
Post-quantum cryptography

Peter Schwabe

Radboud University, Nijmegen, The Netherlands

August 4, 2016

Noisebridge, San Francisco

“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m
thinking like it’s 15 or a little more. It’s within reach. It’s within our
lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers

2

“Whether we can control the quantum states and all of that at the
fundamental level has now been proven. The big killer is, at what point
do we build a processor big enough thats it’s faster than a classical
computer?

That means moving away from small scale models to integrated
processing devices and prototypes. That’s the challenge, and that can be
done, we anticipate, within the next decade.”

—Michelle Simmons (UNSW), Jan. 2016

2

Why would cryptographers care?

Grover’s algorithm (1996)

◮ Find preimages of a blackbox function in O(
√
N)

◮ N is the size of the domain of the function

3

Why would cryptographers care?

Grover’s algorithm (1996)

◮ Find preimages of a blackbox function in O(
√
N)

◮ N is the size of the domain of the function

◮ Find n-bit symmetric keys in 2n/2 “operations”

◮ Find hash-function preimages in 2n/2

3

Why would cryptographers care?

Grover’s algorithm (1996)

◮ Find preimages of a blackbox function in O(
√
N)

◮ N is the size of the domain of the function

◮ Find n-bit symmetric keys in 2n/2 “operations”

◮ Find hash-function preimages in 2n/2

◮ Consequences: double key lengths (and hash lengths)

3

Why would cryptographers care?

Grover’s algorithm (1996)

◮ Find preimages of a blackbox function in O(
√
N)

◮ N is the size of the domain of the function

◮ Find n-bit symmetric keys in 2n/2 “operations”

◮ Find hash-function preimages in 2n/2

◮ Consequences: double key lengths (and hash lengths)

Shor’s algorithm (1994)

◮ Factor integers in polynomial time

◮ Compute discrete logarithms in polynomial time

3

Why would cryptographers care?

Grover’s algorithm (1996)

◮ Find preimages of a blackbox function in O(
√
N)

◮ N is the size of the domain of the function

◮ Find n-bit symmetric keys in 2n/2 “operations”

◮ Find hash-function preimages in 2n/2

◮ Consequences: double key lengths (and hash lengths)

Shor’s algorithm (1994)

◮ Factor integers in polynomial time

◮ Compute discrete logarithms in polynomial time

◮ Complete break of RSA, ElGamal, DSA, Diffie-Hellman

◮ Complete break of elliptic-curve variants (ECSDA, ECDH, . . .)

3

Is public-key crypto dead?

4

Is public-key crypto dead?

Alternative, “post-quantum” PKC

◮ Hash-based signatures (e.g., XMSS, SPHINCS)

4

Is public-key crypto dead?

Alternative, “post-quantum” PKC

◮ Hash-based signatures (e.g., XMSS, SPHINCS)

◮ Code-based cryptography (e.g., McEliece encryption)

4

Is public-key crypto dead?

Alternative, “post-quantum” PKC

◮ Hash-based signatures (e.g., XMSS, SPHINCS)

◮ Code-based cryptography (e.g., McEliece encryption)

◮ Multivariate signatures (e.g., UOV, HFEv-)

4

Is public-key crypto dead?

Alternative, “post-quantum” PKC

◮ Hash-based signatures (e.g., XMSS, SPHINCS)

◮ Code-based cryptography (e.g., McEliece encryption)

◮ Multivariate signatures (e.g., UOV, HFEv-)

◮ Lattice-based crypto (e.g., NTRU, LWE encryption)

4

Is public-key crypto dead?

Alternative, “post-quantum” PKC

◮ Hash-based signatures (e.g., XMSS, SPHINCS)

◮ Code-based cryptography (e.g., McEliece encryption)

◮ Multivariate signatures (e.g., UOV, HFEv-)

◮ Lattice-based crypto (e.g., NTRU, LWE encryption)

◮ Supersingular isogeny crypto (SIDH)

4

Is public-key crypto dead?

Alternative, “post-quantum” PKC

◮ Hash-based signatures (e.g., XMSS, SPHINCS)

◮ Code-based cryptography (e.g., McEliece encryption)

◮ Multivariate signatures (e.g., UOV, HFEv-)

◮ Lattice-based crypto (e.g., NTRU, LWE encryption)

◮ Supersingular isogeny crypto (SIDH)

Why aren’t we using those?

◮ Slower computation (for some)

4

Is public-key crypto dead?

Alternative, “post-quantum” PKC

◮ Hash-based signatures (e.g., XMSS, SPHINCS)

◮ Code-based cryptography (e.g., McEliece encryption)

◮ Multivariate signatures (e.g., UOV, HFEv-)

◮ Lattice-based crypto (e.g., NTRU, LWE encryption)

◮ Supersingular isogeny crypto (SIDH)

Why aren’t we using those?

