Radboud University

Two approaches to verifying high-speed ECC software

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org
April 29, 2017
"Cloudflare reported a carry bug in the P-256 implementation that they submitted for x86-64 in 7bacfc6. I can reproduce this via random testing against BoringSSL and, after applying the patch that they provided, can no longer do so, even after 2^{31} iterations.

This issue is not obviously exploitable, although we cannot rule out the possibility of someone managing to squeeze something through this hole. (It would be a cool paper.)"
—Adam Langley, Apr. 20, 2017

Radboud University

How to avoid cool papers

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org
April 29, 2017

Carry bugs

- Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in OpenSSL 0.9.8g
- 633 adaptive queries to obtain entire static ECDH key

Carry bugs

- Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in OpenSSL 0.9.8g
- 633 adaptive queries to obtain entire static ECDH key
- CVE-2015-3193 openssl: BN_mod_exp may produce incorrect results on x86_64
- Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in OpenSSL 0.9.8g
- 633 adaptive queries to obtain entire static ECDH key
- CVE-2015-3193 openssl: BN_mod_exp may produce incorrect results on x86_64
- CVE-2014-3570 openssl: Bignum squaring may produce incorrect results
- Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in OpenSSL 0.9.8g
- 633 adaptive queries to obtain entire static ECDH key
- CVE-2015-3193 openssl: BN_mod_exp may produce incorrect results on x86_64
- CVE-2014-3570 openssl: Bignum squaring may produce incorrect results
- CVE-2016-7055 openssl: Carry propagating bug in Montgomery multiplication
- Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in OpenSSL 0.9.8g
- 633 adaptive queries to obtain entire static ECDH key
- CVE-2015-3193 openssl: BN_mod_exp may produce incorrect results on x86 64
- CVE-2014-3570 openssl: Bignum squaring may produce incorrect results
- CVE-2016-7055 openssl: Carry propagating bug in Montgomery multiplication
- CVE-2017-3732 openssl: BN_mod_exp may produce incorrect results on x86_64
- Brumley, Barbosa, Page, Vercauteren, 2011: exploit carry bug in OpenSSL 0.9.8g
- 633 adaptive queries to obtain entire static ECDH key
- CVE-2015-3193 openssl: BN_mod_exp may produce incorrect results on x86_64
- CVE-2014-3570 openssl: Bignum squaring may produce incorrect results
- CVE-2016-7055 openssl: Carry propagating bug in Montgomery multiplication
- CVE-2017-3732 openssl: BN_mod_exp may produce incorrect results on x86 64
- Ed25519 and X25519 "amd64-64" implementation (CHES 2011)

Example for today: X25519

- Bernstein 2006: X25519 Diffie-Hellman key exchange (originally: "Curve25519")
- Secret keys: 32 -byte little-endian scalars
- Public keys: 32-byte arrays, encoding x-coordinate of a point on

$$
E: y^{2}=x^{3}+486662 x^{2}+x
$$

over $\mathbb{F}_{2^{255} \text { - } 19}$

- Base point: $(9,0, \ldots, 0)$

Example for today: X25519

- Bernstein 2006: X25519 Diffie-Hellman key exchange (originally: "Curve25519")
- Secret keys: 32 -byte little-endian scalars
- Public keys: 32-byte arrays, encoding x-coordinate of a point on

$$
E: y^{2}=x^{3}+486662 x^{2}+x
$$

over $\mathbb{F}_{2^{255} \text { - } 19}$

- Base point: $(9,0, \ldots, 0)$
- Given secret key s and public key (or base point) P :
- Copy s to s^{\prime}
- Set least significant 3 bits of s^{\prime} to zero
- Set most significant bit of s^{\prime} to zero
- Set second-most significant bit of s^{\prime} to one
- Compute x-coordinate of $s^{\prime} P$

The Montgomery ladder

Require: A scalar $0 \leq k \in \mathbb{Z}$ and the x-coordinate x_{P} of some point P
Ensure: $x_{k P}$
$X_{1}=x_{P} ; X_{2}=1 ; Z_{2}=0 ; X_{3}=x_{P} ; Z_{3}=1$
for $i \leftarrow n-1$ downto 0 do
if bit i of k is 1 then
$(X 3, Z 3, X 2, Z 2) \leftarrow$ ladderstep $(X 1, X 3, Z 3, X 2, Z 2)$
else
$(X 2, Z 2, X 3, Z 3) \leftarrow$ ladderstep $(X 1, X 2, Z 2, X 3, Z 3)$
end if
end for
return $X_{2} \cdot Z_{2}^{-1}$

