
The NIST post-quantum project

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org

September 4, 2019

mailto:peter@cryptojedi.org
https://cryptojedi.org


Crypto today
5 building blocks for a “secure channel”
Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)
• Authenticator (e.g., HMAC, GMAC, Poly1305)
• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture
• All widely deployed asymmetric crypto relies on

• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms

1



Crypto today
5 building blocks for a “secure channel”
Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)
• Authenticator (e.g., HMAC, GMAC, Poly1305)
• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture
• All widely deployed asymmetric crypto relies on

• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms

1



Crypto today
5 building blocks for a “secure channel”
Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)
• Authenticator (e.g., HMAC, GMAC, Poly1305)
• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture
• All widely deployed asymmetric crypto relies on

• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms

1



. . . Shor, 1996

2



Will there be quantum computers?

“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m
thinking like it’s 15 or a little more. It’s within reach. It’s within our
lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers

3



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)
• Code-based crypto (mainly PKE)
• Multivariate-based crypto (mainly Sigs)
• Hash-based signatures (only Sigs)
• Isogeny-based crypto (so far, mainly PKE)

4



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions
• Lattice-based crypto (PKE and Sigs)
• Code-based crypto (mainly PKE)
• Multivariate-based crypto (mainly Sigs)
• Hash-based signatures (only Sigs)
• Isogeny-based crypto (so far, mainly PKE)

4



The NIST PQC “not-a-competition”
• Inspired by two earlier NIST crypto competitions:

• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST
• Widely successful in the past, but also some criticism:

• Small tweaks are typically allowed, but standardized scheme
represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities
• SHA-3 criterion of 512-bit preimage security unnecessary

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”
• Inspired by two earlier NIST crypto competitions:

• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST

• Widely successful in the past, but also some criticism:
• Small tweaks are typically allowed, but standardized scheme

represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities
• SHA-3 criterion of 512-bit preimage security unnecessary

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”
• Inspired by two earlier NIST crypto competitions:

• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST
• Widely successful in the past, but also some criticism:

• Small tweaks are typically allowed, but standardized scheme
represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities
• SHA-3 criterion of 512-bit preimage security unnecessary

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”
• Inspired by two earlier NIST crypto competitions:

• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST
• Widely successful in the past, but also some criticism:

• Small tweaks are typically allowed, but standardized scheme
represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities

• SHA-3 criterion of 512-bit preimage security unnecessary
• PQC project:

• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”
• Inspired by two earlier NIST crypto competitions:

• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST
• Widely successful in the past, but also some criticism:

• Small tweaks are typically allowed, but standardized scheme
represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities
• SHA-3 criterion of 512-bit preimage security unnecessary

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition”
• Inspired by two earlier NIST crypto competitions:

• AES, running from 1997 to 2000
• SHA3, running from 2007 to 2012

• Approach: NIST specifies criteria, everybody is welcome to submit
proposals

• Selection through an open process and multiple rounds
• Actual decisions are being made by NIST
• Widely successful in the past, but also some criticism:

• Small tweaks are typically allowed, but standardized scheme
represents state of the art at the beginning of the competition

• AES standardization unaware of cache-timing vulnerabilities
• SHA-3 criterion of 512-bit preimage security unnecessary

• PQC project:
• Announcement: Feb 2016
• Call for proposals: Dec 2016 (based on community input)
• Deadline for submissions: Nov 2017

5



The NIST PQC “not-a-competition” ctd.

Submission categories
• Cryptographic signatures (only stateless)

• Security for at least 264 signatures per key
• Public-key encryption / key encapsulation

• Passive or active security (CPA or CCA2)

Security categories
• Level 1: Equivalent to AES-128 (pre- and post-quantum)
• Level 2: Equivalent to SHA-256 (pre- and post-quantum)
• Level 3: Equivalent to AES-192 (pre- and post-quantum)
• Level 4: Equivalent to SHA-512 (pre- and post-quantum)
• Level 5: Equivalent to AES-256 (pre- and post-quantum)

6



The NIST PQC “not-a-competition” ctd.

Submission categories
• Cryptographic signatures (only stateless)

• Security for at least 264 signatures per key
• Public-key encryption / key encapsulation

• Passive or active security (CPA or CCA2)

Security categories
• Level 1: Equivalent to AES-128 (pre- and post-quantum)
• Level 2: Equivalent to SHA-256 (pre- and post-quantum)
• Level 3: Equivalent to AES-192 (pre- and post-quantum)
• Level 4: Equivalent to SHA-512 (pre- and post-quantum)
• Level 5: Equivalent to AES-256 (pre- and post-quantum)

6



The NIST competition, initial overview

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

7



The NIST competition (ctd.)

“Key exchange”
• What is meant is key encapsulation mechanisms (KEMs)

• (vk, sk)←KeyGen()
• (c, k)←Encaps(vk)
• k←Decaps(c, sk)

Status of the NIST competition
• In total 69 submissions accepted as “complete and proper”
• Several broken, 5 withdrawn
• Jan 2019: NIST announces 26 round-2 candidates

• 17 KEMs and PKEs
• 9 signature schemes

8



The NIST competition (ctd.)

“Key exchange”
• What is meant is key encapsulation mechanisms (KEMs)

• (vk, sk)←KeyGen()
• (c, k)←Encaps(vk)
• k←Decaps(c, sk)

Status of the NIST competition
• In total 69 submissions accepted as “complete and proper”
• Several broken, 5 withdrawn
• Jan 2019: NIST announces 26 round-2 candidates

• 17 KEMs and PKEs
• 9 signature schemes

8



NIST finalists as drop-in replacements?

