
Two approaches to verifying high-speed
ECC software

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org

April 29, 2017

mailto:peter@cryptojedi.org
https://cryptojedi.org

“Cloudflare reported a carry bug in the P-256 implementation that they
submitted for x86-64 in 7bacfc6. I can reproduce this via random testing
against BoringSSL and, after applying the patch that they provided, can
no longer do so, even after 231 iterations.

This issue is not obviously exploitable, although we cannot rule out the
possibility of someone managing to squeeze something through this hole.
(It would be a cool paper.)”

—Adam Langley, Apr. 20, 2017

1

How to avoid cool papers

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org

April 29, 2017

mailto:peter@cryptojedi.org
https://cryptojedi.org

Carry bugs

• Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in
OpenSSL 0.9.8g

• 633 adaptive queries to obtain entire static ECDH key

• CVE-2015-3193 openssl: BN_mod_exp may produce incorrect
results on x86_64

• CVE-2014-3570 openssl: Bignum squaring may produce incorrect
results

• CVE-2016-7055 openssl: Carry propagating bug in Montgomery
multiplication

• CVE-2017-3732 openssl: BN_mod_exp may produce incorrect
results on x86_64

• Ed25519 and X25519 “amd64-64” implementation (CHES 2011)

2

Carry bugs

• Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in
OpenSSL 0.9.8g

• 633 adaptive queries to obtain entire static ECDH key

• CVE-2015-3193 openssl: BN_mod_exp may produce incorrect
results on x86_64

• CVE-2014-3570 openssl: Bignum squaring may produce incorrect
results

• CVE-2016-7055 openssl: Carry propagating bug in Montgomery
multiplication

• CVE-2017-3732 openssl: BN_mod_exp may produce incorrect
results on x86_64

• Ed25519 and X25519 “amd64-64” implementation (CHES 2011)

2

Carry bugs

• Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in
OpenSSL 0.9.8g

• 633 adaptive queries to obtain entire static ECDH key

• CVE-2015-3193 openssl: BN_mod_exp may produce incorrect
results on x86_64

• CVE-2014-3570 openssl: Bignum squaring may produce incorrect
results

• CVE-2016-7055 openssl: Carry propagating bug in Montgomery
multiplication

• CVE-2017-3732 openssl: BN_mod_exp may produce incorrect
results on x86_64

• Ed25519 and X25519 “amd64-64” implementation (CHES 2011)

2

Carry bugs

• Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in
OpenSSL 0.9.8g

• 633 adaptive queries to obtain entire static ECDH key

• CVE-2015-3193 openssl: BN_mod_exp may produce incorrect
results on x86_64

• CVE-2014-3570 openssl: Bignum squaring may produce incorrect
results

• CVE-2016-7055 openssl: Carry propagating bug in Montgomery
multiplication

• CVE-2017-3732 openssl: BN_mod_exp may produce incorrect
results on x86_64

• Ed25519 and X25519 “amd64-64” implementation (CHES 2011)

2

Carry bugs

• Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in
OpenSSL 0.9.8g

• 633 adaptive queries to obtain entire static ECDH key

• CVE-2015-3193 openssl: BN_mod_exp may produce incorrect
results on x86_64

• CVE-2014-3570 openssl: Bignum squaring may produce incorrect
results

• CVE-2016-7055 openssl: Carry propagating bug in Montgomery
multiplication

• CVE-2017-3732 openssl: BN_mod_exp may produce incorrect
results on x86_64

• Ed25519 and X25519 “amd64-64” implementation (CHES 2011)

2

Carry bugs

• Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in
OpenSSL 0.9.8g

• 633 adaptive queries to obtain entire static ECDH key

• CVE-2015-3193 openssl: BN_mod_exp may produce incorrect
results on x86_64

• CVE-2014-3570 openssl: Bignum squaring may produce incorrect
results

• CVE-2016-7055 openssl: Carry propagating bug in Montgomery
multiplication

• CVE-2017-3732 openssl: BN_mod_exp may produce incorrect
results on x86_64

• Ed25519 and X25519 “amd64-64” implementation (CHES 2011)

