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“Thus we arbitrarily select a reference organization : the IBM
704-70927090. This organization is then regarded as the prototype of the
class of machines which we label:
1) Single Instruction Stream–Single Data Stream (SISD).

Three additional organizational classes are evident.
2) Single Instruction Stream–Multiple Data Stream (SIMD)
3) Multiple Instruction Stream–Single Data Stream (MISD)
4) Multiple Instruction Stream–Multiple Data Stream (MIMD)”

– Michael J. Flynn. Very high-speed computing systems. 1966.
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SISD
Example: 32-bit integer addition

int64 a
int64 b
a = mem32[addr1 + 0]
b = mem32[addr2 + 0]
(uint32) a += b
mem32[addr3 + 0] = a
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SIMD with vector instructions
Example: 4 32-bit integer additions

reg128 a
reg128 b
a = mem128[addr1 + 0]
b = mem128[addr2 + 0]
4x a += b
mem128[addr3 + 0] = a
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Why would you care?

I Consider the Intel Nehalem processor

I 32-bit load throughput: 1 per cycle
I 32-bit add throughput: 3 per cycle
I 32-bit store throughput: 1 per cycle
I 128-bit load throughput: 1 per cycle
I 4× 32-bit add throughput: 2 per cycle
I 128-bit store throughput: 1 per cycle

I Vector instructions are almost as fast as scalar instructions but
do 4× the work

I Situation on other architectures/microarchitectures is similar
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Why would you care? (Part II)

I Data-dependent branches are expensive in SIMD
I Variably indexed loads (lookups) into vectors are expensive
I Need to rewrite algorithms to eliminate branches and lookups

I Secret-data-dependent branches and secret branch conditions are the
major sources of timing-attack vulnerabilities

I Strong synergies between speeding up code with vector instructions
and protecting code!
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Multiple Data Streams

I Where does the data-level parallelism come from?
I Easy case: High-level batching

I Encrypt n messages instead of one message
I Compute n signatures instead of one
I Do cryptanalysis

I Requires rewriting (interleaving) basic data structures, e.g.:

typedef struct{
uint64_t x[4];

} bigint256;

bigint256 a,b,c,d;

typedef struct{
uint64_t x[16];

} bigint256x4;

// (a[0],b[0],c[0],d[0],a[1],...,d[3])
bigint256x4 abcd;

I Harder: Exploit parallelism inside one computation
I This is the topic of this talk
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Salsa20 in NEON

I Joint work with Dan Bernstein (CHES 2012)
I NEON:

I Vector instruction set of ARMv7 processors
I 16 128-bit vector registers (e.g.)
I On Cortex-A8: At most one arithmetic instruction, one

load/store/shuffle instruction per cycle
I Salsa20:

I Stream cipher designed by Bernstein in 2005
I In the eSTREAM software portfolio
I Generates stream in 64-byte blocks, works on 32-bit integers
I Per block: 20 rounds; each round doing 16 add-rotate-xor sequences,

such as
s4 = x0 + x12
x4 ^= (s4 >>> 25)

I These sequences are 4-way parallel!
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A first approach

I Per round do 4× something like:
4x a0 = diag1 + diag0
4x b0 = a0 << 7
4x a0 unsigned >>= 25

diag3 ^= b0
diag3 ^= a0

I + some (free) shuffles

I Intuitive cycle lower bound:
(5 · 4 · 20)/64 = 6.25 cycles/byte

I Problem: The above sequence has a 9-cycle latency, thus:
(9 · 4 · 20)/64 = 11.25 cycles/byte
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Trading parallelism

I Salsa20 rounds have 4-way data-level parallelism
I In a scalar implementations this turns into 4-way instruction-level

parallelism

I Good for pipelined and superscalar execution
I The vector implementation needs 4-way data parallelism, there is

(almost) no instruction-level parallelism left
I Bad for pipelined and superscalar execution
I Idea: Blocks are independent, use this to re-introduce

instruction-level parallelism
I Lower bound when interleaving 2 blocks: 6.875 cycles/byte
I Lower bound when interleaving 3 blocks: 6.25 cycles/byte
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Going even further

I NEON is basically a coprocessor to the ARM core
I ARM decodes instructions, forwards NEON instructions to the