• Can wait until NIST standardizes some algorithms in ≈ 5 years
• Plug these algorithms into existing protocols and systems
• My impression: that’s what many systems designers expect

• Message of this talk: this is a terrible idea!
• Would generate a generation of rather poor protocols

• mediocre performance (designed pre-quantum, instantiated
post-quantum)

• Suboptimal security properties

• Bad crypto is very hard to get rid of (think MD5)
• We probably have one shot to get this done properly

• Systems will have to transition to PQ crypto
• Let’s work on getting the best out of this transition!
• Requires interaction between cryptographers and systems designers

9



NIST finalists as drop-in replacements?

• Can wait until NIST standardizes some algorithms in ≈ 5 years
• Plug these algorithms into existing protocols and systems
• My impression: that’s what many systems designers expect
• Message of this talk: this is a terrible idea!
• Would generate a generation of rather poor protocols

• mediocre performance (designed pre-quantum, instantiated
post-quantum)

• Suboptimal security properties

• Bad crypto is very hard to get rid of (think MD5)
• We probably have one shot to get this done properly

• Systems will have to transition to PQ crypto
• Let’s work on getting the best out of this transition!
• Requires interaction between cryptographers and systems designers

9



NIST finalists as drop-in replacements?

• Can wait until NIST standardizes some algorithms in ≈ 5 years
• Plug these algorithms into existing protocols and systems
• My impression: that’s what many systems designers expect
• Message of this talk: this is a terrible idea!
• Would generate a generation of rather poor protocols

• mediocre performance (designed pre-quantum, instantiated
post-quantum)

• Suboptimal security properties

• Bad crypto is very hard to get rid of (think MD5)
• We probably have one shot to get this done properly

• Systems will have to transition to PQ crypto
• Let’s work on getting the best out of this transition!
• Requires interaction between cryptographers and systems designers

9



The starting point: ECC

• Today: build asymmetric crypto from elliptic-curve arithmetic
• Given P on a curve, s ∈ Z, compute Q = sP
• ECDLP: hard to compute s, given P and Q

• Use for ECDH for key encapsulation and encryption
• Use for ECDSA or Schnorr signatures
• Use same curves, same parameters
• Performance:

• All operations between 50 000 and 200 000 cycles
• Keys and ciphertexts: 32 bytes
• Signatures: 64 bytes

• Let’s look at post-quantum candidates (at NIST security level 3)

10



The starting point: ECC

• Today: build asymmetric crypto from elliptic-curve arithmetic
• Given P on a curve, s ∈ Z, compute Q = sP
• ECDLP: hard to compute s, given P and Q
• Use for ECDH for key encapsulation and encryption
• Use for ECDSA or Schnorr signatures
• Use same curves, same parameters

• Performance:
• All operations between 50 000 and 200 000 cycles
• Keys and ciphertexts: 32 bytes
• Signatures: 64 bytes

• Let’s look at post-quantum candidates (at NIST security level 3)

10



The starting point: ECC

• Today: build asymmetric crypto from elliptic-curve arithmetic
• Given P on a curve, s ∈ Z, compute Q = sP
• ECDLP: hard to compute s, given P and Q
• Use for ECDH for key encapsulation and encryption
• Use for ECDSA or Schnorr signatures
• Use same curves, same parameters
• Performance:

• All operations between 50 000 and 200 000 cycles
• Keys and ciphertexts: 32 bytes
• Signatures: 64 bytes

• Let’s look at post-quantum candidates (at NIST security level 3)

10



The starting point: ECC

• Today: build asymmetric crypto from elliptic-curve arithmetic
• Given P on a curve, s ∈ Z, compute Q = sP
• ECDLP: hard to compute s, given P and Q
• Use for ECDH for key encapsulation and encryption
• Use for ECDSA or Schnorr signatures
• Use same curves, same parameters
• Performance:

• All operations between 50 000 and 200 000 cycles
• Keys and ciphertexts: 32 bytes
• Signatures: 64 bytes

• Let’s look at post-quantum candidates (at NIST security level 3)

10



PQ-Signatures, part 1: MQ-based

• Find solution to system of m quadratic eqns in n variables over Fq

• Additional assumption: attacker cannot exploit structure
• No reduction from MQ

• Example: NIST candidate GeMSS (others: Rainbow, LUOV)
• Signing: ≈ 2.7 billion cycles
• Verification: ≈ 580 000 cycles
• Signature: ≈ 50 bytes
• Public key: ≈ 1.2 MB

• Can also construct signatures with reduction from MQ
• Example: NIST candidate MQDSS

• Signing ≈ 15 Mio cycles
• Verification ≈ 10 Mio cycles
• Signature: ≈ 60 KB
• Public key: 64 bytes

11



PQ-Signatures, part 1: MQ-based

• Find solution to system of m quadratic eqns in n variables over Fq

• Additional assumption: attacker cannot exploit structure
• No reduction from MQ
• Example: NIST candidate GeMSS (others: Rainbow, LUOV)

• Signing: ≈ 2.7 billion cycles
• Verification: ≈ 580 000 cycles
• Signature: ≈ 50 bytes
• Public key: ≈ 1.2 MB

• Can also construct signatures with reduction from MQ
• Example: NIST candidate MQDSS

• Signing ≈ 15 Mio cycles
• Verification ≈ 10 Mio cycles
• Signature: ≈ 60 KB
• Public key: 64 bytes

11



PQ-Signatures, part 1: MQ-based

• Find solution to system of m quadratic eqns in n variables over Fq

• Additional assumption: attacker cannot exploit structure
• No reduction from MQ
• Example: NIST candidate GeMSS (others: Rainbow, LUOV)

• Signing: ≈ 2.7 billion cycles
• Verification: ≈ 580 000 cycles
• Signature: ≈ 50 bytes
• Public key: ≈ 1.2 MB

• Can also construct signatures with reduction from MQ
• Example: NIST candidate MQDSS

• Signing ≈ 15 Mio cycles
• Verification ≈ 10 Mio cycles
• Signature: ≈ 60 KB
• Public key: 64 bytes

11



PQ-Signatures, part 2: lattice-based

• Based on, e.g., LWE (see later) and SIS

• All NIST candidates use structured lattices (again, see later)
• Example: Dilithium (others: qTESLA, FALCON)

