
CRYSTALS–Kyber

Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé

authors@pq-crystals.org
https://pq-crystals.org/kyber

August 23, 2019

mailto:authors@pq-crystals.org
https://pq-crystals.org/kyber


Reminder: the big picture

Kyber.CPAPKE: LPR encryption or “Noisy ElGamal”

s, e← χ

sk = s, pk = t = As+ e
r, e1, e2 ← χ

u← AT r + e1

v ← tT r + e2 + Enc(m)

c = (u, v)
m = Dec(v − sTu)

Kyber.CCAKEM: CCA-secure KEM via tweaked FO transform

• Use implicit rejection

• Hash public key into seed and shared key

• Hash ciphertext into shared key

• Use Keccak-based functions for all hashes and XOF

1



Reminder: the big picture

Kyber.CPAPKE: LPR encryption or “Noisy ElGamal”

s, e← χ

sk = s, pk = t = As+ e
r, e1, e2 ← χ

u← AT r + e1

v ← tT r + e2 + Enc(m)

c = (u, v)
m = Dec(v − sTu)

Kyber.CCAKEM: CCA-secure KEM via tweaked FO transform

• Use implicit rejection

• Hash public key into seed and shared key

• Hash ciphertext into shared key

• Use Keccak-based functions for all hashes and XOF

1



Reminder: Kyber in Round 1

• Use MLWE instead of LWE or RLWE

• Use R = Zq[X ]/(X 256 + 1) with q = 7681

• Use centered binomial noise

• Generate A via XOF(ρ) (“NewHope style”)

• Compress ciphertexts (round off least-significant bits)

• Compress public keys

2



Reminder: Kyber in Round 1

• Use MLWE instead of LWE or RLWE

• Use R = Zq[X ]/(X 256 + 1) with q = 7681

• Use centered binomial noise

• Generate A via XOF(ρ) (“NewHope style”)

• Compress ciphertexts (round off least-significant bits)

• Compress public keys

2



Reminder: Kyber in Round 1

• Use MLWE instead of LWE or RLWE

• Use R = Zq[X ]/(X 256 + 1) with q = 7681

• Use centered binomial noise

• Generate A via XOF(ρ) (“NewHope style”)

• Compress ciphertexts (round off least-significant bits)

• Compress public keys

2



Reminder: Kyber in Round 1

• Use MLWE instead of LWE or RLWE

• Use R = Zq[X ]/(X 256 + 1) with q = 7681

• Use centered binomial noise

• Generate A via XOF(ρ) (“NewHope style”)

• Compress ciphertexts (round off least-significant bits)

• Compress public keys

2



Reminder: Kyber in Round 1

• Use MLWE instead of LWE or RLWE

• Use R = Zq[X ]/(X 256 + 1) with q = 7681

• Use centered binomial noise

• Generate A via XOF(ρ) (“NewHope style”)

• Compress ciphertexts (round off least-significant bits)

• Compress public keys

2



Reminder: Kyber in Round 1

• Use MLWE instead of LWE or RLWE

• Use R = Zq[X ]/(X 256 + 1) with q = 7681

• Use centered binomial noise

• Generate A via XOF(ρ) (“NewHope style”)

• Compress ciphertexts (round off least-significant bits)

• Compress public keys

2



NIST comments

“We note that a potential issue is that the security proof does not
directly apply to Kyber itself, but rather to a modified version of the
scheme which does not compress the public key.”

—NIST IR 8240

3



Main changes in round 2

1. Remove the public-key compression
• Proof now applies to Kyber itself
• However, bandwidth requirement increases

2. Reduce parameter q to 3329
• Bandwidth requirement decreases

3. Update ciphertext-compression parameters

4. Update the specification of the NTT (inspired by NTTRU)
• Even faster polynomial multiplication

5. Reduce noise parameter to η = 2
• Faster noise sampling

6. Represent public key in NTT domain
• Save several NTT computations

4



Main changes in round 2

1. Remove the public-key compression
• Proof now applies to Kyber itself
• However, bandwidth requirement increases

2. Reduce parameter q to 3329
• Bandwidth requirement decreases

3. Update ciphertext-compression parameters

4. Update the specification of the NTT (inspired by NTTRU)
• Even faster polynomial multiplication

5. Reduce noise parameter to η = 2
• Faster noise sampling

6. Represent public key in NTT domain
• Save several NTT computations

4



Main changes in round 2

Kyber sizes, round 1 vs. round 2

Kyber512 (k = 2, level 1)