NEON unit

I Idea: Also keep the ARM core busy with Salsa20 computations
I New bottleneck: ARM core decodes at most 2 instructions per cycle
I Add-rotate-xor is only 2 ARM instructions
I Best tradeoff: One block on ARM, two blocks on NEON
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A flavor of the code
4x a0 = diag1 + diag0

4x next_a0 = next_diag1 + next_diag0
s4 = x0 + x12
s9 = x5 + x1

4x b0 = a0 << 7
4x next_b0 = next_a0 << 7

4x a0 unsigned>>= 25
4x next_a0 unsigned>>= 25

x4 ^= (s4 >>> 25)
x9 ^= (s9 >>> 25)
s8 = x4 + x0
s13 = x9 + x5

diag3 ^= b0
next_diag3 ^= next_b0

diag3 ^= a0
next_diag3 ^= next_a0

x8 ^= (s8 >>> 23)
x13 ^= (s13 >>> 23)
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Result

5.47 cycles/byte for Salsa20 encryption on ARM Cortex-A8 with NEON

http://cryptojedi.org/crypto/#neoncrypto
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ECDH on the Cell Broadband Engine

I Joint work with Neil Costigan (Africacrypt 2009)
I Cell Broadband Engine (CBE):

I Processor in the PS 3 and in IBM Cell Blades
I Has one Power G5 core and 8 (6) “Synergistic Processor Units”

(SPUs)
I SPU: all instructions are vector instructions, 128 128-bit registers
I At most one arithmetic instruction, one load/store/shuffle instruction

per cycle
I Largest multiplier: 16× 16→ 32 bits (4-way parallel)

I Curve25519
I Elliptic-curve DH key exchange proposed by Bernstein in 2006
I Uses Montgomery curve over F2255−19

I Main computation: 255 Montgomery ladder steps, each with
5M+4S+8A+1d
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Representing elements of F2255−19

I Intuitive: Use 16 16-bit integers a0, . . . , a15 in 2 registers to
represent

A =

15∑
i=0

ai2
16·i

I Schoolbook multiplication gives 256 16× 16-bit multiplications, 224
32-bit additions

I But wait, what happens to carries?
I Answer on the Cell SPU: extra instruction (and muladd cannot add

in carries)
I Answer for most other vector instruction sets: they’re gone

I Carry-safe representation: Use (a0, . . . , a19) with

A =

19∑
i=0

ai2
d12.75·ie
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Multiplication in carry-safe representation

I Start with reduced elements (a0, . . . , a19) and (b0, . . . , b19), i.e.,

ai, bi ∈ [0, 213 − 1], i = 0, . . . , 19

I Use 100 mul and muladd instructions to produce result (r0, . . . , r38),

ri ∈ [0, 232 − 1], i = 0, . . . , 38

I + lots of shuffles (free)
I + overhead from non-integer radix
I + overhead to combine intermediate results
I Total: 145 arithmetic instructions, 145 cycles
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Handling the carries

I Need to get reduced r from (r0, . . . , r38)

I Standard carry chain:
I Carry from r20 to r21, from r21 to r22 etc., finally from r38 to r39
I Add 19 · r20 to r0, 19 · r21 to r1 etc.
I Carry from r0 to r1, from r1 to r2 etc.

I Two problems with this:
I No data-level parallelism (cannot really make use of vector

instructions)

I (Almost) no instruction-level parallelism (arithmetic happens only
about every 4th cycle)
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Interleaved reduction

I Four independent parallel reduction chains
I Carry r20 → r21, r24 → r25, r28 → r29, r32 → r33

I Carry r21 → r22, r25 → r26, r29 → r30, r33 → r34
I . . .

I Carry r24 → r25, r28 → r29, r32 → r33, r36 → r37
I . . .

I Looks stupid (increasing reduction steps from 20 to 32)
I But: Do arithmetic every cycle, increase speed by a factor of

4 · 20/32 = 2.5
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Exploit higher-level parallelism

I Many field operations in one Montgomery ladder step are
independent

I Group 2× 4 multiplications together (squarings as multiplications)
I Group additions/subtractions in blocks of 4
I Always process 4 operations at a time
I Leaves just one single multiplication at the end

I Reduces number of arithmetic instructions for 4 multiplications from
580 to 420

I Uses SIMD for reduction: speed up by a factor of 4
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Results

696240 cycles for Curve25519 on one SPU of the CBE

http://cryptojedi.org/crypto/#celldh
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Lattice-based signatures in AVX