• Signing: ≈ 500 000 cycles
• Verification: ≈ 170 000 cycles
• Public key: ≈ 1.5 KB
• Signature: ≈ 2.7 KB

12



PQ-Signatures, part 2: lattice-based

• Based on, e.g., LWE (see later) and SIS
• All NIST candidates use structured lattices (again, see later)
• Example: Dilithium (others: qTESLA, FALCON)

• Signing: ≈ 500 000 cycles
• Verification: ≈ 170 000 cycles
• Public key: ≈ 1.5 KB
• Signature: ≈ 2.7 KB

12



PQ-Signatures, part 3: symmetric-crypto-based

• NIST round-2 candidates: SPHINCS+ and Picnic

• Two hash-based signatures in NIST PQC round 2:
• SPHINCS+: state-of-the art conservative hash-based
• Picnic: Fiat-Shamir on top of symmetric ID scheme

• Hash-based sigs: many tradeoffs possible between
• Speed (signing is generally slow)
• Security (trivially via hash sizes)
• Size (roughly 10-50 KB)
• Maxium number of signatures per key

• Example: SPHINCS+-SHA256-192f-robust
• Signing: ≈ 66 Mio cycles
• Verification: ≈ 9.6 Mio cycles
• Signature: ≈ 35.5 KB
• Public key: 48 bytes
• Up to 264 signatures

13



PQ-Signatures, part 3: symmetric-crypto-based

• NIST round-2 candidates: SPHINCS+ and Picnic
• Two hash-based signatures in NIST PQC round 2:

• SPHINCS+: state-of-the art conservative hash-based
• Picnic: Fiat-Shamir on top of symmetric ID scheme

• Hash-based sigs: many tradeoffs possible between
• Speed (signing is generally slow)
• Security (trivially via hash sizes)
• Size (roughly 10-50 KB)
• Maxium number of signatures per key

• Example: SPHINCS+-SHA256-192f-robust
• Signing: ≈ 66 Mio cycles
• Verification: ≈ 9.6 Mio cycles
• Signature: ≈ 35.5 KB
• Public key: 48 bytes
• Up to 264 signatures

13



PQ-Signatures, part 3: symmetric-crypto-based

• NIST round-2 candidates: SPHINCS+ and Picnic
• Two hash-based signatures in NIST PQC round 2:

• SPHINCS+: state-of-the art conservative hash-based
• Picnic: Fiat-Shamir on top of symmetric ID scheme

• Hash-based sigs: many tradeoffs possible between
• Speed (signing is generally slow)
• Security (trivially via hash sizes)
• Size (roughly 10-50 KB)
• Maxium number of signatures per key

• Example: SPHINCS+-SHA256-192f-robust
• Signing: ≈ 66 Mio cycles
• Verification: ≈ 9.6 Mio cycles
• Signature: ≈ 35.5 KB
• Public key: 48 bytes
• Up to 264 signatures

13



PQ-Signatures, part 3: symmetric-crypto-based

• NIST round-2 candidates: SPHINCS+ and Picnic
• Two hash-based signatures in NIST PQC round 2:

• SPHINCS+: state-of-the art conservative hash-based
• Picnic: Fiat-Shamir on top of symmetric ID scheme

• Hash-based sigs: many tradeoffs possible between
• Speed (signing is generally slow)
• Security (trivially via hash sizes)
• Size (roughly 10-50 KB)
• Maxium number of signatures per key

• Example: SPHINCS+-SHA256-192f-robust
• Signing: ≈ 66 Mio cycles
• Verification: ≈ 9.6 Mio cycles
• Signature: ≈ 35.5 KB
• Public key: 48 bytes
• Up to 264 signatures

13



PQ-KEMs, part 1: code-based

• Idea: Take error-correcting code for up to t errors
• Keep decoding algorithm secret
• Encryption: map message to code word, add t errors
• Most prominent example: McEliece (1978), uses binary Goppa codes

• “Classic McEliece” KEM NIST submission (other: NTS-KEM)
• Encapsulation: ≈ 90 000 cycles
• Decapsulation: ≈ 270 000 cycles
• Key generation: ≈ 300 Mio cycles
• Cipher text: 188 bytes
• Public key: ≈ 0.5 MB

• Probably good choice for, e.g., GPG, but not for low-latency
applications

• Possible solution: use structured codes
(NIST candidates: BIKE, LEDAcrypt, HQC, ROLLO, RQC)

• Less studied, less conservative, often problems with CCA security

14



PQ-KEMs, part 1: code-based

• Idea: Take error-correcting code for up to t errors
• Keep decoding algorithm secret
• Encryption: map message to code word, add t errors
• Most prominent example: McEliece (1978), uses binary Goppa codes
• “Classic McEliece” KEM NIST submission (other: NTS-KEM)

• Encapsulation: ≈ 90 000 cycles
• Decapsulation: ≈ 270 000 cycles
• Key generation: ≈ 300 Mio cycles
• Cipher text: 188 bytes
• Public key: ≈ 0.5 MB

• Probably good choice for, e.g., GPG, but not for low-latency
applications

• Possible solution: use structured codes
(NIST candidates: BIKE, LEDAcrypt, HQC, ROLLO, RQC)

• Less studied, less conservative, often problems with CCA security

14



PQ-KEMs, part 1: code-based

• Idea: Take error-correcting code for up to t errors
• Keep decoding algorithm secret
• Encryption: map message to code word, add t errors
• Most prominent example: McEliece (1978), uses binary Goppa codes
• “Classic McEliece” KEM NIST submission (other: NTS-KEM)

• Encapsulation: ≈ 90 000 cycles
• Decapsulation: ≈ 270 000 cycles
• Key generation: ≈ 300 Mio cycles
• Cipher text: 188 bytes
• Public key: ≈ 0.5 MB

• Probably good choice for, e.g., GPG, but not for low-latency
applications

• Possible solution: use structured codes
(NIST candidates: BIKE, LEDAcrypt, HQC, ROLLO, RQC)