round 1, sizes in bytes round 2, sizes in bytes
pk: 736 pk: 800
ct: 800 ct: 736

Kyber768 (k = 3, level 3)

round 1, sizes in bytes round 2, sizes in bytes
pk: 1088 pk: 1184
ct: 1152 ct: 1088

Kyber1024 (k = 4, level 5)

round 1, sizes in bytes round 2, sizes in bytes
pk: 1440 pk: 1568
ct: 1504 ct: 1568

4



Main changes in round 2

1. Remove the public-key compression
• Proof now applies to Kyber itself
• However, bandwidth requirement increases

2. Reduce parameter q to 3329
• Bandwidth requirement decreases

3. Update ciphertext-compression parameters

4. Update the specification of the NTT (inspired by NTTRU)
• Even faster polynomial multiplication

5. Reduce noise parameter to η = 2
• Faster noise sampling

6. Represent public key in NTT domain
• Save several NTT computations

4



Main changes in round 2

1. Remove the public-key compression
• Proof now applies to Kyber itself
• However, bandwidth requirement increases

2. Reduce parameter q to 3329
• Bandwidth requirement decreases

3. Update ciphertext-compression parameters

4. Update the specification of the NTT (inspired by NTTRU)
• Even faster polynomial multiplication

5. Reduce noise parameter to η = 2
• Faster noise sampling

6. Represent public key in NTT domain
• Save several NTT computations

4



Main changes in round 2

1. Remove the public-key compression
• Proof now applies to Kyber itself
• However, bandwidth requirement increases

2. Reduce parameter q to 3329
• Bandwidth requirement decreases

3. Update ciphertext-compression parameters

4. Update the specification of the NTT (inspired by NTTRU)
• Even faster polynomial multiplication

5. Reduce noise parameter to η = 2
• Faster noise sampling

6. Represent public key in NTT domain
• Save several NTT computations

4



Kyber is fast

Kyber512 (k = 2, level 1)

Sizes (in Bytes) Haswell Cycles (AVX2)
sk: 1632 gen: 29100
pk: 800 enc: 46196
ct: 736 dec: 39410

Kyber768 (k = 3, level 3)

Sizes (in Bytes) Haswell Cycles (AVX2)
sk: 2400 gen: 57340
pk: 1184 enc: 78692
ct: 1088 dec: 68620

Kyber1024 (k = 4, level 5)

Sizes (in Bytes) Haswell Cycles (AVX2)
sk: 3168 gen: 81244
pk: 1568 enc: 109584
ct: 1568 dec: 97280

5



Kyber is fast and small

Kyber512 (k = 2, level 1)

Stack usage (in Bytes) Cortex-M4 Cycles
gen: 2952 gen: 513992
enc: 2552 enc: 652470
dec: 2560 dec: 620946

Kyber768 (k = 3, level 3)

Stack usage (in Bytes) Cortex-M4 Cycles
gen: 3848 gen: 976205
enc: 3128 enc: 1146021
dec: 3072 dec: 1094314

Kyber1024 (k = 4, level 5)

Stack usage (in Bytes) Cortex-M4 Cycles
gen: 4360 gen: 1574351
enc: 3584 enc: 1779192
dec: 3592 dec: 1708692

6



What are we benchmarking, really?

• More than 50% of the cycles are spent in Keccak
• Many conservative choices in FO transform
• Use SHAKE-128 to as XOF
• Generally, Keccak is not very fast in software

• Long-term solution: hardware-accelerated Keccak
• Short-term problem:

• Benchmarks of lattice-based KEMs are really benchmarks of
symmetric crypto

• Risk to make wrong decision about lattice design from
“symmetrically tainted” benchmarks

• Maybe just a small problem, because lattice-based KEMs are all fast
enough

• Better to decide based on
• size/bandwidth
• RAM/ROM footprint and gate count in HW
• simplicity
• how conservative designs are
• cost of SCA protection

7



What are we benchmarking, really?