2

Example for today: X25519

• Bernstein 2006: X25519 Diffie-Hellman key exchange (originally:
“Curve25519”)

• Secret keys: 32-byte little-endian scalars

• Public keys: 32-byte arrays, encoding x-coordinate of a point on

E : y2 = x3 + 486662x2 + x

over F2255−19

• Base point: (9, 0, . . . , 0)

• Given secret key s and public key (or base point) P:
• Copy s to s ′

• Set least significant 3 bits of s ′ to zero
• Set most significant bit of s ′ to zero
• Set second-most significant bit of s ′ to one
• Compute x-coordinate of s ′P

3

Example for today: X25519

• Bernstein 2006: X25519 Diffie-Hellman key exchange (originally:
“Curve25519”)

• Secret keys: 32-byte little-endian scalars

• Public keys: 32-byte arrays, encoding x-coordinate of a point on

E : y2 = x3 + 486662x2 + x

over F2255−19

• Base point: (9, 0, . . . , 0)

• Given secret key s and public key (or base point) P:
• Copy s to s ′

• Set least significant 3 bits of s ′ to zero
• Set most significant bit of s ′ to zero
• Set second-most significant bit of s ′ to one
• Compute x-coordinate of s ′P

3

The Montgomery ladder

Require: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Ensure: xkP
X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i ← n − 1 downto 0 do

if bit i of k is 1 then
(X3,Z3,X2,Z2)← ladderstep(X1,X3,Z3,X2,Z2)

else
(X2,Z2,X3,Z3)← ladderstep(X1,X2,Z2,X3,Z3)

end if
end for
return X2 · Z−1

2

4

One Montgomery “ladder step”

const a24 = (A+ 2)/4 (A from the curve equation)
function ladderstep(XQ−P ,XP ,ZP ,XQ ,ZQ)

t1 ← XP + ZP

t6 ← t21
t2 ← XP − ZP

t7 ← t22
t5 ← t6 − t7
t3 ← XQ + ZQ

t4 ← XQ − ZQ

t8 ← t4 · t1
t9 ← t3 · t2
XP+Q ← (t8 + t9)

2

ZP+Q ← XQ−P · (t8 − t9)
2

X2P ← t6 · t7
Z2P ← t5 · (t7 + a24 · t5)
return (X2P ,Z2P ,XP+Q ,ZP+Q)

end function
5

Curve25519 implementations

• Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors

• Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors

• Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine

• Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel
Nehalem/Westmere

• Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015:
X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0

• Chou, 2015: The fastest Curve25519 software ever

• Many more implementations, most without scientific papers

6

Curve25519 implementations

• Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors

• Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors

• Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine

• Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel
Nehalem/Westmere

• Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015:
X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0

• Chou, 2015: The fastest Curve25519 software ever

• Many more implementations, most without scientific papers

6

Arithmetic in F2255−19 for AMD64

Radix 264

• Standard: break elements of F2255−19 into 4 64-bit integers

• (Schoolbook) multiplication breaks down into 16 64-bit integer
multiplications

• Adding up partial results requires many add-with-carry (adc)

• Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 251

• Instead, break into 5 64-bit integers, use radix 251

• Can delay carry operations; carry “en bloc”

• Schoolbook multiplication now 25 64-bit integer multiplications

• Easy to merge multiplication with reduction (multiplies by 19)

• Better performance on Westmere/Nehalem, worse on 65 nm Core 2
and AMD processors

7

Arithmetic in F2255−19 for AMD64

Radix 264

• Standard: break elements of F2255−19 into 4 64-bit integers

• (Schoolbook) multiplication breaks down into 16 64-bit integer
multiplications

• Adding up partial results requires many add-with-carry (adc)

• Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 251

• Instead, break into 5 64-bit integers, use radix 251

• Can delay carry operations; carry “en bloc”

• Schoolbook multiplication now 25 64-bit integer multiplications

• Easy to merge multiplication with reduction (multiplies by 19)

• Better performance on Westmere/Nehalem, worse on 65 nm Core 2
and AMD processors

7

Bug in the radix-64 reduction

mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r13
adc %rdx,%r14
adc $0,%r14
mov %r9,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r14
adc %rdx,%r15
adc $0,%r15
mov %r10,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r15
adc %rdx,%rbx
adc $0,%rbx
mov %r11,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%rbx
mov $0,%rsi
adc %rdx,%rsi

8

Bug in the radix-64 reduction

(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry

Full software package contains 8912 lines of qhasm code!