• Less studied, less conservative, often problems with CCA security

14



PQ-KEMs, part 3: SIKE

• Started as “supersingular-isogeny Diffie-Hellman” (SIDH), Jao, De
Feo, 2011

• Given two elliptic curves E, E′ from the same isogeny class
• Find path of small isogenies from E to E′

• Security related to claw finding, but no reduction from claw finding

• Rather young construction, more study needed
• Active attacks in 2016 by Galbraith, Petit, Shani, and Ti
• Secure SIDH (or SIKE) is not “analogous to the Diffie-Hellman key

exchange”
• SIKE performance:

• Keygen: ≈ 2.6 Mio cycles
• Encaps: ≈ 3.8 Mio cycles
• Decaps: ≈ 4.5 Mio cycles
• Public key/ciphertext: < 500 bytes each

• Even more compact (and slower) with compression

15



PQ-KEMs, part 3: SIKE

• Started as “supersingular-isogeny Diffie-Hellman” (SIDH), Jao, De
Feo, 2011

• Given two elliptic curves E, E′ from the same isogeny class
• Find path of small isogenies from E to E′

• Security related to claw finding, but no reduction from claw finding
• Rather young construction, more study needed
• Active attacks in 2016 by Galbraith, Petit, Shani, and Ti
• Secure SIDH (or SIKE) is not “analogous to the Diffie-Hellman key

exchange”

• SIKE performance:
• Keygen: ≈ 2.6 Mio cycles
• Encaps: ≈ 3.8 Mio cycles
• Decaps: ≈ 4.5 Mio cycles
• Public key/ciphertext: < 500 bytes each

• Even more compact (and slower) with compression

15



PQ-KEMs, part 3: SIKE

• Started as “supersingular-isogeny Diffie-Hellman” (SIDH), Jao, De
Feo, 2011

• Given two elliptic curves E, E′ from the same isogeny class
• Find path of small isogenies from E to E′

• Security related to claw finding, but no reduction from claw finding
• Rather young construction, more study needed
• Active attacks in 2016 by Galbraith, Petit, Shani, and Ti
• Secure SIDH (or SIKE) is not “analogous to the Diffie-Hellman key

exchange”
• SIKE performance:

• Keygen: ≈ 2.6 Mio cycles
• Encaps: ≈ 3.8 Mio cycles
• Decaps: ≈ 4.5 Mio cycles
• Public key/ciphertext: < 500 bytes each

• Even more compact (and slower) with compression

15



PQ-KEMs, part 3: SIKE

• Started as “supersingular-isogeny Diffie-Hellman” (SIDH), Jao, De
Feo, 2011

• Given two elliptic curves E, E′ from the same isogeny class
• Find path of small isogenies from E to E′

• Security related to claw finding, but no reduction from claw finding
• Rather young construction, more study needed
• Active attacks in 2016 by Galbraith, Petit, Shani, and Ti
• Secure SIDH (or SIKE) is not “analogous to the Diffie-Hellman key

exchange”
• SIKE performance:

• Keygen: ≈ 2.6 Mio cycles
• Encaps: ≈ 3.8 Mio cycles
• Decaps: ≈ 4.5 Mio cycles
• Public key/ciphertext: < 500 bytes each
• Even more compact (and slower) with compression

15



Lattice-based KEMs

• 9 out of 19 NIST round-2 KEMs are (sort of) lattice based:
• CRYSTALS-Kyber (short: Kyber)
• FrodoKEM
• LAC
• NewHope
• NTRU
• NTRU Prime
• Round5
• Saber
• Threebears

• I’m involved in CRYSTALS-Kyber, NewHope, and NTRU
• Two main reasons for the large number:

• Large design space with many tradeoffs
• Popularity before the NIST project (in particular through NewHope)

16



“We’re indebted to Erdem Alkim, Léo Ducas, Thomas Pöppelmann and
Peter Schwabe, the researchers who developed “New Hope”, the
post-quantum algorithm that we selected for this experiment.”

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

17

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html


“Key Agreement using the ‘NewHope’ lattice-based algorithm detailed in
the New Hope paper, and LUKE (Lattice-based Unique Key Exchange),
an ISARA speed-optimized version of the NewHope algorithm.”

https://www.isara.com/isara-radiate/

17

https://www.isara.com/isara-radiate/


“The deployed algorithm is a variant of “New Hope”, a
quantum-resistant cryptosystem”

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html

17

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html


Learning with errors (LWE)

• Given uniform A ∈ Zk×ℓ
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ

• Search version: find s
• Decision version: distinguish from uniform random

18



Learning with errors (LWE)

• Given uniform A ∈ Zk×ℓ
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ

• Search version: find s
• Decision version: distinguish from uniform random

18



Learning with rounding (LWR)

• Given uniform A ∈ Zk×ℓ
q

• Given samples ⌈As⌋p, with p < q

• Search version: find s
• Decision version: distinguish from uniform random

19



Learning with rounding (LWR)

• Given uniform A ∈ Zk×ℓ
q

• Given samples ⌈As⌋p, with p < q
• Search version: find s
• Decision version: distinguish from uniform random

19



Using structured lattices

• Problem with LWE-based cryptosystems: public-key size
• Idea to solve this: allow structured matrix A, e.g.,

• NewHope: work in Rq = Zq[X]/(Xn + 1); n a power of 2, q prime
• NTRU: work in Rq = Zq[X]/(Xn − 1); n prime, q a power of 2
• NTRU Prime: work in Rq = Zq[X]/(Xn − X− 1); q prime, n prime
• Kyber/Saber: use small-dimension matrices and vectors over
Rq = Zq[X]/(X256 + 1)

• Perform arithmetic on (vectors of) polynomials instead of
vectors/matrices over Zq

20



Using structured lattices

• Problem with LWE-based cryptosystems: public-key size
• Idea to solve this: allow structured matrix A, e.g.,