◮ Slower computation (for some)

◮ Larger keys, signatures, ciphertexts (for some)

4

Is public-key crypto dead?

Alternative, “post-quantum” PKC

◮ Hash-based signatures (e.g., XMSS, SPHINCS)

◮ Code-based cryptography (e.g., McEliece encryption)

◮ Multivariate signatures (e.g., UOV, HFEv-)

◮ Lattice-based crypto (e.g., NTRU, LWE encryption)

◮ Supersingular isogeny crypto (SIDH)

Why aren’t we using those?

◮ Slower computation (for some)

◮ Larger keys, signatures, ciphertexts (for some)

◮ Security less well understood (for some)

4

Is public-key crypto dead?

Alternative, “post-quantum” PKC

◮ Hash-based signatures (e.g., XMSS, SPHINCS)

◮ Code-based cryptography (e.g., McEliece encryption)

◮ Multivariate signatures (e.g., UOV, HFEv-)

◮ Lattice-based crypto (e.g., NTRU, LWE encryption)

◮ Supersingular isogeny crypto (SIDH)

Why aren’t we using those?

◮ Slower computation (for some)

◮ Larger keys, signatures, ciphertexts (for some)

◮ Security less well understood (for some)

◮ Additional issues (e.g., stateful hash-based signing)

4

NIST post-quantum crypto project

◮ NIST issued a (draft) call for PQC proposals

◮ Submissions for
◮ PQ signatures
◮ PQ encryption
◮ PQ key agreement

◮ Submission deadline: November 2017

◮ Submitters’ presentations: Early 2018

◮ 3–5 years of analysis

◮ 2 years later: draft standards ready

◮ See http://csrc.nist.gov/groups/ST/post-quantum-crypto/

5

http://csrc.nist.gov/groups/ST/post-quantum-crypto/

PQCRYPTO

◮ Project funded by EU in Horizon 2020.

◮ Starting date 1 March 2015, runs for 3 years.

◮ 11 partners from academia and industry, TU/e is coordinator

◮ Goal: Design and implement high-security post-quantum PKC

6

NSA’s data center in Bluffdale

7

NSA’s data center in Bluffdale

Estimated numbers

◮ Electricity consumption: 65MW

◮ Energy bill: US$40, 000, 000/year

◮ Storage: 3–12EB

7

NSA’s data center in Bluffdale

Estimated numbers

◮ Electricity consumption: 65MW

◮ Energy bill: US$40, 000, 000/year

◮ Storage: 3–12EB

The attack scenario

◮ Store encrypted data now

◮ Decrypt in 15 (?) years

7

NSA’s data center in Bluffdale

Estimated numbers

◮ Electricity consumption: 65MW

◮ Energy bill: US$40, 000, 000/year

◮ Storage: 3–12EB

The attack scenario

◮ Store encrypted data now

◮ Decrypt in 15 (?) years

◮ Consequence:

Need post-quantum encryption now!

7

How about PFS?

◮ “Perfect Forward Secrecy”:
◮ Use long-term secret keys for authentication only
◮ Use short-term ephemeral keys for encryption
◮ Compromise of long-term key does not compromise confidentiality of

past messages

8

How about PFS?

◮ “Perfect Forward Secrecy”:
◮ Use long-term secret keys for authentication only
◮ Use short-term ephemeral keys for encryption
◮ Compromise of long-term key does not compromise confidentiality of

past messages

◮ Does not help against cryptanalytic break

◮ Attacker breaks (in poly time) each single ephemeral key exchange

8

How about PFS?

◮ “Perfect Forward Secrecy”:
◮ Use long-term secret keys for authentication only
◮ Use short-term ephemeral keys for encryption
◮ Compromise of long-term key does not compromise confidentiality of

past messages

◮ Does not help against cryptanalytic break

◮ Attacker breaks (in poly time) each single ephemeral key exchange

◮ As a consequence, we want
◮ ephemeral key exchange (to protect against key compromise)
◮ post-quantum security (to protect against future quantum attacker)

8

Ring-Learning-with-errors (RLWE)

◮ Let Rq = Zq[X]/(Xn + 1)

◮ Let χ be an error distribution on Rq

◮ Let s ∈ Rq be secret

◮ Attacker is given pairs (a, as + e) with
◮ a uniformly random from Rq

◮ e sampled from χ

◮ Task for the attacker: find s

10

Ring-Learning-with-errors (RLWE)

◮ Let Rq = Zq[X]/(Xn + 1)

◮ Let χ be an error distribution on Rq

◮ Let s ∈ Rq be secret

◮ Attacker is given pairs (a, as + e) with
◮ a uniformly random from Rq

◮ e sampled from χ

◮ Task for the attacker: find s

◮ Common choice for χ: discrete Gaussian

10

Ring-Learning-with-errors (RLWE)

◮ Let Rq = Zq[X]/(Xn + 1)