8

Bug in the radix-64 reduction

(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry

Full software package contains 8912 lines of qhasm code!

8

Directions to correct crypto

Testing

• Is cheap, catches many bugs

• Does not conflict with performance

• Provides very high confidence in correctness for some crypto
algorithms

• Typically fails to catch very rarely triggered bugs

9

Directions to correct crypto

Audits

• Expensive (time and/or money)

• Conflicts with performance

• Standard approach to ensure correctness and quality of crypto
software

9

Directions to correct crypto

Formal verification

• Strongest guarantees of correctness

• Probably conflicts with performance

• Should focus on cases where tests fail

9

Directions to correct crypto

Formal verification

• Strongest guarantees of correctness

• Probably conflicts with performance

• Should focus on cases where tests fail

9

Verification: the vision

• C or assembly programmer adds high-level annotations

• More specifically, for example:
• Limbs a0, . . . , an compose a field element A
• Limbs b0, . . . , bn compose a field element B
• Limbs r0, . . . , rn compose a field element R
• R = A · B

• Annotated code gets fed to verification tool

• Verification ensures that operation on limbs corresponds to
high-level arithmetic

• Audits look at high-level annotations

• Even better: feed to even higher level verification

• Verify that the sequence of field operations accomplishes EC
arithmetic

10

Verification: the vision

• C or assembly programmer adds high-level annotations

• More specifically, for example:
• Limbs a0, . . . , an compose a field element A
• Limbs b0, . . . , bn compose a field element B
• Limbs r0, . . . , rn compose a field element R
• R = A · B

• Annotated code gets fed to verification tool

• Verification ensures that operation on limbs corresponds to
high-level arithmetic

• Audits look at high-level annotations

• Even better: feed to even higher level verification

• Verify that the sequence of field operations accomplishes EC
arithmetic

10

Verification: the vision

• C or assembly programmer adds high-level annotations

• More specifically, for example:
• Limbs a0, . . . , an compose a field element A
• Limbs b0, . . . , bn compose a field element B
• Limbs r0, . . . , rn compose a field element R
• R = A · B

• Annotated code gets fed to verification tool

• Verification ensures that operation on limbs corresponds to
high-level arithmetic

• Audits look at high-level annotations

• Even better: feed to even higher level verification

• Verify that the sequence of field operations accomplishes EC
arithmetic

10

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

• Nehalem Curve25519 software is written in qhasm

• qhasm is a portable assembly language by Bernstein

• Idea for verification:
• Annotate qhasm code
• Translate annotated qhasm automatically to SMT-solver boolector
• Use boolector to verify software

• Verification target: Montgomery ladder step of X25519:
• 5 multiplications in F2255−19

• 4 squarings in F2255−19

• 1 multiplication by 121666
• Several additions and subtractions

11

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

• Nehalem Curve25519 software is written in qhasm

• qhasm is a portable assembly language by Bernstein

• Idea for verification:
• Annotate qhasm code
• Translate annotated qhasm automatically to SMT-solver boolector
• Use boolector to verify software

• Verification target: Montgomery ladder step of X25519:
• 5 multiplications in F2255−19

• 4 squarings in F2255−19

• 1 multiplication by 121666
• Several additions and subtractions

11

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

• Nehalem Curve25519 software is written in qhasm

• qhasm is a portable assembly language by Bernstein

• Idea for verification:
• Annotate qhasm code
• Translate annotated qhasm automatically to SMT-solver boolector
• Use boolector to verify software