I Joint work with Güneysu, Oder, and Pöppelmann (PQCrypto 2013)
I AVX:

I Vector-instruction set for recent Intel and AMD processors
I 16 256-bit registers
I Only single-precision and double-precision float arithmetic
I One 4-way-parallel double-precision multiplication and addition every

cycle (on Sandy Bridge and Ivy Bridge)
I Lattice-based signatures

I Consider scheme introduced by Lyubashevsky at Eurocrypt 2012
I Aim at 100-bit security
I Arithmetic in R = Fp[X]/(X512 + 1), with p = 8383489
I p has 23 bits and p ≡ 1 (mod 1024)
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Representation of elements of R

I represent a =
∑511

i=0 aiX
i as (a0, . . . , a511):

typedef double __attribute__ ((aligned (32))) r_elem[512];

I Use AVX double-precision instructions for addition and
multiplication of coefficients

I Modular reduction of a coefficient a:
I Precompute double-precision approximation p−1 of p−1

I Compute c← a · p−1

I Round c (high-throughput vroundpd instruction)
I Compute c← c · p
I Subtract c from a
I Rounding mode determines whether this maps to

[− p−1
2
, p−1

2
] or to [0, p− 1]

I Use lazy reduction: product of two 22-bit numbers has 44 bits, quite
some space in the 53-bit mantissa
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Multiplication in R

I Let ω be a 512th root of unity in Fp and ψ2 = ω

I The number-theoretic transform NTTω of a = (a0, . . . , a511) is
defined as

NTTω(a) = (A0, . . . , A511) with Ai =

511∑
j=0

ajω
ij

I Consider multiplication d = a · b in R
I Compute

ā = (a0, ψa1, . . . , ψ
511a511) and

b̄ = (b0, ψb1, . . . , ψ
511b511)

I Obtain d̄ = (d0, ψd1, . . . , ψ
511d511) as

d̄ = NTT−1ω (NTTω(ā) ◦ NTTω(b̄)),

where ◦ denotes component-wise multiplication
I Component-wise multiplication is trivially vectorizable
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NTT in AVX (Part I)

I Perform 9 levels with 256 “butterfly transformations” each
I Butterfly on level k:

I Pick up ai and ai+2k

I Multiply ai+2k by a power of ω to obtain t
I Compute ai+2k ← ai − t
I Compute ai ← ai + t

I Easy vectorization on levels k = 2, . . . , 8:
I Pick up v0 = ai, ai+1, ai+2, ai+3 and
v1 = ai+2k , ai+2k+1, ai+2k+2, ai+2k+3

I Perform all operations on v0 and v1
I Levels 0 and 1: More tricky: Use permutation instructions and

“horizontal additions”
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NTT in AVX (Part II)

I Main bottleneck of NTT: memory access

I On one level of butterfly, pairs of values interact
I Through two levels, 4-tuples interact
I Through three levels, 8-tuples interact, etc.
I Merge 3 levels: Load 8 · 4 = 32 values, perform arithmetic, store the

results
I Final performance for NTT: 4484 cycles on Ivy Bridge
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Result

634988 cycles on average to sign a 59-byte message on Ivy Bridge
45036 cycles to verify a signature on Ivy Bridge

http://cryptojedi.org/crypto/#lattisigns
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Going binary

I So far: considered vectors of integers and floats
I How about arithmetic in binary fields?

I Think of an n-bit register as a vector register with n 1-bit entries
I Operations are now bitwise XOR, AND, OR, etc.
I This is called bitslicing, introduced by Biham in 1997 for DES
I Other views on bitslicing:

I Simulation of hardware implementations in software
I Computations on a transposition of data
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Bitslicing issues

I XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per
cycle on Intel Core 2)

I Can be very fast for operations that are not natively supported (like
arithmetic in binary fields)

I Active data set increases massively (e.g., 128×)
I For “normal” vector operations, register space is increased

accordingly (e.g, 16 256-bit vector registers vs. 16 64-bit integer
registers)

I For bitslicing: Need to fit more data into the same registers
I Typical consequence: more loads and stores (that easily become the

performance bottleneck)
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CFS signatures in AVX