◮ Let χ be an error distribution on Rq

◮ Let s ∈ Rq be secret

◮ Attacker is given pairs (a, as + e) with
◮ a uniformly random from Rq

◮ e sampled from χ

◮ Task for the attacker: find s

◮ Common choice for χ: discrete Gaussian

◮ Common optimization for protocols: fix a

10

A bit of (R)LWE history

◮ Regev, 2005: Introduce LWE-based encryption

◮ Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption

◮ Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange

◮ Peikert, 2014: Improved RLWE-based key exchange

◮ Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert’s KEX in TLS

11

Peikert’s RLWE-based KEM

Parameters: q, n, χ

KEM.Setup() :

a
$←Rq

Alice (server) Bob (client)

KEM.Gen(a) : KEM.Encaps(a,b) :

s, e
$← χ s′, e′, e′′

$← χ

b←as+ e
b−→ u←as′ + e′

v←bs′ + e′′

v̄
$← dbl(v)

KEM.Decaps(s, (u,v′)) :
u,v′

←−−− v′ = 〈v̄〉2
µ←rec(2us,v′) µ←⌊v̄⌉2

12

Peikert’s RLWE-based KEM

Parameters: q, n, χ

KEM.Setup() :

a
$←Rq

Alice (server) Bob (client)

KEM.Gen(a) : KEM.Encaps(a,b) :

s, e
$← χ s′, e′, e′′

$← χ

b←as+ e
b−→ u←as′ + e′

v←bs′ + e′′

v̄
$← dbl(v)

KEM.Decaps(s, (u,v′)) :
u,v′

←−−− v′ = 〈v̄〉2
µ←rec(2us,v′) µ←⌊v̄⌉2

Observe: 2us = 2ass′ + 2e′s ≈ 2ass′ + 2es′ + 2e′′ ≈ v̄

12

BCNS key exchange

◮ Bos, Costello, Naehrig, Stebila, IEEE S&P 2015:
◮ Phrase the KEM as key exchange
◮ Instantiate with concrete parameters
◮ Integrate with OpenSSL → post-quantum TLS key exchange
◮ Also: combined ECDH+RLWE key exchange

13

BCNS key exchange

◮ Bos, Costello, Naehrig, Stebila, IEEE S&P 2015:
◮ Phrase the KEM as key exchange
◮ Instantiate with concrete parameters
◮ Integrate with OpenSSL → post-quantum TLS key exchange
◮ Also: combined ECDH+RLWE key exchange

◮ Parameters chosen by BCNS:
◮ Rq = Zq [X]/(Xn + 1)
◮ n = 1024
◮ q = 232 − 1
◮ χ = DZ,σ

◮ σ = 8/
√
2π ≈ 3.192

13

BCNS key exchange

◮ Bos, Costello, Naehrig, Stebila, IEEE S&P 2015:
◮ Phrase the KEM as key exchange
◮ Instantiate with concrete parameters
◮ Integrate with OpenSSL → post-quantum TLS key exchange
◮ Also: combined ECDH+RLWE key exchange

◮ Parameters chosen by BCNS:
◮ Rq = Zq [X]/(Xn + 1)
◮ n = 1024
◮ q = 232 − 1
◮ χ = DZ,σ

◮ σ = 8/
√
2π ≈ 3.192

◮ Claimed security level: 128 bits pre-quantum

◮ Failure probability: ≈ 2−131072

13

A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

14

A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

14

A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

◮ Analysis of post-quantum security

14

A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (
∑k

i=1
bi − b′i for bi, b

′

i ∈ {0, 1})

14

A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (
∑k

i=1
bi − b′i for bi, b

′

i ∈ {0, 1})
◮ Choose a fresh parameter a for every protocol run

14

A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (
∑k

i=1
bi − b′i for bi, b

′

i ∈ {0, 1})
◮ Choose a fresh parameter a for every protocol run

◮ Encode polynomials in NTT domain

14

A new hope

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Drastically reduce q to 12289 < 214

◮ Still use n = 1024

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (
∑k

i=1
bi − b′i for bi, b

′

i ∈ {0, 1})
◮ Choose a fresh parameter a for every protocol run

◮ Encode polynomials in NTT domain

◮ Multiple implementations

14

A new hope – protocol

Parameters: q = 12289 < 214, n = 1024

Error distribution: ψ16

Alice (server) Bob (client)

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e
$← ψn

16 s′, e′, e′′ $← ψn
16

b←as+ e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′ + e′′

v′←us
(u,r)←−−− r

$← HelpRec(v)

k←Rec(v′, r) k←Rec(v, r)

µ←SHA3-256(k) µ←SHA3-256(k)

15

Error reconciliation

◮ After running the protocol
◮ Alice has xA = ass′ + e′s
◮ Bob has xB = ass′ + es′ + e′′

◮ Those elements are similar, but not the same

◮ Problem: How to agree on the same key from these noisy vectors?

