Radboud University

Post-quantum crypto on ARM Cortex-M

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org
January 23, 2019

- Project funded by EU in Horizon 2020.
- Running from March 2015 until February 2018
- 11 partners from academia and industry, TU/e was coordinator
- 22 submissions to NIST PQC project

TU/e
DTU
 \because

TECHNISCHE UNIVERSITAT DARMSTADT

- Find post-quantum secure cryptosystems suitable for small devices in power and memory requirements (e.g. smart cards with 8-bit or 16-bit or 32-bit architectures, with different amounts of RAM)
- Develop efficient implementations of these systems.
- Find post-quantum secure cryptosystems suitable for small devices in power and memory requirements (e.g. smart cards with 8-bit or 16-bit or 32-bit architectures, with different amounts of RAM)
- Develop efficient implementations of these systems.
- Main challenge: memory, e.g.,
- McEliece (code-based encryption): $\approx 1 \mathrm{MB}$ public key
- GUI (MQ-based signatures) ≈ 2 MB public key
- SPHINCS ${ }^{+}$: 8-50 KB signatures
- Find post-quantum secure cryptosystems suitable for small devices in power and memory requirements (e.g. smart cards with 8 -bit or 16-bit or 32-bit architectures, with different amounts of RAM)
- Develop efficient implementations of these systems.
- Main challenge: memory, e.g.,
- McEliece (code-based encryption): $\approx 1 \mathrm{MB}$ public key
- GUI (MQ-based signatures) $\approx 2 \mathrm{MB}$ public key
- SPHINCS ${ }^{+}$: 8-50 KB signatures
- Additional challenges:
- Computational complexity
- Implementation security

Primary target platform

- ARM Cortex-M4 on STM32F4-Discovery board
- 192KB RAM, 1MB Flash (ROM)
- Available for <20 Euros from various vendors (e.g., Amazon, RS Components, Conrad)
- Joint work with Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.
- Library and testing/benchmarking framework
- Easy to add schemes using NIST API
- Optimized SHA3 shared across primitives
- Joint work with

Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.

- Library and testing/benchmarking framework
- Easy to add schemes using NIST API
- Optimized SHA3 shared across primitives
- Run functional tests of all primitives and implementations:
python3 test.py
- Generate testvectors, compare for consistency (also with host): python3 testvectors.py
- Run speed and stack benchmarks: python3 benchmarks.py
- Easy to evaluate only subset of schemes, e.g.:
python3 test.py newhope1024cca sphincs-shake256-128s

Initial pqm4 results KEM/PKE

BIG QUAKE ?
BIKE ?
Classic McEliece x
CRYSTALS-KyberFrodoKEMKINDINewHopeNTRU-HRSS-KEMNTRU PrimePost-quantum RSA-EncryptionRamstakeSABERSIKE
DAGS

Initial pqm4 results signatures

CRYSTALS-Dilithium
GUI
LUOV
MQDSS
Picnic
Post-quantum RSA-Signature qTESLA
Rainbow SPHINCS+

- Since October 2018 working on ERC project Engineering post-quantum cryptography - EPOQUE
- WP1: Secure implementations of post-quantum crypto
- Build on results of PQCRYPTO, e.g., extend pqm4:
- Include more optimized implementations
- Include implementations with SCA protection
- Since October 2018 working on ERC project Engineering post-quantum cryptography - EPOQUE
- WP1: Secure implementations of post-quantum crypto
- Build on results of PQCRYPTO, e.g., extend pqm4:
- Include more optimized implementations
- Include implementations with SCA protection
- First paper of EPOQUE:

Matthias Kannwischer, Joost Rijneveld, Peter Schwabe. Faster multiplication in $\mathbb{Z}_{2^{m}}[x]$ on Cortex-M4 to speed up NIST PQC candidates.