One Montgomery "ladder step"

const $a 24=(A+2) / 4$ (A from the curve equation)
function ladderstep $\left(X_{Q-P}, X_{P}, Z_{P}, X_{Q}, Z_{Q}\right)$

$$
\begin{aligned}
& t_{1} \leftarrow X_{P}+Z_{P} \\
& t_{6} \leftarrow t_{1}^{2} \\
& t_{2} \leftarrow X_{P}-Z_{P} \\
& t_{7} \leftarrow t_{2}^{2} \\
& t_{5} \leftarrow t_{6}-t_{7} \\
& t_{3} \leftarrow X_{Q}+Z_{Q} \\
& t_{4} \leftarrow X_{Q}-Z_{Q} \\
& t_{8} \leftarrow t_{4} \cdot t_{1} \\
& t_{9} \leftarrow t_{3} \cdot t_{2} \\
& X_{P+Q} \leftarrow\left(t_{8}+t_{9}\right)^{2} \\
& Z_{P+Q} \leftarrow X_{Q-P} \cdot\left(t_{8}-t_{9}\right)^{2} \\
& X_{2 P} \leftarrow t_{6} \cdot t_{7} \\
& Z_{2 P} \leftarrow t_{5} \cdot\left(t_{7}+a 24 \cdot t_{5}\right) \\
& \text { return }\left(X_{2 P}, Z_{2 P}, X_{P+Q}, Z_{P+Q}\right)
\end{aligned}
$$

end function

Curve25519 implementations

- Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
- Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
- Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
- Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel Nehalem/Westmere
- Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015: X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
- Chou, 2015: The fastest Curve25519 software ever
- Many more implementations, most without scientific papers

Curve25519 implementations

- Bernstein, 2006: X25519 for various 32-bit Intel and AMD processors
- Gaudry, Thomé, 2007: X25519 for 64-bit Intel and AMD processors
- Costigan, Schwabe, 2009: X25519 for Cell Broadband Engine
- Bernstein, Duif, Lange, Schwabe, Yang, 2011: X25519 for Intel Nehalem/Westmere
- Düll, Haase, Hinterwälder, Hutter, Paar, Sánchez, Schwabe, 2015: X25519 for AVR ATmega, TI MSP430, and ARM Cortex-M0
- Chou, 2015: The fastest Curve25519 software ever
- Many more implementations, most without scientific papers

Arithmetic in $\mathbb{F}_{2^{255-19}}$ for AMD64

Radix 2^{64}

- Standard: break elements of $\mathbb{F}_{2^{255}-19}$ into 464 -bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Arithmetic in $\mathbb{F}_{2^{255-19}}$ for AMD64

Radix 2^{64}

- Standard: break elements of $\mathbb{F}_{2^{255}-19}$ into 4 64-bit integers
- (Schoolbook) multiplication breaks down into 16 64-bit integer multiplications
- Adding up partial results requires many add-with-carry (adc)
- Westmere bottleneck: 1 adc every two cycles vs. 3 add per cycle

Radix 2^{51}

- Instead, break into 5 64-bit integers, use radix 2^{51}
- Can delay carry operations; carry "en bloc"
- Schoolbook multiplication now 25 64-bit integer multiplications
- Easy to merge multiplication with reduction (multiplies by 19)
- Better performance on Westmere/Nehalem, worse on 65 nm Core 2 and AMD processors

Bug in the radix-64 reduction

```
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r13
adc %rdx,%r14
adc $0,%r14
mov %r9,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r14
adc %rdx,%r15
adc $0,%r15
mov %r10,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r15
adc %rdx,%rbx
adc $0,%rbx
mov %r11,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%rbx
mov $0,%rsi
adc %rdx,%rsi
```


Bug in the radix-64 reduction

```
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry
```


Bug in the radix-64 reduction

```
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r0 += mulrax
carry? r1 += mulrdx + carry
r1 += 0 + carry
mulrax = mulr5
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r1 += mulrax
carry? r2 += mulrdx + carry
r2 += 0 + carry
mulrax = mulr6
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r2 += mulrax
carry? r3 += mulrdx + carry
r3 += 0 + carry
mulrax = mulr7
(uint128) mulrdx mulrax = mulrax * *(uint64 *)&crypto_sign_ed25519_amd64_64_38
carry? r3 += mulrax
mulr4 = 0
mulr4 += mulrdx + carry
```

Full software package contains 8912 lines of qhasm code!