• Verification target: Montgomery ladder step of X25519:
• 5 multiplications in F2255−19

• 4 squarings in F2255−19

• 1 multiplication by 121666
• Several additions and subtractions

11

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

• Nehalem Curve25519 software is written in qhasm

• qhasm is a portable assembly language by Bernstein

• Idea for verification:
• Annotate qhasm code
• Translate annotated qhasm automatically to SMT-solver boolector
• Use boolector to verify software

• Verification target: Montgomery ladder step of X25519:
• 5 multiplications in F2255−19

• 4 squarings in F2255−19

• 1 multiplication by 121666
• Several additions and subtractions

11

Example: Addition in radix 251

#// assume 0 <=u x0, x1, x2, x3, x4 <=u 2**51 + 2**15
#// assume 0 <=u y0, y1, y2, y3, y4 <=u 2**51 + 2**15
r0 = x0
r1 = x1
r2 = x2
r3 = x3
r4 = x4
r0 += y0
r1 += y1
r2 += y2
r3 += y3
r4 += y4
#// var sum_x = x0@u320 + x1@u320 * 2**51 + x2@u320 * 2**102 \

+ x3@u320 * 2**153 + x4@u320 * 2**204
#// sum_y = y0@u320 + y1@u320 * 2**51 + y2@u320 * 2**102 \

+ y3@u320 * 2**153 + y4@u320 * 2**204
#// sum_r = r0@u320 + r1@u320 * 2**51 + r2@u320 * 2**102 \

+ r3@u320 * 2**153 + r4@u320 * 2**204
#// assert (sum_r - (sum_x + sum_y)) % (2**255 - 19) = 0 &&
#// 0 <=u r0, r1, r2, r3, r4 <u 2**53

12

How about multiplication?

• Again, express input field elements and output field elements

• Again, express bounds on the “limb size”

• Again, express algebraic relation of a modular multiplication

• Overall slightly more annoations for an auditor to look at

• Huge amount of intermediate annotations

• SMT solver cannot simply verify from inputs to outputs

• Overall:
• 217 lines of qhasm, including variable declarations
• 589 lines of annotations

• Large amount of manual work on top of assembly optimization

• Writing verifiable code requires expert knowledge from two domains!

• Verification of just multiplication takes > 90 hours

13

How about multiplication?

• Again, express input field elements and output field elements

• Again, express bounds on the “limb size”

• Again, express algebraic relation of a modular multiplication

• Overall slightly more annoations for an auditor to look at

• Huge amount of intermediate annotations

• SMT solver cannot simply verify from inputs to outputs

• Overall:
• 217 lines of qhasm, including variable declarations
• 589 lines of annotations

• Large amount of manual work on top of assembly optimization

• Writing verifiable code requires expert knowledge from two domains!

• Verification of just multiplication takes > 90 hours

13

How about multiplication?

• Again, express input field elements and output field elements

• Again, express bounds on the “limb size”

• Again, express algebraic relation of a modular multiplication

• Overall slightly more annoations for an auditor to look at

• Huge amount of intermediate annotations

• SMT solver cannot simply verify from inputs to outputs

• Overall:
• 217 lines of qhasm, including variable declarations
• 589 lines of annotations

• Large amount of manual work on top of assembly optimization

• Writing verifiable code requires expert knowledge from two domains!

• Verification of just multiplication takes > 90 hours

13

How about multiplication?

• Again, express input field elements and output field elements

• Again, express bounds on the “limb size”

• Again, express algebraic relation of a modular multiplication

• Overall slightly more annoations for an auditor to look at

• Huge amount of intermediate annotations

• SMT solver cannot simply verify from inputs to outputs

• Overall:
• 217 lines of qhasm, including variable declarations
• 589 lines of annotations

• Large amount of manual work on top of assembly optimization

• Writing verifiable code requires expert knowledge from two domains!