• NewHope: work in Rq = Zq[X]/(Xn + 1); n a power of 2, q prime

• NTRU: work in Rq = Zq[X]/(Xn − 1); n prime, q a power of 2
• NTRU Prime: work in Rq = Zq[X]/(Xn − X− 1); q prime, n prime
• Kyber/Saber: use small-dimension matrices and vectors over
Rq = Zq[X]/(X256 + 1)

• Perform arithmetic on (vectors of) polynomials instead of
vectors/matrices over Zq

20



Using structured lattices

• Problem with LWE-based cryptosystems: public-key size
• Idea to solve this: allow structured matrix A, e.g.,

• NewHope: work in Rq = Zq[X]/(Xn + 1); n a power of 2, q prime
• NTRU: work in Rq = Zq[X]/(Xn − 1); n prime, q a power of 2

• NTRU Prime: work in Rq = Zq[X]/(Xn − X− 1); q prime, n prime
• Kyber/Saber: use small-dimension matrices and vectors over
Rq = Zq[X]/(X256 + 1)

• Perform arithmetic on (vectors of) polynomials instead of
vectors/matrices over Zq

20



Using structured lattices

• Problem with LWE-based cryptosystems: public-key size
• Idea to solve this: allow structured matrix A, e.g.,

• NewHope: work in Rq = Zq[X]/(Xn + 1); n a power of 2, q prime
• NTRU: work in Rq = Zq[X]/(Xn − 1); n prime, q a power of 2
• NTRU Prime: work in Rq = Zq[X]/(Xn − X− 1); q prime, n prime

• Kyber/Saber: use small-dimension matrices and vectors over
Rq = Zq[X]/(X256 + 1)

• Perform arithmetic on (vectors of) polynomials instead of
vectors/matrices over Zq

20



Using structured lattices

• Problem with LWE-based cryptosystems: public-key size
• Idea to solve this: allow structured matrix A, e.g.,

• NewHope: work in Rq = Zq[X]/(Xn + 1); n a power of 2, q prime
• NTRU: work in Rq = Zq[X]/(Xn − 1); n prime, q a power of 2
• NTRU Prime: work in Rq = Zq[X]/(Xn − X− 1); q prime, n prime
• Kyber/Saber: use small-dimension matrices and vectors over
Rq = Zq[X]/(X256 + 1)

• Perform arithmetic on (vectors of) polynomials instead of
vectors/matrices over Zq

20



Using structured lattices

• Problem with LWE-based cryptosystems: public-key size
• Idea to solve this: allow structured matrix A, e.g.,

• NewHope: work in Rq = Zq[X]/(Xn + 1); n a power of 2, q prime
• NTRU: work in Rq = Zq[X]/(Xn − 1); n prime, q a power of 2
• NTRU Prime: work in Rq = Zq[X]/(Xn − X− 1); q prime, n prime
• Kyber/Saber: use small-dimension matrices and vectors over
Rq = Zq[X]/(X256 + 1)

• Perform arithmetic on (vectors of) polynomials instead of
vectors/matrices over Zq

20



How to build a KEM?

Alice (server) Bob (client)
s, e $← χ s′, e′ $← χ

b←as + e b−−−−→ u←as′ + e′

u←−−−−

Alice has v = us = ass′ + e′s
Bob has v′ = bs′ = ass′ + es′

• Secret and noise polynomials s, s′, e, e′ are small
• v and v′ are approximately the same

21



How to build a KEM, part 2

Alice Bob

seed $← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e $← χ s′, e′

, e′′

$← χ

b←as + e (b

,seed

)−−−−→

a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′

k $← {0, 1}n

k←Encode(k)

v′←us (u

,c

)←−−−

c←v + k
k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

22



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(SHAKE-128(seed))
s, e $← χ s′, e′

, e′′

$← χ

b←as + e (b,seed)−−−−→ a←Parse(SHAKE-128(seed))
u←as′ + e′

v←bs′

k $← {0, 1}n

k←Encode(k)

v′←us (u

,c

)←−−−

c←v + k
k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

22



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(SHAKE-128(seed))
s, e $← χ s′, e′

, e′′

$← χ

b←as + e (b,seed)−−−−→ a←Parse(SHAKE-128(seed))
u←as′ + e′

v←bs′

k $← {0, 1}n

k←Encode(k)
v′←us (u,c)←−−− c←v + k

k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

22



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(SHAKE-128(seed))
s, e $← χ s′, e′, e′′ $← χ

b←as + e (b,seed)−−−−→ a←Parse(SHAKE-128(seed))
u←as′ + e′

v←bs′ + e′′

k $← {0, 1}n

k←Encode(k)
v′←us (u,c)←−−− c←v + k

k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

22



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(SHAKE-128(seed))
s, e $← χ s′, e′, e′′ $← χ

b←as + e (b,seed)−−−−→ a←Parse(SHAKE-128(seed))
u←as′ + e′

v←bs′ + e′′

k $← {0, 1}n

k←Encode(k)
v′←us (u,c)←−−− c←v + k
k′←c− v′

µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

22



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(SHAKE-128(seed))
s, e $← χ s′, e′, e′′ $← χ

b←as + e (b,seed)−−−−→ a←Parse(SHAKE-128(seed))
u←as′ + e′

v←bs′ + e′′

k $← {0, 1}n

k←Encode(k)
v′←us (u,c)←−−− c←v + k
k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

22



How to build a KEM, part 2

Alice Bob
seed $← {0, 1}256

a←Parse(SHAKE-128(seed))
s, e $← χ s′, e′, e′′ $← χ

b←as + e (b,seed)−−−−→ a←Parse(SHAKE-128(seed))
u←as′ + e′

v←bs′ + e′′

k $← {0, 1}n

k←Encode(k)
v′←us (u,c)←−−− c←v + k
k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEX (except for generation of a)

22



From passive to CCA security

• The base scheme does not have active security
• Attacker can choose arbitrary noise, learns s from failures

• Fujisaki-Okamoto transform (sketched):