Directions to correct crypto

Testing

- Is cheap, catches many bugs
- Does not conflict with performance
- Provides very high confidence in correctness for some crypto algorithms
- Typically fails to catch very rarely triggered bugs

Directions to correct crypto

Audits

- Expensive (time and/or money)
- Conflicts with performance
- Standard approach to ensure correctness and quality of crypto software

Directions to correct crypto

Formal verification

- Strongest guarantees of correctness
- Probably conflicts with performance

Directions to correct crypto

Formal verification

- Strongest guarantees of correctness
- Probably conflicts with performance
- Should focus on cases where tests fail

Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
- Limbs a_{0}, \ldots, a_{n} compose a field element A
- Limbs b_{0}, \ldots, b_{n} compose a field element B
- Limbs r_{0}, \ldots, r_{n} compose a field element R
- $R=A \cdot B$

Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
- Limbs a_{0}, \ldots, a_{n} compose a field element A
- Limbs b_{0}, \ldots, b_{n} compose a field element B
- Limbs r_{0}, \ldots, r_{n} compose a field element R
- $R=A \cdot B$
- Annotated code gets fed to verification tool
- Verification ensures that operation on limbs corresponds to high-level arithmetic
- Audits look at high-level annotations

Verification: the vision

- C or assembly programmer adds high-level annotations
- More specifically, for example:
- Limbs a_{0}, \ldots, a_{n} compose a field element A
- Limbs b_{0}, \ldots, b_{n} compose a field element B
- Limbs r_{0}, \ldots, r_{n} compose a field element R
- $R=A \cdot B$
- Annotated code gets fed to verification tool
- Verification ensures that operation on limbs corresponds to high-level arithmetic
- Audits look at high-level annotations
- Even better: feed to even higher level verification
- Verify that the sequence of field operations accomplishes EC arithmetic

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in qhasm
- qhasm is a portable assembly language by Bernstein

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in qhasm
- qhasm is a portable assembly language by Bernstein
- Idea for verification:
- Annotate qhasm code
- Translate annotated qhasm automatically to SMT-solver boolector
- Use boolector to verify software

Verification approach I

Joint work with Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang.

- Nehalem Curve25519 software is written in qhasm
- qhasm is a portable assembly language by Bernstein
- Idea for verification:
- Annotate qhasm code
- Translate annotated qhasm automatically to SMT-solver boolector
- Use boolector to verify software
- Verification target: Montgomery ladder step of X25519:
- 5 multiplications in $\mathbb{F}_{\mathbf{2 0 5}^{255}}$
- 4 squarings in $\mathbb{F}_{\mathbf{2}^{255}-19}$
- 1 multiplication by 121666
- Several additions and subtractions
\#// assume $0<=\mathrm{u} x 0, \mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 3, \mathrm{x} 4<=\mathrm{u} 2 * * 51+2 * * 15$
\#// assume $0<=\mathrm{u} y 0, \mathrm{y} 1, \mathrm{y} 2, \mathrm{y} 3, \mathrm{y} 4<=\mathrm{u} 2 * * 51+2 * * 15$
r0 = x0
$\mathrm{r} 1=\mathrm{x} 1$
r2 = x2
r3 = x3
r4 = x4
r0 += y0
r1 += y1
r2 += y2
r3 += y3
r4 += y4
\#// var sum_x $=$ x0@u320 + x1@u320 * $2 * * 51+\mathrm{x} 2 @ u 320 * 2 * * 102$ \} +x 30 u 320 * $2 * * 153+\mathrm{x} 4 @ u 320$ * $2 * * 204$
\#// sum_y $=$ y0@u320 + y1@u320 * $2 * * 51+y 2 @ u 320 * 2 * * 102$ \} + y3@u320 * $2 * * 153+$ y4@u320 * $2 * * 204$
\#// sum_r = r0@u320 + r1@u320 * $2 * * 51+r 2 @ u 320 * 2 * * 102$ \} + r3@u320 * $2 * * 153+r 4 @ u 320 * 2 * * 204$
\#// assert (sum_r - (sum_x + sum_y)) \% ($2 * * 255-19$) = 0 \&\& \#// $0<=u r 0, r 1, r 2, r 3, ~ r 4<u ~ 2 * * 53$

How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the "limb size"
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annoations for an auditor to look at

How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the "limb size"
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annoations for an auditor to look at
- Huge amount of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs

How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the "limb size"
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annoations for an auditor to look at
- Huge amount of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs
- Overall:
- 217 lines of qhasm, including variable declarations
- 589 lines of annotations

How about multiplication?