16

Error reconciliation

◮ After running the protocol
◮ Alice has xA = ass′ + e′s
◮ Bob has xB = ass′ + es′ + e′′

◮ Those elements are similar, but not the same

◮ Problem: How to agree on the same key from these noisy vectors?

◮ Known: Extract one bit from each coefficient

◮ Also known: Extract multiple bits from each coefficient (decrease
security)

16

Error reconciliation

◮ After running the protocol
◮ Alice has xA = ass′ + e′s
◮ Bob has xB = ass′ + es′ + e′′

◮ Those elements are similar, but not the same

◮ Problem: How to agree on the same key from these noisy vectors?

◮ Known: Extract one bit from each coefficient

◮ Also known: Extract multiple bits from each coefficient (decrease
security)

◮ NewHope: extract one bit from multiple coefficients (increase
security)

◮ Specifically: 1 bit from 4 coefficients → 256-bit key from 1024
coefficients

16

Error reconciliation

◮ After running the protocol
◮ Alice has xA = ass′ + e′s
◮ Bob has xB = ass′ + es′ + e′′

◮ Those elements are similar, but not the same

◮ Problem: How to agree on the same key from these noisy vectors?

◮ Known: Extract one bit from each coefficient

◮ Also known: Extract multiple bits from each coefficient (decrease
security)

◮ NewHope: extract one bit from multiple coefficients (increase
security)

◮ Specifically: 1 bit from 4 coefficients → 256-bit key from 1024
coefficients

◮ In the following: 2-dimensional intuition (4-dim. case very similar)

◮ “Scale” vector x to [0, 1)2

16

2D Error reconciliation

(0, 0) (1, 0)

(0, 1) (1, 1)

(1
2
, 1
2
)

17

2D Error reconciliation

(0, 0) (1, 0)

(0, 1) (1, 1)

(1
2
, 1
2
)

◮ If x is in the grey Voronoi cell: pick key bit 1
◮ If x is in the white Voronoi cell: pick key bit 0

17

2D Error reconciliation

(0, 0) (1, 0)

(0, 1) (1, 1)

(1
2
, 1
2
)

◮ If x is in the grey Voronoi cell: pick key bit 1
◮ If x is in the white Voronoi cell: pick key bit 0
◮ Reconciliation: Bob sends difference vector from xB to center of his

Voronoi cell
◮ Alice adds this difference vector to her vector xA

17

Discretization of reconciliation

(1
2
, 1
2
)

◮ Sending difference vector means doubling communcation
◮ Idea: chop Voronoi cell into 2dr subcells

◮ d: dimension (4 for NewHope, 2 in this picture)
◮ r: discretization level

◮ Need to send only rd bits per d coefficients
◮ NewHope: r = 2; hence 256 bytes of reconciliation information

18

“Blurring the edges”

◮ This would all work if x was continuous uniform from [0, 1)

◮ We start with x ∈ {0, . . . , q − 1}2, q odd

◮ Odd number of possible values; no way to pick key bit without bias!

◮ This is the same for dimension 4

19

“Blurring the edges”

◮ This would all work if x was continuous uniform from [0, 1)

◮ We start with x ∈ {0, . . . , q − 1}2, q odd

◮ Odd number of possible values; no way to pick key bit without bias!

◮ This is the same for dimension 4

◮ Idea: randomly “blur the edges”

◮ Add vector (1/2q, 1/2q) with probability 1/2 before reconciliation

◮ This is a generalization of Peikert’s “randomized doubling” trick

19

“Blurring the edges”

◮ This would all work if x was continuous uniform from [0, 1)

◮ We start with x ∈ {0, . . . , q − 1}2, q odd

◮ Odd number of possible values; no way to pick key bit without bias!

◮ This is the same for dimension 4

◮ Idea: randomly “blur the edges”

◮ Add vector (1/2q, 1/2q) with probability 1/2 before reconciliation

◮ This is a generalization of Peikert’s “randomized doubling” trick

19

“Blurring the edges”

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

b b b b b b b b b

19

Security analysis

◮ Consider RLWE instance as LWE instance

◮ Attack using BKZ

◮ BKZ uses SVP oracle in smaller dimension

◮ Consider only the cost of one call to that oracle (“core-SVP
hardness”)

20

Security analysis

◮ Consider RLWE instance as LWE instance

◮ Attack using BKZ

◮ BKZ uses SVP oracle in smaller dimension

◮ Consider only the cost of one call to that oracle (“core-SVP
hardness”)

◮ Consider quantum sieve as SVP oracle
◮ Best-known quantum cost (BKC): 20.265n

◮ Best-plausible quantum cost (BPC): 20.2075n

20

Security analysis

◮ Consider RLWE instance as LWE instance

◮ Attack using BKZ

◮ BKZ uses SVP oracle in smaller dimension

◮ Consider only the cost of one call to that oracle (“core-SVP
hardness”)