Alice (Server) Bob (Client)
Gen(): Enc(seed, b):
pk, sk←KeyGen() x←{0, . . . , 255}32

seed, b←pk seed,b→ x←SHA3-256(x)
k, coins←SHA3-512(x)

u,v← u, v←Encrypt((seed, b), x, coins)
Dec(s, (u, v)):
x′← Decrypt(s, (u, v))
k′, coins′←SHA3-512(x′)
u′, v′←Encrypt((seed, b), x′, coins′)
verify if (u′, v′) = (u, v)

23



From passive to CCA security

• The base scheme does not have active security
• Attacker can choose arbitrary noise, learns s from failures
• Fujisaki-Okamoto transform (sketched):

Alice (Server) Bob (Client)
Gen(): Enc(seed, b):
pk, sk←KeyGen() x←{0, . . . , 255}32

seed, b←pk seed,b→ x←SHA3-256(x)
k, coins←SHA3-512(x)

u,v← u, v←Encrypt((seed, b), x, coins)
Dec(s, (u, v)):
x′← Decrypt(s, (u, v))
k′, coins′←SHA3-512(x′)
u′, v′←Encrypt((seed, b), x′, coins′)
verify if (u′, v′) = (u, v)

23



Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3

• Keygen:
• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m
• Decrypt:

• Compute v = f · e

= f · (r · h + m) = f(r · (pfqg) + m) = prg + f ·m
• Compute m = v · fp mod p

• Advantages/Disadvantages compared to LPR:
• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption

24



Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3
• Keygen:

• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m
• Decrypt:

• Compute v = f · e

= f · (r · h + m) = f(r · (pfqg) + m) = prg + f ·m
• Compute m = v · fp mod p

• Advantages/Disadvantages compared to LPR:
• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption

24



Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3
• Keygen:

• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m

• Decrypt:
• Compute v = f · e

= f · (r · h + m) = f(r · (pfqg) + m) = prg + f ·m
• Compute m = v · fp mod p

• Advantages/Disadvantages compared to LPR:
• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption

24



Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3
• Keygen:

• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m
• Decrypt:

• Compute v = f · e

= f · (r · h + m) = f(r · (pfqg) + m) = prg + f ·m
• Compute m = v · fp mod p

• Advantages/Disadvantages compared to LPR:
• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption

24



Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3
• Keygen:

• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m
• Decrypt:

• Compute v = f · e = f · (r · h + m)

= f(r · (pfqg) + m) = prg + f ·m
• Compute m = v · fp mod p

• Advantages/Disadvantages compared to LPR:
• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption

24



Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3
• Keygen:

• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m
• Decrypt:

• Compute v = f · e = f · (r · h + m) = f(r · (pfqg) + m)

= prg + f ·m
• Compute m = v · fp mod p

• Advantages/Disadvantages compared to LPR:
• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption

24



Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3
• Keygen:

• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m
• Decrypt:

• Compute v = f · e = f · (r · h + m) = f(r · (pfqg) + m) = prg + f ·m

• Compute m = v · fp mod p
• Advantages/Disadvantages compared to LPR:

• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption

24



Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3
• Keygen:

• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m
• Decrypt:

• Compute v = f · e = f · (r · h + m) = f(r · (pfqg) + m) = prg + f ·m
• Compute m = v · fp mod p

• Advantages/Disadvantages compared to LPR:
• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption

24



Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3
• Keygen:

• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m
• Decrypt:

• Compute v = f · e = f · (r · h + m) = f(r · (pfqg) + m) = prg + f ·m
• Compute m = v · fp mod p

• Advantages/Disadvantages compared to LPR:
• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption

24



Design space 1: What ring?
• Structured lattice-based schemes use ring Rq = Zq[X]/f

• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n + 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of

polynomials
• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in their Rq

• NewHope and Kyber have fastest (NTT-based) arithmetic

25



Design space 1: What ring?
• Structured lattice-based schemes use ring Rq = Zq[X]/f

• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)

• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n + 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of

polynomials
• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in their Rq

• NewHope and Kyber have fastest (NTT-based) arithmetic

25



Design space 1: What ring?
• Structured lattice-based schemes use ring Rq = Zq[X]/f

• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)

• Third option: q = 2k, f = Φn+1, n + 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of

polynomials
• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in their Rq

• NewHope and Kyber have fastest (NTT-based) arithmetic

25



Design space 1: What ring?
• Structured lattice-based schemes use ring Rq = Zq[X]/f

• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n + 1 prime (Round5)

• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of

polynomials
• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in their Rq

• NewHope and Kyber have fastest (NTT-based) arithmetic

25



Design space 1: What ring?
• Structured lattice-based schemes use ring Rq = Zq[X]/f

• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n + 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)

• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime
(NTRU Prime)

• Sixth option: ThreeBears works on large integers instead of
polynomials

• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in their Rq

• NewHope and Kyber have fastest (NTT-based) arithmetic

25



Design space 1: What ring?
• Structured lattice-based schemes use ring Rq = Zq[X]/f

• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n + 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)

• Sixth option: ThreeBears works on large integers instead of
polynomials

• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in their Rq

• NewHope and Kyber have fastest (NTT-based) arithmetic

25



Design space 1: What ring?
• Structured lattice-based schemes use ring Rq = Zq[X]/f

• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n + 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of

polynomials

• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in their Rq

• NewHope and Kyber have fastest (NTT-based) arithmetic

25



Design space 1: What ring?
• Structured lattice-based schemes use ring Rq = Zq[X]/f

• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n + 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of

polynomials
• No proof that any option is more or less secure

• NTRU Prime advertises “less structure” in their Rq

• NewHope and Kyber have fastest (NTT-based) arithmetic

25



Design space 1: What ring?
• Structured lattice-based schemes use ring Rq = Zq[X]/f

• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n + 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of

polynomials
• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in their Rq

• NewHope and Kyber have fastest (NTT-based) arithmetic

25



Design space 1: What ring?
• Structured lattice-based schemes use ring Rq = Zq[X]/f

• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n + 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of

polynomials
• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in their Rq

• NewHope and Kyber have fastest (NTT-based) arithmetic

25



Design space 1: module vs. ring?