- Again, express input field elements and output field elements
- Again, express bounds on the "limb size"
- Again, express algebraic relation of a modular multiplication
- Overall slightly more annoations for an auditor to look at
- Huge amount of intermediate annotations
- SMT solver cannot simply verify from inputs to outputs
- Overall:
- 217 lines of qhasm, including variable declarations
- 589 lines of annotations
- Large amount of manual work on top of assembly optimization
- Writing verifiable code requires expert knowledge from two domains!
- Verification of just multiplication takes >90 hours
- Formally verified Montgomery ladderstep
- "Redundant" radix- 2^{51} representation
- Non-redundant radix- 2^{64} representation
- Reproduced bug in original version of the software
- Most verification used automatic qhasm \rightarrow boolector translation
- Tiny bit of code in radix- 2^{64} needed proof assistant Coq

Verification approach II

- 2 problems with SMT approach:
- Huge amount of (manual) annotations
- Long verification time

Verification approach II

- 2 problems with SMT approach:
- Huge amount of (manual) annotations
- Long verification time
- Idea: automagically translate to input for computer-algebra system
- Accept failures to prove correctness

Verification approach II

- 2 problems with SMT approach:
- Huge amount of (manual) annotations
- Long verification time
- Idea: automagically translate to input for computer-algebra system
- Accept failures to prove correctness

Work in progress with Bernstein

- Annotate C code (later: also qhasm)
- (Currently) use C++ compiler and operator overloading to
- Keep track of computation graph
- Keep track of worst-case ranges of limbs
- Output polynomial relations to Sage
- Use Sage to verify correctness of C code

Example: addition (radix $2^{25.5}$)

```
crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];
verifier_bigint vf;
verifier_addlimbs_10_255(&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(&vg,g);
fe_add(h,f,g);
verifier_bigint vh;
verifier_addlimbs_10_255(&vh,h);
verifier_assertsum(&vh,&vf,&vg);
```

crypto_int32 f[10];
crypto_int32 g[10];
crypto_int32 h[10];
verifier_bigint vf;
verifier_addlimbs_10_255(\&vf,f);
verifier_bigint vg;
verifier_addlimbs_10_255(\&vg,g);
fe_mul(h,f,g);
verifier_bigint vh;
verifier_addlimbs_10_255(\&vh,h);
verifier_assertprodmod(\&vh,\&vf,\&vg, "2~255-19") ;

A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}

A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring

A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring
- Put a loop around it

A small demo

- Consider computation of $x^{2^{100}}$ in $\mathbb{F}_{2^{127}-1}$
- Input is little-endian byte array
- Convert to internal representation in radix 2^{26}
- Verify a single squaring
- Put a loop around it
- Still too slow for big chunks of code
- Problem: verification always goes back to the beginning
- Idea: Declare that we trust already verified results
- This is known as "cutting" the verification

Let's "cut some limbs"

Let's call it a draw

Back to $\times 25519$

```
fe_sub(tmp0,x3,z3);
    verifier_bigint D;
    verifier_limbs_10_255(&D,tmp0);
    verifier_assertdiff(&D,&X3,&Z3);
    verifier_cutlimbs(tmp0,10);
fe_sub(tmp1,x2,z2);
    verifier_bigint B;
    verifier_limbs_10_255(&B,tmp1);
    verifier_assertdiff(&B,&X2,&Z2);
    verifier_cutlimbs(tmp1,10);
fe_add(x2,x2,z2);
    verifier_bigint A;
    verifier_limbs_10_255(&A,x2);
    verifier_assertsum(&A,&X2,&Z2);
    verifier_cutlimbs(x2,10);
```