◮ Consider quantum sieve as SVP oracle
◮ Best-known quantum cost (BKC): 20.265n

◮ Best-plausible quantum cost (BPC): 20.2075n

◮ Primal attack: unique-SVP from LWE; solve using BKZ

20

Security analysis

◮ Consider RLWE instance as LWE instance

◮ Attack using BKZ

◮ BKZ uses SVP oracle in smaller dimension

◮ Consider only the cost of one call to that oracle (“core-SVP
hardness”)

◮ Consider quantum sieve as SVP oracle
◮ Best-known quantum cost (BKC): 20.265n

◮ Best-plausible quantum cost (BPC): 20.2075n

◮ Primal attack: unique-SVP from LWE; solve using BKZ

◮ Dual attack: find short vector in dual lattice

◮ Length determines complexity and attacker’s advantage ǫ

20

JarJar

“I don’t like is the way that the parameters are set [. . .] I think that
setting them too high impedes research.”

—anonymous reviewer

21

JarJar

“I don’t like is the way that the parameters are set [. . .] I think that
setting them too high impedes research.”

—anonymous reviewer

◮ JarJar: instantiation with n = 512

◮ Same q = 12289

◮ Use root lattice D2 instead of D4

◮ Use k = 24 for the centered binomial distribution

21

JarJar

“I don’t like is the way that the parameters are set [. . .] I think that
setting them too high impedes research.”

—anonymous reviewer

◮ JarJar: instantiation with n = 512

◮ Same q = 12289

◮ Use root lattice D2 instead of D4

◮ Use k = 24 for the centered binomial distribution

JarJar is not recommended for use!

21

Post-quantum security

Known Known Best

Attack m b Classical Quantum Plausible

BCNS proposal: q = 232 − 1, n = 1024, σ = 3.192

Primal 1062 296 86 78 61

Dual 1055 296 86 78 61

JarJar: q = 12289, n = 512, σ =
√
12

Primal 623 449 131 119 93

Dual 602 448 131 118 92

NewHope: q = 12289, n = 1024, σ =
√
8

Primal 1100 967 282 256 200

Dual 1099 962 281 255 199

◮ b: Block size for BKZ

◮ m: Number of used samples

22

Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

23

Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

◮ Even without backdoor:
◮ Perform massive precomputation based on a
◮ Use precomputation to break all key exchanges
◮ Infeasible today, but who knows. . .
◮ Attack in the spirit of Logjam

23

Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

◮ Even without backdoor:
◮ Perform massive precomputation based on a
◮ Use precomputation to break all key exchanges
◮ Infeasible today, but who knows. . .
◮ Attack in the spirit of Logjam

◮ Solution in NewHope: Choose a fresh a every time

◮ Use SHAKE-128 to expand a 32-byte seed

23

Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

◮ Even without backdoor:
◮ Perform massive precomputation based on a
◮ Use precomputation to break all key exchanges
◮ Infeasible today, but who knows. . .
◮ Attack in the spirit of Logjam

◮ Solution in NewHope: Choose a fresh a every time

◮ Use SHAKE-128 to expand a 32-byte seed

◮ Server can cache a for some time (e.g., 1h)

23

Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

◮ Even without backdoor:
◮ Perform massive precomputation based on a
◮ Use precomputation to break all key exchanges
◮ Infeasible today, but who knows. . .
◮ Attack in the spirit of Logjam

◮ Solution in NewHope: Choose a fresh a every time

◮ Use SHAKE-128 to expand a 32-byte seed

◮ Server can cache a for some time (e.g., 1h)

◮ Must not reuse keys/noise!

23

NTT-based multiplication

◮ Most costly arithmetic operations: multiplication in Rq

◮ Idea behind selecting n and q: fast negacyclic number-theoretic
transform (NTT)

◮ This requires that 2n divides q − 1

◮ Note that 2n = 211 divides 12288 = 213 + 212

24

NTT-based multiplication

◮ Most costly arithmetic operations: multiplication in Rq

◮ Idea behind selecting n and q: fast negacyclic number-theoretic
transform (NTT)

◮ This requires that 2n divides q − 1

◮ Note that 2n = 211 divides 12288 = 213 + 212

◮ To multiply f and g in Rq:

◮ Compute f̂ = NTT(f)
◮ Compute ĝ = NTT(g)

24

NTT-based multiplication

◮ Most costly arithmetic operations: multiplication in Rq

◮ Idea behind selecting n and q: fast negacyclic number-theoretic
transform (NTT)

◮ This requires that 2n divides q − 1

◮ Note that 2n = 211 divides 12288 = 213 + 212

◮ To multiply f and g in Rq:

◮ Compute f̂ = NTT(f)
◮ Compute ĝ = NTT(g)
◮ f̂ and ĝ have 1024 coefficients each
◮ Multiply componentwise to obtain r̂