• More than 50% of the cycles are spent in Keccak
• Many conservative choices in FO transform
• Use SHAKE-128 to as XOF
• Generally, Keccak is not very fast in software

• Long-term solution: hardware-accelerated Keccak

• Short-term problem:
• Benchmarks of lattice-based KEMs are really benchmarks of

symmetric crypto
• Risk to make wrong decision about lattice design from

“symmetrically tainted” benchmarks
• Maybe just a small problem, because lattice-based KEMs are all fast

enough
• Better to decide based on

• size/bandwidth
• RAM/ROM footprint and gate count in HW
• simplicity
• how conservative designs are
• cost of SCA protection

7



What are we benchmarking, really?

• More than 50% of the cycles are spent in Keccak
• Many conservative choices in FO transform
• Use SHAKE-128 to as XOF
• Generally, Keccak is not very fast in software

• Long-term solution: hardware-accelerated Keccak
• Short-term problem:

• Benchmarks of lattice-based KEMs are really benchmarks of
symmetric crypto

• Risk to make wrong decision about lattice design from
“symmetrically tainted” benchmarks

• Maybe just a small problem, because lattice-based KEMs are all fast
enough

• Better to decide based on
• size/bandwidth
• RAM/ROM footprint and gate count in HW
• simplicity
• how conservative designs are
• cost of SCA protection

7



What are we benchmarking, really?

• More than 50% of the cycles are spent in Keccak
• Many conservative choices in FO transform
• Use SHAKE-128 to as XOF
• Generally, Keccak is not very fast in software

• Long-term solution: hardware-accelerated Keccak
• Short-term problem:

• Benchmarks of lattice-based KEMs are really benchmarks of
symmetric crypto

• Risk to make wrong decision about lattice design from
“symmetrically tainted” benchmarks

• Maybe just a small problem, because lattice-based KEMs are all fast
enough

• Better to decide based on
• size/bandwidth
• RAM/ROM footprint and gate count in HW
• simplicity
• how conservative designs are
• cost of SCA protection

7



What are we benchmarking, really?

• More than 50% of the cycles are spent in Keccak
• Many conservative choices in FO transform
• Use SHAKE-128 to as XOF
• Generally, Keccak is not very fast in software

• Long-term solution: hardware-accelerated Keccak
• Short-term problem:

• Benchmarks of lattice-based KEMs are really benchmarks of
symmetric crypto

• Risk to make wrong decision about lattice design from
“symmetrically tainted” benchmarks

• Maybe just a small problem, because lattice-based KEMs are all fast
enough

• Better to decide based on
• size/bandwidth
• RAM/ROM footprint and gate count in HW
• simplicity
• how conservative designs are
• cost of SCA protection

7



Kyber-90s

https://www.bbc.co.uk/bbcthree/article/91603cc1-f159-4c89-9462-443a078945ca

90s crypto (AES, SHA-2) is accelerated in HW!

8

https://www.bbc.co.uk/bbcthree/article/91603cc1-f159-4c89-9462-443a078945ca


Kyber-90s performance (Haswell cycles)

Kyber512 (k = 2, level 1)

Kyber cycles Kyber-90s cycles
gen: 29100 gen: 15792
enc: 46196 enc: 26612
dec: 39410 dec: 22248

Kyber768 (k = 3, level 3)

Kyber cycles Kyber-90s cycles
gen: 57340 gen: 25632
enc: 78692 enc: 39976
dec: 68620 dec: 33744

Kyber1024 (k = 4, level 5)

Kyber cycles Kyber-90s cycles
gen: 81244 gen: 38164
enc: 109584 enc: 57280
dec: 97280 dec: 50360

9



Kyber online

https://pq-crystals.org/kyber

10

https://pq-crystals.org/kyber