I Joint work with Dan Bernstein and Tony Chou (CHES 2013)
I AVX: One bit-logical operation on 256-bit vectors every cycle
I CFS: Code-based signature system by Courtois, Finiasz and Sendrier

from 2001
I We use 80-bit security parameters from Indocrypt 2012 paper by

Landais and Sendrier

I Basic idea:
I Uses hidden binary Goppa code over F220 that can correct t = 8

errors
I Signer hashes message M to a syndrome
I If this syndrome corresponds to a word of distance at most t to a

codeword, use secret decoding algorithm to obtain error positions
and use those as a signature

I Problem: This is likely to fail; so guess δ = 2 additional error
positions

I Expected number of guesses: ≈ t! = 40320 (embarrassingly parallel!)
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Representing elements of F220

I Use polynomial representation with reduction trinomial
X20 +X3 + 1

I Bitsliced representation:

#include <immintrin.h>
typedef __m256d bit;

typedef struct{
bit v[20];

} bgf20e __attribute__ ((aligned (32)));

I Addition corresponds to 40 loads, 20 XORs, 20 stores: 56 cycles
I Squaring is just modular reduction: 64 cycles
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Multiplication in F220

I First do binary-polynomial multiplication, then reduction
I We are currently investigating benefits of towering

I Schoolbook: 400 ANDs +361 XORs + reduction
I Much better: Karatsuba

I Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= a0b0 +Xn((a0 + a1)(b0 + b1)− a0b0 − a1b1) +X2na1b1

I Refined Karatsuba:

(a0 +Xna1)(b0 +Xnb1)

= (1−Xn)(a0b0 −Xna1b1) +Xn(a0 + a1)(b0 + b1)

I Refined Karatsuba uses M2n = 3Mn + 7n− 3 instead of
M2n = 3Mn + 8n− 4 bit operations

I With two levels of refined Karatsuba: 225 ANDs +303 XORs +
reduction

I Performance: 744 cycles per 256 multiplications
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Result

< 425,000,000 cycles on average for signing on Ivy Bridge

(10× faster than previous results)

http://cryptojedi.org/crypto/#mcbits (not yet online)
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Back to symmetric crypto: AES in SSE

I Joint work with Emilia Käsper (CHES 2009)
I AES:

I Block cipher introduced as Rijndael by Daemen and Rijmen in 1999
I Transforms a 16-byte state (block) through 10 rounds (for 128-bit

key)
I Each round consists of 4 operations: SubBytes, ShiftRows,

MixColumns, and AddRoundKey (last round doesn’t have
MixColumns)
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The AES operations, part I

I SubBytes is an S-Box acting on individual bytes
I Substitution based on inversion in F28

I ShiftRows rotates each row by a different amount

Who is afraid of vectors? 34



The AES operations, part II

I MixColumns is a linear transformation on columns

I AddRoundKey XORs the 128-bit round key to the state
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Bitslicing AES
. . . the direct way

I Consider AES in counter mode; encryption of consecutive blocks is
independent

I With 128-bit vector registers: process 128 blocks (2 KB) in parallel

I Approach taken by, e.g., Matsui and Nakajima (CHES 2007)
I Good performance of 9.2 cycles/byte for long messages (and

bitsliced input)
I Bad performance for short IP packets
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Bitsliced AES for small packets

I Idea: Main part of AES is SubBytes, already 16-way parallel
I Consider only 8 consecutive blocks

I Pack bits into 128-bit vector registers:
row 0 row 1 row 2 row 3

column 0 . . . . . . column 3 . . . . . . . . .

bl
oc

k
0

bl
oc

k
1

. . . bl
oc

k
7

. . . . . . bl
oc

k
0

bl
oc

k
1

. . . bl
oc

k
7

. . . . . . . . .

I Bits inside one byte belong to different blocks, so all instructions can
work on bytes

I For ShiftRows and MixColumns use fast pshufb byte-shuffle
instruction (SSSE3, Intel only)
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Bitsliced AES S-Box

I Start with a good hardware implementation of SubBytes (inversion
in F28): Canright, 2005; Boyar, Peralta, 2009: 117 gates

I That should turn into 117 bit-logical instructions, right?

No:
I We only have 16 registers
I Only 2-operand instructions, e.g., a← a⊕ b

I “Gate” counts, hardware vs. software:

XOR AND/OR MOV total
Hardware 82 35 – 117
Software 93 35 35 163
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Results

9.32 cycles/byte for AES-CTR on Intel Core 2 Q6600
7.58 cycles/byte for AES-CTR on Intel Core 2 Q9550

http://cryptojedi.org/crypto/#aesbs
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