- Speed up 5 lattice-based KEMs

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As $+\mathbf{e}$, with $\mathbf{e} \leftarrow \chi$

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As + e, with $\mathbf{e} \leftarrow \chi$
- Search version: find \mathbf{s}
- Decision version: distinguish from uniform random

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given "noise distribution" χ
- Given samples As $+\mathbf{e}$, with $\mathbf{e} \leftarrow \chi$
- Search version: find \mathbf{s}
- Decision version: distinguish from uniform random
- Structured lattices: work in $\mathbb{Z}_{q}[x] / f$

Learning with rounding (LWR)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given samples $\lceil\mathbf{A s}\rfloor_{p}$, with $p<q$

Learning with rounding (LWR)

- Given uniform $\mathbf{A} \in \mathbb{Z}_{q}^{k \times \ell}$
- Given samples $\lceil\mathbf{A s}\rfloor_{p}$, with $p<q$
- Search version: find \mathbf{s}
- Decision version: distinguish from uniform random
- Structured lattices: work in $\mathbb{Z}_{q}[x] / f$

Alice (server)		Bob (client)
$\mathbf{s}, \mathbf{e}{ }^{s} \chi$		$\mathbf{s}^{\prime}, \mathbf{e}^{\prime} \leftarrow^{s} \chi$
$\mathbf{b} \leftarrow \mathbf{a s}+\mathbf{e}$	$\underset{\mathbf{b}}{\leftrightarrows}$	$\mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime}$
	\longleftarrow	

Alice has $\mathbf{v}=\mathbf{u s}=$ ass $^{\prime}+\mathbf{e}^{\prime} \mathbf{s}$
Bob has $\mathbf{v}^{\prime}=\mathbf{b s}^{\prime}=\mathbf{a s s}^{\prime}+\mathbf{e s}^{\prime}$

- Secret and noise $\mathbf{s}, \mathbf{s}^{\prime}, \mathbf{e}, \mathbf{e}^{\prime}$ are small
- \mathbf{t} and \mathbf{t}^{\prime} are approximately the same

Lattice-based KEMs submitted to NIST

- 22 NIST submissions are lattice-based KEMs
- Large design space with many tradeoffs:

Lattice-based KEMs submitted to NIST

- 22 NIST submissions are lattice-based KEMs
- Large design space with many tradeoffs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE

Lattice-based KEMs submitted to NIST

- 22 NIST submissions are lattice-based KEMs
- Large design space with many tradeoffs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- 22 NIST submissions are lattice-based KEMs
- Large design space with many tradeoffs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- Prime n vs. power-of-two n
- 22 NIST submissions are lattice-based KEMs
- Large design space with many tradeoffs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- Prime n vs. power-of-two n
- NTRU vs. LPR ("quotient" vs. "product")
- 22 NIST submissions are lattice-based KEMs
- Large design space with many tradeoffs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- Prime n vs. power-of-two n
- NTRU vs. LPR ("quotient" vs. "product")
- "Encryption-based" vs. "Reconciliation based"
- 22 NIST submissions are lattice-based KEMs
- Large design space with many tradeoffs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- Prime n vs. power-of-two n
- NTRU vs. LPR ("quotient" vs. "product")
- "Encryption-based" vs. "Reconciliation based"
- Decryption failures vs. no failures
- 22 NIST submissions are lattice-based KEMs
- Large design space with many tradeoffs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- Prime n vs. power-of-two n
- NTRU vs. LPR ("quotient" vs. "product")
- "Encryption-based" vs. "Reconciliation based"
- Decryption failures vs. no failures
- Passive vs. active security
- ...
- 22 NIST submissions are lattice-based KEMs
- Large design space with many tradeoffs:
- LWE vs. LWR
- LWE vs. Ring-LWE vs. Module-LWE
- Prime q vs. power-of-two q
- Prime n vs. power-of-two n
- NTRU vs. LPR ("quotient" vs. "product")
- "Encryption-based" vs. "Reconciliation based"
- Decryption failures vs. no failures
- Passive vs. active security
- ...
- RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi
- All rely on arithmetic in $\mathbb{Z}_{2^{m}}[x] / f$
- $11 \leq m \leq 14$
- $256 \leq n=\operatorname{deg}(f) \leq 1024$
- RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi
- All rely on arithmetic in $\mathbb{Z}_{2^{m}}[x] / f$
- $11 \leq m \leq 14$
- $256 \leq n=\operatorname{deg}(f) \leq 1024$
- Why optimize those 5 KEMs?
- Have to start somewhere...
- Joost and I are co-submitters of NTRU-HRSS
- It seemed like NTRU-HRSS could be faster than Round5
- Only Saber has been optimized on Cortex-M4 before (CHES 2018)
- RLizard, Saber, NTRU-HRSS, NTRUEncrypt, and Kindi
- All rely on arithmetic in $\mathbb{Z}_{2^{m}}[x] / f$
- $11 \leq m \leq 14$
- $256 \leq n=\operatorname{deg}(f) \leq 1024$
- Why optimize those 5 KEMs?
- Have to start somewhere...
- Joost and I are co-submitters of NTRU-HRSS
- It seemed like NTRU-HRSS could be faster than Round5
- Only Saber has been optimized on Cortex-M4 before (CHES 2018)
- How to optimize those 5 KEMs?
- Faster multiplication of polynomials with n coefficients over $\mathbb{Z}_{2^{m}}[x]$