24

NTT-based multiplication

◮ Most costly arithmetic operations: multiplication in Rq

◮ Idea behind selecting n and q: fast negacyclic number-theoretic
transform (NTT)

◮ This requires that 2n divides q − 1

◮ Note that 2n = 211 divides 12288 = 213 + 212

◮ To multiply f and g in Rq:

◮ Compute f̂ = NTT(f)
◮ Compute ĝ = NTT(g)
◮ f̂ and ĝ have 1024 coefficients each
◮ Multiply componentwise to obtain r̂
◮ Compute result of multiplication as r = NTT−1(r)

24

NTT-based multiplication

◮ Most costly arithmetic operations: multiplication in Rq

◮ Idea behind selecting n and q: fast negacyclic number-theoretic
transform (NTT)

◮ This requires that 2n divides q − 1

◮ Note that 2n = 211 divides 12288 = 213 + 212

◮ To multiply f and g in Rq:

◮ Compute f̂ = NTT(f)
◮ Compute ĝ = NTT(g)
◮ f̂ and ĝ have 1024 coefficients each
◮ Multiply componentwise to obtain r̂
◮ Compute result of multiplication as r = NTT−1(r)

◮ NTT takes n
2
log(n) “butterfly operations”

◮ Butterflies are one addition, one subtraction, one multiplication by
constant

24

Implementation

◮ Very fast multiplication in Rq: use NTT

◮ Define message format:
◮ Send polynomials in NTT domain
◮ Eliminate two of the required NTTs

25

Implementation

◮ Very fast multiplication in Rq: use NTT

◮ Define message format:
◮ Send polynomials in NTT domain
◮ Eliminate two of the required NTTs

◮ C reference implementation:
◮ Arithmetic on 16-bit and 32-bit integers
◮ No division (/) or modulo (%) operator
◮ Use Montgomery reductions inside NTT
◮ Use ChaCha20 for noise sampling

25

Implementation

◮ Very fast multiplication in Rq: use NTT

◮ Define message format:
◮ Send polynomials in NTT domain
◮ Eliminate two of the required NTTs

◮ C reference implementation:
◮ Arithmetic on 16-bit and 32-bit integers
◮ No division (/) or modulo (%) operator
◮ Use Montgomery reductions inside NTT
◮ Use ChaCha20 for noise sampling

◮ AVX2 implementation:
◮ Speed up NTT using vectorized double arithmetic
◮ Use AES-256 for noise sampling
◮ Use AVX2 for centered binomial

25

The protocol revisited
Parameters: q = 12289 < 214, n = 1024

Error distribution: ψn
16

Alice (server) Bob (client)

seed
$← {0, . . . , 255}32

â←Parse(SHAKE-128(seed))

s, e
$← ψn

16 s′, e′, e′′ $← ψn
16

ŝ←NTT(s)

b̂←â ◦ ŝ+ NTT(e)
ma=encodeA(seed,b̂)−−−−−−−−−−−−−→

1824 Bytes
(b̂, seed)←decodeA(ma)

â←Parse(SHAKE-128(seed))

t̂←NTT(s′)

û←â ◦ t̂+ NTT(e′)

v←NTT−1(b̂ ◦ t̂) + e′′

(û, r)←decodeB(mb)
mb=encodeB(û,r)←−−−−−−−−−−−

2048 Bytes
r

$← HelpRec(v)

v′←NTT−1(û ◦ ŝ) k←Rec(v, r)

k←Rec(v′, r) µ←SHA3-256(k)

µ←SHA3-256(k)
26

Performance

BCNS C ref AVX2

Key generation (server) ≈ 2 477 958 258 246 88 920

(258 965) (89 079)

Key gen + shared key (client) ≈ 3 995 977 384 994 110 986

(385 146) (111 169)

Shared key (server) ≈ 481 937 86 280 19 422

◮ Benchmarks on one core of an Intel i7-4770K (Haswell)

◮ BCNS benchmarks are derived from openssl speed

◮ Numbers in parantheses are average; all other numbers are median.

◮ Includes around ≈ 37 000 cycles for generation of a on each side

27

Performance

BCNS C ref AVX2

Key generation (server) ≈ 2 477 958 258 246 88 920

(258 965) (89 079)

Key gen + shared key (client) ≈ 3 995 977 384 994 110 986

(385 146) (111 169)

Shared key (server) ≈ 481 937 86 280 19 422

◮ Benchmarks on one core of an Intel i7-4770K (Haswell)

◮ BCNS benchmarks are derived from openssl speed

◮ Numbers in parantheses are average; all other numbers are median.