• “Traditionally”, work directly with elements of Rq (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):

• Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
• Work with small-dimension matrices and vectors over Rq

• MLWE encrypts shorter messages than Ring-LWE
• MLWE eliminates some of the structure of Ring-LWE
• MLWE can very easily scale security (change dimension of matrix):

• Optimize arithmetic in Rq once
• Use same optimized Rq arithmetic for all security levels

26



Design space 1: module vs. ring?

• “Traditionally”, work directly with elements of Rq (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):

• Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
• Work with small-dimension matrices and vectors over Rq

• MLWE encrypts shorter messages than Ring-LWE

• MLWE eliminates some of the structure of Ring-LWE
• MLWE can very easily scale security (change dimension of matrix):

• Optimize arithmetic in Rq once
• Use same optimized Rq arithmetic for all security levels

26



Design space 1: module vs. ring?

• “Traditionally”, work directly with elements of Rq (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):

• Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
• Work with small-dimension matrices and vectors over Rq

• MLWE encrypts shorter messages than Ring-LWE
• MLWE eliminates some of the structure of Ring-LWE

• MLWE can very easily scale security (change dimension of matrix):
• Optimize arithmetic in Rq once
• Use same optimized Rq arithmetic for all security levels

26



Design space 1: module vs. ring?

• “Traditionally”, work directly with elements of Rq (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):

• Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
• Work with small-dimension matrices and vectors over Rq

• MLWE encrypts shorter messages than Ring-LWE
• MLWE eliminates some of the structure of Ring-LWE
• MLWE can very easily scale security (change dimension of matrix):

• Optimize arithmetic in Rq once
• Use same optimized Rq arithmetic for all security levels

26



Design space 3: what noise?

• Need to sample noise (for LWE schemes) and small secrets
• More noise means

• more security from the underlying hard problem
• higher failure probability of decryption

• Three main choices to make:
• Narrow or wide noise

• Narrow noise (e.g., in {−1, 0, 1}) not conservative
• Wide noise requires larger q (or more failures)
• Larger q means larger public key and ciphertext

• LWE or LWR
• LWE considered more conservative (independent noise)
• LWR easier to implement (no noise sampling)
• LWR allows more compact public key and ciphertext

• Fixed-weight noise or not?
• Fixed-weight noise needs random permutation (sorting)
• Naive implementations leak secrets through timing
• Advantage of fixed-weight: easier to bound (or eliminate) decryption

failures

27



Design space 3: what noise?

• Need to sample noise (for LWE schemes) and small secrets
• More noise means

• more security from the underlying hard problem
• higher failure probability of decryption

• Three main choices to make:
• Narrow or wide noise

• Narrow noise (e.g., in {−1, 0, 1}) not conservative
• Wide noise requires larger q (or more failures)
• Larger q means larger public key and ciphertext

• LWE or LWR
• LWE considered more conservative (independent noise)
• LWR easier to implement (no noise sampling)
• LWR allows more compact public key and ciphertext

• Fixed-weight noise or not?
• Fixed-weight noise needs random permutation (sorting)
• Naive implementations leak secrets through timing
• Advantage of fixed-weight: easier to bound (or eliminate) decryption

failures

27



Design space 3: what noise?

• Need to sample noise (for LWE schemes) and small secrets
• More noise means

• more security from the underlying hard problem
• higher failure probability of decryption

• Three main choices to make:
• Narrow or wide noise

• Narrow noise (e.g., in {−1, 0, 1}) not conservative
• Wide noise requires larger q (or more failures)
• Larger q means larger public key and ciphertext

• LWE or LWR
• LWE considered more conservative (independent noise)
• LWR easier to implement (no noise sampling)
• LWR allows more compact public key and ciphertext

• Fixed-weight noise or not?
• Fixed-weight noise needs random permutation (sorting)
• Naive implementations leak secrets through timing
• Advantage of fixed-weight: easier to bound (or eliminate) decryption

failures

27



Design space 3: what noise?

• Need to sample noise (for LWE schemes) and small secrets
• More noise means

• more security from the underlying hard problem
• higher failure probability of decryption

• Three main choices to make:
• Narrow or wide noise

• Narrow noise (e.g., in {−1, 0, 1}) not conservative
• Wide noise requires larger q (or more failures)
• Larger q means larger public key and ciphertext

• LWE or LWR
• LWE considered more conservative (independent noise)
• LWR easier to implement (no noise sampling)
• LWR allows more compact public key and ciphertext

• Fixed-weight noise or not?
• Fixed-weight noise needs random permutation (sorting)
• Naive implementations leak secrets through timing
• Advantage of fixed-weight: easier to bound (or eliminate) decryption

failures

27



Design space 4: allow failures?

• Can avoid decryption failures entirely (NTRU, NTRU Prime)
• Advantage:

• Easier CCA security transform and analysis
• Disadvantage:

• Need to limit noise (or have larger q)

• For passive-security-only can go the other way:
• Allow failure probability of, e.g., 2−30

• Reduce size of public key and ciphertext

• Active (CCA) security needs negligible failure prob.

28



Design space 4: allow failures?

• Can avoid decryption failures entirely (NTRU, NTRU Prime)
• Advantage:

• Easier CCA security transform and analysis
• Disadvantage:

• Need to limit noise (or have larger q)
• For passive-security-only can go the other way:

• Allow failure probability of, e.g., 2−30

• Reduce size of public key and ciphertext

• Active (CCA) security needs negligible failure prob.

28



Design space 4: allow failures?

• Can avoid decryption failures entirely (NTRU, NTRU Prime)
• Advantage:

• Easier CCA security transform and analysis
• Disadvantage:

• Need to limit noise (or have larger q)
• For passive-security-only can go the other way:

• Allow failure probability of, e.g., 2−30

• Reduce size of public key and ciphertext

• Active (CCA) security needs negligible failure prob.