Polynomial multiplication

- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$

Polynomial multiplication

- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$
- Schoolbook multiplication takes n^{2} integer muls, $(n-1)^{2}$ adds
- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$
- Schoolbook multiplication takes n^{2} integer muls, $(n-1)^{2}$ adds
- Can do better using Karatsuba:

$$
\begin{aligned}
& \left(a_{\ell}+X^{k} a_{h}\right) \cdot\left(b_{\ell}+X^{k} b_{h}\right) \\
= & a_{\ell} b_{\ell}+X^{k}\left(a_{\ell} b_{h}+a_{h} b_{\ell}\right)+X^{n} a_{h} b_{h} \\
= & a_{\ell} b_{\ell}+X^{k}\left(\left(a_{\ell}+a_{h}\right)\left(b_{\ell}+b_{h}\right)-a_{\ell} b_{\ell}-a_{h} b_{h}\right)+X^{n} a_{h} b_{h}
\end{aligned}
$$

- Recursive application yields complexity $\Theta\left(n^{\log _{2} 3}\right)$
- Represent coefficients as 16 -bit integers
- No modular reductions required, 2^{16} is a multiple of $q=2^{m}$
- Schoolbook multiplication takes n^{2} integer muls, $(n-1)^{2}$ adds
- Can do better using Karatsuba:

$$
\begin{aligned}
& \left(a_{\ell}+X^{k} a_{h}\right) \cdot\left(b_{\ell}+X^{k} b_{h}\right) \\
= & a_{\ell} b_{\ell}+X^{k}\left(a_{\ell} b_{h}+a_{h} b_{\ell}\right)+X^{n} a_{h} b_{h} \\
= & a_{\ell} b_{\ell}+X^{k}\left(\left(a_{\ell}+a_{h}\right)\left(b_{\ell}+b_{h}\right)-a_{\ell} b_{\ell}-a_{h} b_{h}\right)+X^{n} a_{h} b_{h}
\end{aligned}
$$

- Recursive application yields complexity $\Theta\left(n^{\log _{2} 3}\right)$
- Generalization: Toom-Cook
- Toom-3: split into 5 multiplications of $1 / 3$ size
- Toom-4: split into 7 multiplications of $1 / 4$ size
- Approach: Evaluate, multiply, interpolate

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2 , loses 1 bit of precision
- Toom-4 needs division by 8 , loses 3 bits of precision
- This limits recursive application when using 16 -bit integers
- Can use Toom-4 only for $q \leq 2^{13}$

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2 , loses 1 bit of precision
- Toom-4 needs division by 8 , loses 3 bits of precision
- This limits recursive application when using 16 -bit integers
- Can use Toom-4 only for $q \leq 2^{13}$
- Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
- Optimize Saber, $q=2^{13}, n=256$
- Use Toom-4 + two levels of Karatsuba
- Optimized 16 -coefficient schoolbook multiplication

Initial observations

- Karatsuba/Toom is asymptotically faster, but isn't for "small" polynomials
- Toom-3 needs division by 2 , loses 1 bit of precision
- Toom-4 needs division by 8 , loses 3 bits of precision
- This limits recursive application when using 16 -bit integers
- Can use Toom-4 only for $q \leq 2^{13}$
- Karmakar, Bermudo Mera, Sinha Roy, Verbauwhede (CHES 2018):
- Optimize Saber, $q=2^{13}, n=256$
- Use Toom-4 + two levels of Karatsuba
- Optimized 16 -coefficient schoolbook multiplication
- Is this the best approach? How about other values of q and n ?

