called bitslicing, introduced by Biham in 1997 for DES
- Other views on bitslicing:
- Simulation of hardware implementations in software
- Computations on a transposition of data

Bitslicing issues

- XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per cycle on Intel Core 2)
- Can be very fast for operations that are not natively supported (like arithmetic in binary fields)

Bitslicing issues

- XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per cycle on Intel Core 2)
- Can be very fast for operations that are not natively supported (like arithmetic in binary fields)
- Active data set increases massively (e.g., $128 \times$)
- For "normal" vector operations, register space is increased accordingly (e.g, 16256 -bit vector registers vs. 1664 -bit integer registers)
- For bitslicing: Need to fit more data into the same registers
- Typical consequence: more loads and stores (that easily become the performance bottleneck)

CFS signatures in AVX

- Joint work with Dan Bernstein and Tony Chou (CHES 2013)
- AVX: One bit-logical operation on 256 -bit vectors every cycle
- CFS: Code-based signature system by Courtois, Finiasz and Sendrier from 2001
- We use 80 -bit security parameters from Indocrypt 2012 paper by Landais and Sendrier

CFS signatures in AVX

- Joint work with Dan Bernstein and Tony Chou (CHES 2013)
- AVX: One bit-logical operation on 256 -bit vectors every cycle
- CFS: Code-based signature system by Courtois, Finiasz and Sendrier from 2001
- We use 80 -bit security parameters from Indocrypt 2012 paper by Landais and Sendrier
- Basic idea:
- Uses hidden binary Goppa code over $\mathbb{F}_{2^{20}}$ that can correct $t=8$ errors
- Signer hashes message M to a syndrome
- If this syndrome corresponds to a word of distance at most t to a codeword, use secret decoding algorithm to obtain error positions and use those as a signature

CFS signatures in AVX

- Joint work with Dan Bernstein and Tony Chou (CHES 2013)
- AVX: One bit-logical operation on 256 -bit vectors every cycle
- CFS: Code-based signature system by Courtois, Finiasz and Sendrier from 2001
- We use 80 -bit security parameters from Indocrypt 2012 paper by Landais and Sendrier
- Basic idea:
- Uses hidden binary Goppa code over $\mathbb{F}_{2^{20}}$ that can correct $t=8$ errors
- Signer hashes message M to a syndrome
- If this syndrome corresponds to a word of distance at most t to a codeword, use secret decoding algorithm to obtain error positions and use those as a signature
- Problem: This is likely to fail; so guess $\delta=2$ additional error positions

CFS signatures in AVX

- Joint work with Dan Bernstein and Tony Chou (CHES 2013)
- AVX: One bit-logical operation on 256 -bit vectors every cycle
- CFS: Code-based signature system by Courtois, Finiasz and Sendrier from 2001
- We use 80 -bit security parameters from Indocrypt 2012 paper by Landais and Sendrier
- Basic idea:
- Uses hidden binary Goppa code over $\mathbb{F}_{2^{20}}$ that can correct $t=8$ errors
- Signer hashes message M to a syndrome
- If this syndrome corresponds to a word of distance at most t to a codeword, use secret decoding algorithm to obtain error positions and use those as a signature
- Problem: This is likely to fail; so guess $\delta=2$ additional error positions
- Expected number of guesses: $\approx t!=40320$ (embarrassingly parallel!)

Representing elements of $\mathbb{F}_{2^{20}}$

- Use polynomial representation with reduction trinomial $X^{20}+X^{3}+1$
- Bitsliced representation:

```
#include <immintrin.h>
typedef __m256d bit;
typedef struct{
    bit v[20];
} bgf20e __attribute__ ((aligned (32)));
```


Representing elements of $\mathbb{F}_{2^{20}}$

- Use polynomial representation with reduction trinomial $X^{20}+X^{3}+1$
- Bitsliced representation:

```
#include <immintrin.h>
typedef __m256d bit;
typedef struct{
    bit v[20];
} bgf20e __attribute__ ((aligned (32)));
```

- Addition corresponds to 40 loads, 20 XORs, 20 stores: 56 cycles

Representing elements of $\mathbb{F}_{2^{20}}$

- Use polynomial representation with reduction trinomial $X^{20}+X^{3}+1$
- Bitsliced representation:

```
#include <immintrin.h>
typedef __m256d bit;
typedef struct{
    bit v[20];
} bgf20e __attribute__ ((aligned (32)));
```

- Addition corresponds to 40 loads, 20 XORs, 20 stores: 56 cycles
- Squaring is just modular reduction: 64 cycles

Multiplication in $\mathbb{F}_{2^{20}}$

- First do binary-polynomial multiplication, then reduction
- We are currently investigating benefits of towering