• Verification of just multiplication takes > 90 hours

13

Overall results

• Formally verified Montgomery ladderstep
• “Redundant” radix-251 representation
• Non-redundant radix-264 representation
• Reproduced bug in original version of the software

• Most verification used automatic qhasm → boolector translation

• Tiny bit of code in radix-264 needed proof assistant Coq

14

Verification approach II

• 2 problems with SMT approach:
• Huge amount of (manual) annotations
• Long verification time

• Idea: automagically translate to input for computer-algebra system

• Accept failures to prove correctness

Work in progress with Bernstein

• Annotate C code (later: also qhasm)

• (Currently) use C++ compiler and operator overloading to
• Keep track of computation graph
• Keep track of worst-case ranges of limbs
• Output polynomial relations to Sage
• Use Sage to verify correctness of C code

15

Verification approach II

• 2 problems with SMT approach:
• Huge amount of (manual) annotations
• Long verification time

• Idea: automagically translate to input for computer-algebra system

• Accept failures to prove correctness

Work in progress with Bernstein

• Annotate C code (later: also qhasm)

• (Currently) use C++ compiler and operator overloading to
• Keep track of computation graph
• Keep track of worst-case ranges of limbs
• Output polynomial relations to Sage
• Use Sage to verify correctness of C code

15

Verification approach II

• 2 problems with SMT approach:
• Huge amount of (manual) annotations
• Long verification time

• Idea: automagically translate to input for computer-algebra system

• Accept failures to prove correctness

Work in progress with Bernstein

• Annotate C code (later: also qhasm)

• (Currently) use C++ compiler and operator overloading to
• Keep track of computation graph
• Keep track of worst-case ranges of limbs
• Output polynomial relations to Sage
• Use Sage to verify correctness of C code

15

Example: addition (radix 225.5)

crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];

verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);

fe_add(h,f,g);

verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertsum(&vh,&vf,&vg);

16

Example: multiplication

crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];

verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);

fe_mul(h,f,g);

verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertprodmod(&vh,&vf,&vg,"2^255-19");

17

A small demo

• Consider computation of x2100
in F2127−1

• Input is little-endian byte array

• Convert to internal representation in radix 226

• Verify a single squaring

• Put a loop around it

• Still too slow for big chunks of code
• Problem: verification always goes back to the beginning
• Idea: Declare that we trust already verified results
• This is known as “cutting” the verification

18

A small demo

• Consider computation of x2100
in F2127−1

• Input is little-endian byte array

• Convert to internal representation in radix 226

• Verify a single squaring

• Put a loop around it

• Still too slow for big chunks of code
• Problem: verification always goes back to the beginning
• Idea: Declare that we trust already verified results
• This is known as “cutting” the verification

18

A small demo

• Consider computation of x2100
in F2127−1

• Input is little-endian byte array

• Convert to internal representation in radix 226

• Verify a single squaring

• Put a loop around it

• Still too slow for big chunks of code
• Problem: verification always goes back to the beginning
• Idea: Declare that we trust already verified results
• This is known as “cutting” the verification

18

A small demo

• Consider computation of x2100
in F2127−1

• Input is little-endian byte array

• Convert to internal representation in radix 226

• Verify a single squaring

• Put a loop around it

• Still too slow for big chunks of code
• Problem: verification always goes back to the beginning
• Idea: Declare that we trust already verified results
• This is known as “cutting” the verification

18

Let’s “cut some limbs”

19

Let’s call it a draw

20

Back to X25519

fe_sub(tmp0,x3,z3);

verifier_bigint D;
verifier_limbs_10_255(&D,tmp0);
verifier_assertdiff(&D,&X3,&Z3);
verifier_cutlimbs(tmp0,10);

fe_sub(tmp1,x2,z2);

verifier_bigint B;
verifier_limbs_10_255(&B,tmp1);
verifier_assertdiff(&B,&X2,&Z2);
verifier_cutlimbs(tmp1,10);

fe_add(x2,x2,z2);

verifier_bigint A;
verifier_limbs_10_255(&A,x2);
verifier_assertsum(&A,&X2,&Z2);
verifier_cutlimbs(x2,10);

fe_add(z2,x3,z3);

verifier_bigint C;
verifier_limbs_10_255(&C,z2);
verifier_assertsum(&C,&X3,&Z3);
verifier_cutlimbs(z2,10);

fe_mul(z3,tmp0,x2);

verifier_bigint DA;
verifier_limbs_10_255(&DA,z3);
verifier_assertprodmod(&DA,&D,&A,vp);
verifier_cutlimbs(z3,10);

fe_mul(z2,z2,tmp1);

verifier_bigint CB;
verifier_limbs_10_255(&CB,z2);
verifier_assertprodmod(&CB,&C,&B,vp);
verifier_cutlimbs(z2,10);