28



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

29



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once

• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

29



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

• Even without backdoor:
• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

29



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

29



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

29



Design space 6: error-correcting codes?

• Ring-LWE/LWR schemes work with polynomials of > 256
coefficients

• “Encrypt” messages of > 256 bits
• Need to encrypt only 256-bit key
• Question: How do we put those additional bits to use?
• Answer: Use error-correcting code (ECC) to reduce failure

probability

• NewHope: very simple threshold decoding
• LAC, Round5: more advanced ECC

• Correct more error, obtain smaller public key and ciphertext
• More complex to implement, in particular without leaking through

timing

30



Design space 6: error-correcting codes?

• Ring-LWE/LWR schemes work with polynomials of > 256
coefficients

• “Encrypt” messages of > 256 bits
• Need to encrypt only 256-bit key
• Question: How do we put those additional bits to use?
• Answer: Use error-correcting code (ECC) to reduce failure

probability
• NewHope: very simple threshold decoding

• LAC, Round5: more advanced ECC
• Correct more error, obtain smaller public key and ciphertext
• More complex to implement, in particular without leaking through

timing

30



Design space 6: error-correcting codes?

• Ring-LWE/LWR schemes work with polynomials of > 256
coefficients

• “Encrypt” messages of > 256 bits
• Need to encrypt only 256-bit key
• Question: How do we put those additional bits to use?
• Answer: Use error-correcting code (ECC) to reduce failure

probability
• NewHope: very simple threshold decoding
• LAC, Round5: more advanced ECC

• Correct more error, obtain smaller public key and ciphertext
• More complex to implement, in particular without leaking through

timing

30



Design space 7: CCA security?

• Ephemeral key exchange does not need CCA security
• Can offer passively secure version
• Protocols will combine this with signatures for authentication

• Advantages:
• Higher failure probability → more compact
• Simpler to implement, no CCA transform

• Disadvantages:
• Less robust (will somebody reuse keys?)
• More options (CCA vs. CPA): easier to make mistakes

31



Design space 7: CCA security?

• Ephemeral key exchange does not need CCA security
• Can offer passively secure version
• Protocols will combine this with signatures for authentication
• Advantages:

• Higher failure probability → more compact
• Simpler to implement, no CCA transform

• Disadvantages:
• Less robust (will somebody reuse keys?)
• More options (CCA vs. CPA): easier to make mistakes

31



Design space 7: CCA security?

• Ephemeral key exchange does not need CCA security
• Can offer passively secure version
• Protocols will combine this with signatures for authentication
• Advantages:

• Higher failure probability → more compact
• Simpler to implement, no CCA transform

• Disadvantages:
• Less robust (will somebody reuse keys?)
• More options (CCA vs. CPA): easier to make mistakes

31



Design space 8: CCA transforms

• General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)

• Tweaks to FO transform:
• Hash public-key into coins: multitarget protection (for non-zero

failure probability)

• Hash public-key into shared key: KEM becomes contributory
• Hash ciphertext into shared key: more robust (?)

• How to handle rejection?
• Return special symbol (return -1): explicit
• Return H(s,C) for secret s: implicit

• As of round 2, no proposal uses explicit rejection
• Would break some security reduction
• More robust in practice (return value alwas 0)

32



Design space 8: CCA transforms

• General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)

• Tweaks to FO transform:
• Hash public-key into coins: multitarget protection (for non-zero

failure probability)
• Hash public-key into shared key: KEM becomes contributory

• Hash ciphertext into shared key: more robust (?)
• How to handle rejection?

• Return special symbol (return -1): explicit
• Return H(s,C) for secret s: implicit

• As of round 2, no proposal uses explicit rejection
• Would break some security reduction
• More robust in practice (return value alwas 0)

32



Design space 8: CCA transforms

• General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)

• Tweaks to FO transform:
• Hash public-key into coins: multitarget protection (for non-zero

failure probability)
• Hash public-key into shared key: KEM becomes contributory
• Hash ciphertext into shared key: more robust (?)

• How to handle rejection?
• Return special symbol (return -1): explicit
• Return H(s,C) for secret s: implicit

• As of round 2, no proposal uses explicit rejection
• Would break some security reduction
• More robust in practice (return value alwas 0)

32



Design space 8: CCA transforms

• General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)

• Tweaks to FO transform:
• Hash public-key into coins: multitarget protection (for non-zero

failure probability)
• Hash public-key into shared key: KEM becomes contributory
• Hash ciphertext into shared key: more robust (?)

• How to handle rejection?
• Return special symbol (return -1): explicit
• Return H(s,C) for secret s: implicit

• As of round 2, no proposal uses explicit rejection
• Would break some security reduction
• More robust in practice (return value alwas 0)

32



Design space 8: CCA transforms

• General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)

• Tweaks to FO transform:
• Hash public-key into coins: multitarget protection (for non-zero

failure probability)
• Hash public-key into shared key: KEM becomes contributory
• Hash ciphertext into shared key: more robust (?)

• How to handle rejection?
• Return special symbol (return -1): explicit
• Return H(s,C) for secret s: implicit

• As of round 2, no proposal uses explicit rejection
• Would break some security reduction
• More robust in practice (return value alwas 0)

32



(Exercise) Resources

• Overview NIST round-2 candidates: https://csrc.nist.gov/
Projects/Post-Quantum-Cryptography/round-2-submissions

• Slides from 2nd NIST standardization conference:
https://csrc.nist.gov/Events/2019/
Second-PQC-Standardization-Conference

• NIST PQC Wiki (Florida Atlantic University):
https://pqc-wiki.fau.edu

33

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/round-2-submissions
https://csrc.nist.gov/Events/2019/Second-PQC-Standardization-Conference
https://csrc.nist.gov/Events/2019/Second-PQC-Standardization-Conference
https://pqc-wiki.fau.edu