Multiplication in $\mathbb{F}_{2^{20}}$

- First do binary-polynomial multiplication, then reduction
- We are currently investigating benefits of towering
- Schoolbook: 400 ANDs +361 XORs + reduction

Multiplication in $\mathbb{F}_{2^{20}}$

- First do binary-polynomial multiplication, then reduction
- We are currently investigating benefits of towering
- Schoolbook: 400 ANDs +361 XORs + reduction
- Much better: Karatsuba
- Karatsuba:

$$
\begin{aligned}
& \left(a_{0}+X^{n} a_{1}\right)\left(b_{0}+X^{n} b_{1}\right) \\
= & a_{0} b_{0}+X^{n}\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+X^{2 n} a_{1} b_{1}
\end{aligned}
$$

Multiplication in $\mathbb{F}_{2^{20}}$

- First do binary-polynomial multiplication, then reduction
- We are currently investigating benefits of towering
- Schoolbook: 400 ANDs +361 XORs + reduction
- Much better: refined Karatsuba
- Karatsuba:

$$
\begin{aligned}
& \left(a_{0}+X^{n} a_{1}\right)\left(b_{0}+X^{n} b_{1}\right) \\
= & a_{0} b_{0}+X^{n}\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+X^{2 n} a_{1} b_{1}
\end{aligned}
$$

- Refined Karatsuba:

$$
\begin{aligned}
& \left(a_{0}+X^{n} a_{1}\right)\left(b_{0}+X^{n} b_{1}\right) \\
= & \left(1-X^{n}\right)\left(a_{0} b_{0}-X^{n} a_{1} b_{1}\right)+X^{n}\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)
\end{aligned}
$$

- Refined Karatsuba uses $M_{2 n}=3 M_{n}+7 n-3$ instead of $M_{2 n}=3 M_{n}+8 n-4$ bit operations

Multiplication in $\mathbb{F}_{2^{20}}$

- First do binary-polynomial multiplication, then reduction
- We are currently investigating benefits of towering
- Schoolbook: 400 ANDs +361 XORs + reduction
- Much better: refined Karatsuba
- Karatsuba:

$$
\begin{aligned}
& \left(a_{0}+X^{n} a_{1}\right)\left(b_{0}+X^{n} b_{1}\right) \\
= & a_{0} b_{0}+X^{n}\left(\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)-a_{0} b_{0}-a_{1} b_{1}\right)+X^{2 n} a_{1} b_{1}
\end{aligned}
$$

- Refined Karatsuba:

$$
\begin{aligned}
& \left(a_{0}+X^{n} a_{1}\right)\left(b_{0}+X^{n} b_{1}\right) \\
= & \left(1-X^{n}\right)\left(a_{0} b_{0}-X^{n} a_{1} b_{1}\right)+X^{n}\left(a_{0}+a_{1}\right)\left(b_{0}+b_{1}\right)
\end{aligned}
$$

- Refined Karatsuba uses $M_{2 n}=3 M_{n}+7 n-3$ instead of $M_{2 n}=3 M_{n}+8 n-4$ bit operations
- With two levels of refined Karatsuba: 225 ANDs +303 XORs + reduction
- Performance: 744 cycles per 256 multiplications

Result

$<425,000,000$ cycles on average for signing on Ivy Bridge
http://cryptojedi.org/crypto/\#mcbits (not yet online)

Result

$<425,000,000$ cycles on average for signing on Ivy Bridge ($10 \times$ faster than previous results)

http://cryptojedi.org/crypto/\#mcbits (not yet online)

Back to symmetric crypto: AES in SSE

- Joint work with Emilia Käsper (CHES 2009)
- AES:
- Block cipher introduced as Rijndael by Daemen and Rijmen in 1999
- Transforms a 16-byte state (block) through 10 rounds (for 128-bit key)
- Each round consists of 4 operations: SubBytes, ShiftRows, MixColumns, and AddRoundKey (last round doesn't have MixColumns)

The AES operations, part I

- SubBytes is an S-Box acting on individual bytes
- Substitution based on inversion in $\mathbb{F}_{2^{8}}$

- ShiftRows rotates each row by a different amount

The AES operations, part II

- MixColumns is a linear transformation on columns

- AddRoundKey XORs the 128-bit round key to the state

a_{00}	a_{01}	a_{02}	a_{03}
a_{10}	a_{11}	a_{12}	a_{13}
a_{20}	a_{21}	a_{22}	a_{23}
a_{30}	a_{31}	a_{32}	a_{33}

		-	

Bitslicing AES

the direct way

- Consider AES in counter mode; encryption of consecutive blocks is independent
- With 128 -bit vector registers: process 128 blocks ($2 \mathrm{~KB} \mathrm{)} \mathrm{in} \mathrm{parallel}$