Our approach

- Generate optimized assembly for Karatsuba/Toom
- Use Python scripts, receive as input n and q
- Hand-optimize "small" schoolbook multiplications
- Benchmark different options, pick fastest

Fast schoolbook multiplication

- ARMv7E-M supports SMUAD(X) and SMLAD(X)
- All in one clock cycle
- Perfect for polynomial multiplication

instruction	semantics
smuad $\mathrm{Ra}, \mathrm{Rb}, \mathrm{Rc}$ smuadx $\mathrm{Ra}, \mathrm{Rb}, \mathrm{Rc}$ smlad Ra, Rb, Rc, Rd smladx Ra, Rb, Rc, Rd	

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication [$\mathrm{N}=2$]

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication [$\mathrm{N}=2$]

- 3 multiplications instead of 4

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication [$\mathrm{N}=4$]

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication [$\mathrm{N}=4$]

- 10 multiplications instead of 16

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication $[\mathrm{N}=6]$

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication [$\mathrm{N}=6$]

- 21 multiplications instead of 36

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication [$\mathrm{N}=12$]

- How many can we fit in registers?
- 16 registers minus SP and PC \rightarrow we fit 24 coefficients

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication [$\mathrm{N}=12$]

- How many can we fit in registers?
- 16 registers minus SP and PC \rightarrow we fit 24 coefficients
- 78 multiplications instead of 144

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication [$\mathrm{N}=24$]

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication [$\mathrm{N}=24$]

- We want to merge all, but not enough registers

Slide credit to Matthias Kannwischer

- Instead we perform 4 times 12×12

Slide credit to Matthias Kannwischer

- Or 9 times 12×12

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication: Reduce repacks

- $R 0=a_{1}\left|a_{0}, R 1=a_{3}\right| a_{2}, R 2=a_{5} \mid a_{4}$
- $R 3=b_{1}\left|b_{0}, R 4=b_{3}\right| b_{2}, R 5=b_{5} \mid b_{4}$

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication: Reduce repacks

- $R 0=a_{1}\left|a_{0}, R 1=a_{3}\right| a_{2}, R 2=a_{5} \mid a_{4}$
- $R 3=b_{1}\left|b_{0}, R 4=b_{3}\right| b_{2}, R 5=b_{5} \mid b_{4}$
- For even columns we need to repack b

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication: Reduce repacks

- $R 0=a_{1}\left|a_{0}, R 1=a_{3}\right| a_{2}, R 2=a_{5} \mid a_{4}$
- $R 3=b_{1}\left|b_{0}, R 4=b_{3}\right| b_{2}, R 5=b_{5} \mid b_{4}$
- First do odd columns

Slide credit to Matthias Kannwischer

Fast schoolbook multiplication: Reduce repacks

- $R 0=a_{1}\left|a_{0}, R 1=a_{3}\right| a_{2}, R 2=a_{5} \mid a_{4}$
- Then repack to $R 3=b_{2}\left|b_{1}, R 4=b_{4}\right| b_{3}$ and do even columns

Slide credit to Matthias Kannwischer

Multiplication results

	approach	"small"	cycles	stack
Saber$\left(n=256, q=2^{13}\right)$	Karatsuba only	16	41121	2020
	Toom-3	11	41225	3480
	Toom-4	16	39124	3800
	Toom-4 + Toom-3	-	-	-
Kindi-256-3-4-2$\left(n=256, q=2^{14}\right)$	Karatsuba only	16	41121	2020
	Toom-3	11	41225	3480
	Toom-4	-	-	-
	Toom-4 + Toom-3	-	-	-
NTRU-HRSS$\left(n=701, q=2^{13}\right)$	Karatsuba only	11	230132	5676
	Toom-3	15	217436	9384
	Toom-4	11	182129	10596
	Toom-4 + Toom-3	-	-	-
NTRU-KEM-743$\left(n=743, q=2^{11}\right)$	Karatsuba only	12	247489	6012
	Toom-3	16	219061	9920
	Toom-4	12	196940	11208
	Toom-4 + Toom-3	16	197227	12152
$\begin{aligned} & \text { RLizard-1024 } \\ & (n=1024 \\ & \left.q=2^{11}\right) \end{aligned}$	Karatsuba only	16	400810	8188
	Toom-3	11	360589	13756
	Toom-4	16	313744	15344
	Toom-4 + Toom-3	11	315788	16816

Anything else to do?