◮ Includes around ≈ 37 000 cycles for generation of a on each side

◮ Faster than state-of-the art ECC

27

NewHope on ARM Cortex M

◮ Joint work with Erdem Alkim and Philipp Jakubeit

◮ Optimize NewHope on Cortex M0 and M4

◮ 32-bit state-of-the art microcontrollers

28

NewHope on ARM Cortex M

◮ Joint work with Erdem Alkim and Philipp Jakubeit

◮ Optimize NewHope on Cortex M0 and M4

◮ 32-bit state-of-the art microcontrollers

◮ Start with C reference implementation

◮ New speed records for NTT from:
◮ Montgomery reductions after constant multiplications
◮ “Short Barrett reductions” after additions
◮ Lazy reductions
◮ Serious hand optimization in assembly

28

NewHope on ARM Cortex M

◮ Joint work with Erdem Alkim and Philipp Jakubeit

◮ Optimize NewHope on Cortex M0 and M4

◮ 32-bit state-of-the art microcontrollers

◮ Start with C reference implementation

◮ New speed records for NTT from:
◮ Montgomery reductions after constant multiplications
◮ “Short Barrett reductions” after additions
◮ Lazy reductions
◮ Serious hand optimization in assembly

◮ Also optimize other building blocks of NewHope

28

ARM Cortex-M results

◮ Server side: ≈ 1.47Mio cycles (M0) and ≈ 860 000 cycles (M4)

◮ Client side: ≈ 1.74Mio cycles (M0) and ≈ 985 000 cycles (M4)

29

ARM Cortex-M results

◮ Server side: ≈ 1.47Mio cycles (M0) and ≈ 860 000 cycles (M4)

◮ Client side: ≈ 1.74Mio cycles (M0) and ≈ 985 000 cycles (M4)

◮ Comparison to ECC: ≈ 3.59 cycles for X25519 scalar mult on M0

29

ARM Cortex-M results

◮ Server side: ≈ 1.47Mio cycles (M0) and ≈ 860 000 cycles (M4)

◮ Client side: ≈ 1.74Mio cycles (M0) and ≈ 985 000 cycles (M4)

◮ Comparison to ECC: ≈ 3.59 cycles for X25519 scalar mult on M0

◮ Comparison to HECC: ≈ 2.63 cycles on Kummer surface on M0

29

Should you use NewHope?

30

Should you use NewHope?

Yes, if. . .

◮ . . . you need post-quantum ephemeral key exchange now

30

Should you use NewHope?

Yes, if. . .

◮ . . . you need post-quantum ephemeral key exchange now

◮ . . . you combine it with (pre-quantum) ECDH (e.g., X25519)
◮ Run both key exchanges, extract key from both shared keys
◮ Be careful with extraction and authentication

30

Should you use NewHope?

Yes, if. . .

◮ . . . you need post-quantum ephemeral key exchange now

◮ . . . you combine it with (pre-quantum) ECDH (e.g., X25519)
◮ Run both key exchanges, extract key from both shared keys
◮ Be careful with extraction and authentication

◮ . . . you make sure that you can easily upgrade

30

Using NewHope

NewHope in TLS

◮ Google is running a post-quantum experiment

◮ Combination of NewHope and X25519 (called CECPQ1)

◮ Some connections from Chrome Canary to some Google services

◮ https://security.googleblog.com/2016/07/

experimenting-with-post-quantum.html

31

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

Using NewHope

NewHope in TLS

◮ Google is running a post-quantum experiment

◮ Combination of NewHope and X25519 (called CECPQ1)

◮ Some connections from Chrome Canary to some Google services

◮ https://security.googleblog.com/2016/07/

experimenting-with-post-quantum.html

NewHope in Tor?

◮ Proposal by Lovecruft and Schwabe: RebelAlliance

◮ Use NewHope and X25519 in Tor

31

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

Using NewHope

NewHope in TLS

◮ Google is running a post-quantum experiment

◮ Combination of NewHope and X25519 (called CECPQ1)

◮ Some connections from Chrome Canary to some Google services

◮ https://security.googleblog.com/2016/07/

experimenting-with-post-quantum.html

NewHope in Tor?

◮ Proposal by Lovecruft and Schwabe: RebelAlliance

◮ Use NewHope and X25519 in Tor

◮ Similar proposal for NTRU in Tor by Schanck, Whyte, and Zhang

◮ See paper from PETS 2016: http://eprint.iacr.org/2015/287

31

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://eprint.iacr.org/2015/287

Using NewHope

NewHope in TLS

◮ Google is running a post-quantum experiment

◮ Combination of NewHope and X25519 (called CECPQ1)

◮ Some connections from Chrome Canary to some Google services

◮ https://security.googleblog.com/2016/07/

experimenting-with-post-quantum.html

NewHope in Tor?

◮ Proposal by Lovecruft and Schwabe: RebelAlliance

◮ Use NewHope and X25519 in Tor

◮ Similar proposal for NTRU in Tor by Schanck, Whyte, and Zhang

◮ See paper from PETS 2016: http://eprint.iacr.org/2015/287

◮ Plan: Merge these proposals

31

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
http://eprint.iacr.org/2015/287

Future directions

◮ Try error-correcting codes for reconciliation?