Bitslicing AES

the direct way

- Consider AES in counter mode; encryption of consecutive blocks is independent
- With 128-bit vector registers: process 128 blocks (2 KB) in parallel
- Approach taken by, e.g., Matsui and Nakajima (CHES 2007)
- Good performance of 9.2 cycles/byte for long messages (and bitsliced input)
- Bad performance for short IP packets

Bitsliced AES for small packets

- Idea: Main part of AES is SubBytes, already 16 -way parallel
- Consider only 8 consecutive blocks

Bitsliced AES for small packets

- Idea: Main part of AES is SubBytes, already 16-way parallel
- Consider only 8 consecutive blocks
- Pack bits into 128 -bit vector registers:

row 0									row 1	row 2	row 3
column 0				column 3				. .	\ldots	. .
$\begin{aligned} & 0 \\ & \text { प } \\ & \text { 음 } \end{aligned}$	$\begin{aligned} & \text { r- } \\ & \text { y } \\ & \text { 응 } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { प } \\ & \text { 응 } \end{aligned}$		$\begin{aligned} & \text { O } \\ & \text { प } \\ & \text { 음 } \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { y } \\ & \text { 음 } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { प } \\ & \text { 음 } \end{aligned}$

- Bits inside one byte belong to different blocks, so all instructions can work on bytes

Bitsliced AES for small packets

- Idea: Main part of AES is SubBytes, already 16-way parallel
- Consider only 8 consecutive blocks
- Pack bits into 128 -bit vector registers:

row 0									row 1	row 2	row 3
column 0				column 3				. .	\ldots	. .
$\begin{aligned} & 0 \\ & \text { प } \\ & \text { 음 } \end{aligned}$	$\begin{aligned} & \text { r- } \\ & \text { y } \\ & \text { 응 } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { प } \\ & \text { 응 } \end{aligned}$		$\begin{aligned} & \text { O } \\ & \text { प } \\ & \text { 음 } \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { y } \\ & \text { 음 } \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { प } \\ & \text { 음 } \end{aligned}$

- Bits inside one byte belong to different blocks, so all instructions can work on bytes
- For ShiftRows and MixColumns use fast pshufb byte-shuffle instruction (SSSE3, Intel only)

Bitsliced AES S-Box

- Start with a good hardware implementation of SubBytes (inversion in $\mathbb{F}_{2^{8}}$): Canright, 2005; Boyar, Peralta, 2009: 117 gates
- That should turn into 117 bit-logical instructions, right?

Bitsliced AES S-Box

- Start with a good hardware implementation of SubBytes (inversion in $\mathbb{F}_{2^{8}}$): Canright, 2005; Boyar, Peralta, 2009: 117 gates
- That should turn into 117 bit-logical instructions, right? No:
- We only have 16 registers

Bitsliced AES S-Box

- Start with a good hardware implementation of SubBytes (inversion in $\mathbb{F}_{2^{8}}$): Canright, 2005; Boyar, Peralta, 2009: 117 gates
- That should turn into 117 bit-logical instructions, right? No:
- We only have 16 registers
- Only 2-operand instructions, e.g., $a \leftarrow a \oplus b$

Bitsliced AES S-Box

- Start with a good hardware implementation of SubBytes (inversion in $\mathbb{F}_{2^{8}}$): Canright, 2005; Boyar, Peralta, 2009: 117 gates
- That should turn into 117 bit-logical instructions, right? No:
- We only have 16 registers
- Only 2-operand instructions, e.g., $a \leftarrow a \oplus b$
- "Gate" counts, hardware vs. software:

	XOR	AND/OR	MOV	total
Hardware	82	35	-	117
Software	93	35	35	163

9.32 cycles/byte for AES-CTR on Intel Core 2 Q6600
 7.58 cycles/byte for AES-CTR on Intel Core 2 Q9550

http://cryptojedi.org/crypto/\#aesbs

References

Daniel J. Bernstein and Peter Schwabe: NEON crypto. http://cryptojedi.org/\#neoncrypto

Neil Costigan and Peter Schwabe Fast elliptic-curve cryptography on the Cell Broadband Engine. http://cryptojedi.org/\#celldh

Tim Güneysu, Tobias Oder, Thomas Pöppelmann, and Peter Schwabe: Software speed records for lattice-based signatures.
http://cryptojedi.org/\#lattisigns
Daniel J. Bernstein, Tung Chou, and Peter Schwabe: McBits: fast constant-time code-based cryptography. http://cryptojedi.org/\#mcbits

Emilia Käsper and Peter Schwabe: Faster and Timing-Attack Resistant AES-GCM. http://cryptojedi.org/\#aesbs