- Integrate with fast SHA-3/SHAKE implementation
- Add fast SHA-512 implementation (C as fast as asm!)
- Between 69% and 92% of cycles spent in mul+hash

Anything else to do?

- Integrate with fast SHA-3/SHAKE implementation
- Add fast SHA-512 implementation (C as fast as asm!)
- Between 69% and 92% of cycles spent in mul+hash

NISTPQC code quality...

- Fix misunderstandings of NIST API
- Remove all dynamic memory allocations
- Fix some obvious timing leakages
- More work required, for many NIST submissions!

KEM results

	implementation	clock cycles		stack usage	
Saber	Reference	K:	$6530 k$	K:	12616
		E:	8684k	E:	14896
		D:	$10581 k$	D:	15992
	[KBSV18]	K:	1147k	K:	13883
		E:	1444k	E:	16667
		D:	1543k	D:	17763
	This work	K:	949k	K:	13248
		E:	$1232 k$	E:	15528
		D:	1260k	D:	16624
Kindi-256-3-4-2	Reference	K:	$21794 k$	K:	59864
		E:	$28176 k$	E:	71000
		D:	$37129 k$	D:	84096
	This work	K:	1010k	K:	44264
		E:	1365 k	E:	55392
		D:	1563k	D:	64376

KEM results

	implementation	clock cycles		stack usage	
NTRU-HRSS	Reference	K:	$\begin{array}{r} 205156 k \\ 5166 k \\ 15067 k \end{array}$	K:	$\begin{array}{r} 10020 \\ 8956 \\ 10204 \\ \hline \end{array}$
	This work	E:	$\begin{array}{r} 161790 k \\ 432 k \\ 863 k \end{array}$	K:	$\begin{aligned} & 23396 \\ & 19492 \\ & 22140 \end{aligned}$
NTRU-KEM-743	Reference	E:	$\begin{array}{r} 59815 k \\ 7540 k \\ 14229 k \\ \hline \end{array}$	K:	$\begin{aligned} & 14148 \\ & 13372 \\ & 18036 \\ & \hline \end{aligned}$
	This work	K:	$\begin{aligned} & 5663 k \\ & 1655 k \\ & 1904 k \end{aligned}$	K:	$\begin{aligned} & 25320 \\ & 23808 \\ & 28472 \end{aligned}$
RLizard-1024	Reference	K:	$26423 k$ 32 156k $53181 k$	K:	$\begin{array}{r} 4272 \\ 10532 \\ 12636 \end{array}$
	This work	K:	$537 k$ $1358 k$ $1740 k$	K:	$\begin{aligned} & 27720 \\ & 33328 \\ & 35448 \end{aligned}$

Coming back to NISTPQC code quality

- Great about NISTPQC: we actually have implementations!

Coming back to NISTPQC code quality

- Great about NISTPQC: we actually have implementations!
- Bad about NISTPQC: we have lots of terrible implementations...

Coming back to NISTPQC code quality

- Great about NISTPQC: we actually have implementations!
- Bad about NISTPQC: we have lots of terrible implementations. . .
- Typical effort for any project working with NISTPQC code:

1. Clean up existing implementation
2. Do what you actually want to do

Coming back to NISTPQC code quality

- Great about NISTPQC: we actually have implementations!
- Bad about NISTPQC: we have lots of terrible implementations. . .
- Typical effort for any project working with NISTPQC code:

1. Clean up existing implementation
2. Do what you actually want to do

- Examples of what you actually want to do:
- Use in libraries (e.g., liboqs or libpqcrypto)
- Benchmark (e.g., SUPERCOP)
- Evaluate on embedded platforms (e.g., pqm4)
- Use in higher-level protocols (e.g., OQS)