32

Future directions

◮ Try error-correcting codes for reconciliation?

◮ Send polynomials in “normal” domain?
◮ Decouple protocol from multiplication algorithm
◮ Possibly drop least significant bits

32

Future directions

◮ Try error-correcting codes for reconciliation?

◮ Send polynomials in “normal” domain?
◮ Decouple protocol from multiplication algorithm
◮ Possibly drop least significant bits

◮ Use smaller q?
◮ Smaller messages
◮ Higher security
◮ Does not support efficient negacyclic NTT

32

Future directions

◮ Try error-correcting codes for reconciliation?

◮ Send polynomials in “normal” domain?
◮ Decouple protocol from multiplication algorithm
◮ Possibly drop least significant bits

◮ Use smaller q?
◮ Smaller messages
◮ Higher security
◮ Does not support efficient negacyclic NTT

◮ How about Nussbaumer’s algorithm for multiplication?

32

Future directions

◮ Try error-correcting codes for reconciliation?

◮ Send polynomials in “normal” domain?
◮ Decouple protocol from multiplication algorithm
◮ Possibly drop least significant bits

◮ Use smaller q?
◮ Smaller messages
◮ Higher security
◮ Does not support efficient negacyclic NTT

◮ How about Nussbaumer’s algorithm for multiplication?

◮ How about Karatsuba + Toom for multiplication?

32

Future directions

◮ Try error-correcting codes for reconciliation?

◮ Send polynomials in “normal” domain?
◮ Decouple protocol from multiplication algorithm
◮ Possibly drop least significant bits

◮ Use smaller q?
◮ Smaller messages
◮ Higher security
◮ Does not support efficient negacyclic NTT

◮ How about Nussbaumer’s algorithm for multiplication?

◮ How about Karatsuba + Toom for multiplication?

◮ How about smaller n (e.g., n ≈ 800)?

32

Future directions ctd.

◮ Authenticated key exchange (AKE):
◮ Paper by Zhang, Zhang, Ding, Snook, Dagdelen, 2015: about 100×

slower than NewHope
◮ Can we do better?

33

Future directions ctd.

◮ Authenticated key exchange (AKE):
◮ Paper by Zhang, Zhang, Ding, Snook, Dagdelen, 2015: about 100×

slower than NewHope
◮ Can we do better?

◮ How about Frodo?
◮ Paper by Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko,

Raghunathan, Stebila
◮ See http://eprint.iacr.org/2016/659

33

http://eprint.iacr.org/2016/659

Future directions ctd.

◮ Authenticated key exchange (AKE):
◮ Paper by Zhang, Zhang, Ding, Snook, Dagdelen, 2015: about 100×

slower than NewHope
◮ Can we do better?

◮ How about Frodo?
◮ Paper by Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko,

Raghunathan, Stebila
◮ See http://eprint.iacr.org/2016/659

◮ How about NTRU-based key exchange?
◮ Performance looks worse for ephemeral key exchange
◮ How about authenticated key exchange?

33

http://eprint.iacr.org/2016/659

Future directions ctd.

◮ Authenticated key exchange (AKE):
◮ Paper by Zhang, Zhang, Ding, Snook, Dagdelen, 2015: about 100×

slower than NewHope
◮ Can we do better?

◮ How about Frodo?
◮ Paper by Bos, Costello, Ducas, Mironov, Naehrig, Nikolaenko,

Raghunathan, Stebila
◮ See http://eprint.iacr.org/2016/659

◮ How about NTRU-based key exchange?
◮ Performance looks worse for ephemeral key exchange
◮ How about authenticated key exchange?

◮ How about NTRU Prime?
◮ Paper by Bernstein, Chuengsatiansup, Lange, van Vredendaal
◮ See http://eprint.iacr.org/2016/461
◮ Useful for ephemeral key exchange?

33

http://eprint.iacr.org/2016/659
http://eprint.iacr.org/2016/461

NewHope online

Paper: https://cryptojedi.org/papers/#newhope

Software: https://cryptojedi.org/crypto/#newhope

ARM Paper: https://cryptojedi.org/papers/#newhopearm

ARM software: https://github.com/newhopearm/newhopearm.git

Newhope in Go: https://github.com/Yawning/newhope

(by Yawning Angel)

Newhope in Rust: https://code.ciph.re/isis/newhopers

(by Isis Lovecruft)

Newhope in Java: https://github.com/rweather/newhope-java

(by Rhys Weatherley)

Newhope in Erlang: https://github.com/ahf/luke

(by Alexander Færøy)

34

https://cryptojedi.org/papers/#newhope
https://cryptojedi.org/crypto/#newhope
https://cryptojedi.org/papers/#newhopearm
https://github.com/newhopearm/newhopearm.git
https://github.com/Yawning/newhope
https://code.ciph.re/isis/newhopers
https://github.com/rweather/newhope-java
https://github.com/ahf/luke