Beyond the ladder step

- Input conversion from byte array (see $\mathbb{F}_{2^{127}-1}$ example)

Beyond the ladder step

- Input conversion from byte array (see $\mathbb{F}_{2^{127}-1}$ example)
- "Clamping" of scalar: currently not covered

Beyond the ladder step

- Input conversion from byte array (see $\mathbb{F}_{2^{127}-1}$ example)
- "Clamping" of scalar: currently not covered
- Final inversion: exponentiation by $p-2$

Beyond the ladder step

- Input conversion from byte array (see $\mathbb{F}_{2^{127}-1}$ example)
- "Clamping" of scalar: currently not covered
- Final inversion: exponentiation by $p-2$
- "Freezing" of elements:
- Carry to produce result in $\left\{0, \ldots, 2^{255}-1\right\}$
- Conditionally subtract p
- Use fork to verify both cases
\# feed through: ./unroll x1 n
$\mathrm{p}=2 * * 255-19$
$\mathrm{A}=486662$
$\mathrm{x} 2, \mathrm{z} 2, \mathrm{x} 3, \mathrm{z} 3=1,0, \mathrm{x} 1,1$
for i in reversed(range(255)):
ni $=$ bit (n,i)
$\mathrm{x} 2, \mathrm{x} 3=\operatorname{cswap}(\mathrm{x} 2, \mathrm{x} 3, \mathrm{ni})$
$\mathrm{z} 2, \mathrm{z} 3=\operatorname{cswap}(\mathrm{z} 2, \mathrm{z} 3, \mathrm{ni})$
$\mathrm{x} 3, \mathrm{z} 3=(4 *(\mathrm{x} 2 * \mathrm{x} 3-\mathrm{z} 2 * \mathrm{z} 3) * * 2,4 * \mathrm{x} 1 *(\mathrm{x} 2 * \mathrm{z} 3-\mathrm{z} 2 * \mathrm{x} 3) * * 2)$
$\mathrm{x} 2, \mathrm{z} 2=((\mathrm{x} 2 * * 2-\mathrm{z} 2 * * 2) * * 2,4 * \mathrm{x} 2 * \mathrm{z} 2 *(\mathrm{x} 2 * * 2+\mathrm{A} * \mathrm{x} 2 * \mathrm{z} 2+\mathrm{z} 2 * * 2))$
$\mathrm{x} 3, \mathrm{z} 3=(\mathrm{x} 3 \% \mathrm{p}, \mathrm{z} 3 \% \mathrm{p})$
$\mathrm{x} 2, \mathrm{z} 2=(\mathrm{x} 2 \% \mathrm{p}, \mathrm{z} 2 \% \mathrm{p})$
cut (x2)
cut (x3)
cut (z2)
cut (z3)
$\mathrm{x} 2, \mathrm{x} 3=\operatorname{cswap}(\mathrm{x} 2, \mathrm{x} 3, \mathrm{ni})$
$\mathrm{z} 2, \mathrm{z} 3=\operatorname{cswap}(\mathrm{z} 2, \mathrm{z} 3, \mathrm{ni})$
cut (x2)
cut (z2)
return $x 2$ *pow ($\mathrm{z} 2, \mathrm{p}-2, \mathrm{p}$)

Results

- Verification of modular multiplication in a few seconds
- Verification of full X25519 Montgomery ladder in $\approx 1: 10$ minutes
- Verification against high-level code

Results

- Verification of modular multiplication in a few seconds
- Verification of full X25519 Montgomery ladder in $\approx 1: 10$ minutes
- Verification against high-level code

TODOs

- Support assembly/qhasm
- Get rid of C++ compiler
- Support "non-redundant" arithmetic
- Support window methods
- Test, test, test
- Yu-Fang Chen, Chang-Hong Hsu, Hsin-Hung Lin, Peter Schwabe, Ming-Hsien Tsai, Bow-Yaw Wang, Bo-Yin Yang, and Shang-Yi Yang. Verifying Curve25519 Software. https://cryptojedi.org/papers/\#verify25519
- Many X25519 implementations in SUPERCOP (crypto_scalarmult/curve25519) https://bench.cr.yp.to/supercop.html
- Verification using boolector: https://cryptojedi.org/crypto/\#verify25519
- Verification with gfverif: https://cryptojedi.org/crypto/\#gfverif