Coming back to NISTPQC code quality

- Great about NISTPQC: we actually have implementations!
- Bad about NISTPQC: we have lots of terrible implementations. . .
- Typical effort for any project working with NISTPQC code:

1. Clean up existing implementation
2. Do what you actually want to do

- Examples of what you actually want to do:
- Use in libraries (e.g., liboqs or libpqcrypto)
- Benchmark (e.g., SUPERCOP)
- Evaluate on embedded platforms (e.g., pqm4)
- Use in higher-level protocols (e.g., OQS)
- Idea: collect "clean" implementations once
- Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila, Thom Wiggers

- GitHub repo with extensive Cl to ensure "clean" implementations
- Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila,

 Thom Wiggers- GitHub repo with extensive Cl to ensure "clean" implementations
- Goal: eventually have all round-2 candidates in there
- Start with clean C implementations
- Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila, Thom Wiggers

- GitHub repo with extensive Cl to ensure "clean" implementations
- Goal: eventually have all round-2 candidates in there
- Start with clean C implementations
- Longer-term, if there is interest:
- implementations with architecture-specific optimizations?
- implementations in other languages?
- Joint work with

Matthias Kannwischer, Joost Rijneveld, Douglas Stebila, Thom Wiggers

- GitHub repo with extensive Cl to ensure "clean" implementations
- Goal: eventually have all round-2 candidates in there
- Start with clean C implementations
- Longer-term, if there is interest:
- implementations with architecture-specific optimizations?
- implementations in other languages?
- At the moment still setting up Cl
- Hope to be done soon, then PRs very welcome!

Automatically checked by Cl

- Code is valid C99
- Passes functional tests
- API functions do not write outside provided buffers
- Compiles with -Wall -Wextra -Wpedantic -Werror with gcc and clang
- Consistent test vectors across runs
- Consistent test vectors on big-endian and little-endian machines
- Consistent test vectors on 32 -bit and 64 -bit machines

Automatically checked by Cl

- Code is valid C99
- Passes functional tests
- API functions do not write outside provided buffers
- Compiles with -Wall -Wextra -Wpedantic -Werror with gcc and clang
- Consistent test vectors across runs
- Consistent test vectors on big-endian and little-endian machines
- Consistent test vectors on 32 -bit and 64 -bit machines
- No errors/warnings reported by valgrind
- No errors/warnings reported by address sanitizer
- Only dependencies:
- fips202.c
- sha2.c
- aes.c
- randombytes.c

The definition of "clean" ctd.

Automatically checked by Cl

- API functions return 0 on success, negative on failure (WIP!)
- 0 on success
- Negative on failure (currently: partially)
- No dynamic memory allocations
- No branching on secret data (dynamically checked using valgrind)
- No access to secret memory locations (dynamically checked using valgrind)

Automatically checked by Cl

- API functions return 0 on success, negative on failure (WIP!)
- 0 on success
- Negative on failure (currently: partially)
- No dynamic memory allocations
- No branching on secret data (dynamically checked using valgrind)
- No access to secret memory locations (dynamically checked using valgrind)
- Separate subdirectories (without symlinks) for each parameter set of each scheme
- Builds under Linux, MacOS, and Windows
- All exported symbols are namespaced with PQCLEAN_SCHEMENAME_
- Each implementation comes with license and meta information in META.yml

Manually checked

- \#ifdefs only for header encapsulation
- No stringification macros
- Output-parameter pointers in functions are on the left
- const arguments are labeled as const
- All exported symbols are namespaced inplace
- All integer types are of fixed size, using stdint.h types (including uint8_t instead of unsigned char)
- Integers used for indexing are of type size_t
- Variable declarations at the beginning (except in for (size_t i=...))
- pqm4 library and benchmarking suite: https://github.com/mupq/pqm4
- Code of $\mathbb{Z}_{2^{m}}[x]$ multiplication paper, including scripts: https://github.com/mupq/polymul-z2mx-m4
- $\mathbb{Z}_{2^{m}}[x]$ multiplication paper:
https://cryptojedi.org/papers/\#latticem4
- PQClean repository:
https://github.com/PQClean/PQClean