21

Beyond the ladder step

• Input conversion from byte array (see F2127−1 example)

• “Clamping” of scalar: currently not covered

• Final inversion: exponentiation by p − 2

• “Freezing” of elements:
• Carry to produce result in {0, . . . , 2255 − 1}
• Conditionally subtract p
• Use fork to verify both cases

22

Beyond the ladder step

• Input conversion from byte array (see F2127−1 example)

• “Clamping” of scalar: currently not covered

• Final inversion: exponentiation by p − 2

• “Freezing” of elements:
• Carry to produce result in {0, . . . , 2255 − 1}
• Conditionally subtract p
• Use fork to verify both cases

22

Beyond the ladder step

• Input conversion from byte array (see F2127−1 example)

• “Clamping” of scalar: currently not covered

• Final inversion: exponentiation by p − 2

• “Freezing” of elements:
• Carry to produce result in {0, . . . , 2255 − 1}
• Conditionally subtract p
• Use fork to verify both cases

22

Beyond the ladder step

• Input conversion from byte array (see F2127−1 example)

• “Clamping” of scalar: currently not covered

• Final inversion: exponentiation by p − 2

• “Freezing” of elements:
• Carry to produce result in {0, . . . , 2255 − 1}
• Conditionally subtract p
• Use fork to verify both cases

22

High-level verification

feed through: ./unroll x1 n
p = 2**255-19
A = 486662
x2,z2,x3,z3 = 1,0,x1,1
for i in reversed(range(255)):

ni = bit(n,i)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)
x3,z3 = (4*(x2*x3-z2*z3)**2,4*x1*(x2*z3-z2*x3)**2)
x2,z2 = ((x2**2-z2**2)**2,4*x2*z2*(x2**2+A*x2*z2+z2**2))
x3,z3 = (x3%p,z3%p)
x2,z2 = (x2%p,z2%p)
cut(x2)
cut(x3)
cut(z2)
cut(z3)
x2,x3 = cswap(x2,x3,ni)
z2,z3 = cswap(z2,z3,ni)

cut(x2)
cut(z2)
return x2*pow(z2,p-2,p)

23

First results and TODOs

Results

• Verification of modular multiplication in a few seconds

• Verification of full X25519 Montgomery ladder in ≈1:10 minutes

• Verification against high-level code

TODOs

• Support assembly/qhasm

• Get rid of C++ compiler

• Support “non-redundant” arithmetic

• Support window methods

• Test, test, test

24

First results and TODOs

Results

• Verification of modular multiplication in a few seconds

• Verification of full X25519 Montgomery ladder in ≈1:10 minutes

• Verification against high-level code

TODOs

• Support assembly/qhasm

• Get rid of C++ compiler

• Support “non-redundant” arithmetic

• Support window methods

• Test, test, test

24

Papers and Software

• Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe,
Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi
Yang. Verifying Curve25519 Software.
https://cryptojedi.org/papers/#verify25519

• Many X25519 implementations in SUPERCOP
(crypto_scalarmult/curve25519)
https://bench.cr.yp.to/supercop.html

• Verification using boolector:
https://cryptojedi.org/crypto/#verify25519

• Verification with gfverif:
https://cryptojedi.org/crypto/#gfverif

25

https://cryptojedi.org/papers/#verify25519
https://bench.cr.yp.to/supercop.html
https://cryptojedi.org/crypto/#verify25519
https://cryptojedi.org/crypto/#gfverif

