
Security Issues in Cloud Computing
Modern Cryptography I – Symmetric Cryptography

Peter Schwabe

October 14, 2011

The binary alphabet

So far we considered the alphabet A,B, . . . , Z, and noted that it could also be written
as 0, . . . , 25. Encryption used addition modulo 26.
Modern cryptography is targeted at computations carried out by a computer, it typically
uses the alphabet 0, 1 (binary alphabet).

• We call a letter at this alphabet bit.

• A word of length 8 is called a byte.

• We use the term n-bit string for a word of length n.

• Most important operation is addition modulo 2, denoted ⊕, we call this operation
xor (exclusive or). This operation can be extended to n-bit strings by applying it
letter-wise, for example:

0 1 0 1 1 1 0 1
⊕ 1 1 1 0 1 0 0 1

1 0 1 1 0 1 0 0

• Addition is the same as subtraction modulo 2. Adding (xoring) the same value
twice results in the orignial value.

• All information stored on typical computers is represented as words over this al-
phabet.

Stream ciphers

Recall Vernam’s cipher: Encryption is performed by adding (now: xoring) a random key
stream to the message. The main disadvantage is that the random key needs to be as
long as the message.

1



Idea: Use a relatively short random key. Use that to deterministically generate a
random-looking (pseudo-random) key stream, xor this with the message. To obtain
different key streams from the same key one usually uses a non-secret initalization
vector (or nonce), as additional input. This nonce (“number used once”) must not
be used twice!

Security:

• Obtaining part of the key stream used to encrypt some message is the same
as for Vernam: This part of the message can be deciphered but nothing else.

• Obtaining the key used to genereate the key stream completely breaks all
ciphertexts.

• It must be impossible to try all keys.

• Typical lengths of keys:

– 64 bits (very low security, can be broken in practice).

– 80 bits (low security, can probably be broken by exhaustive search)

– 128 bits (high security, exhaustive search is impossible)

– 192 or 256 bits (very high security).

• It must be impossible to draw conclusions from the key stream to the key
(Known-plaintext attack). Best attack should be exhaustive search.

• Keys must be chosen carefully at random.

RC4 and eSTREAM

RC4 was (and maybe still is) one of the most widely used stream ciphers.

• Invented in 1987 by Ron Rivest;

• Leaked to cypherpunks mailinglist and further to the sci.crypt newsgroup in 1994:
http://groups.google.com/group/sci.crypt/msg/10a300c9d21afca0;

• Key size: initially 40 bits (due to US export restrictions), now 104 or 232 bits;

• It was used in Wired Equivalent Privacy (WEP), the WiFi encryption.

• Weakness in how RC4 was used allowed to find a 104-bit WEP in less than 1
minute (Tews, Weinmann, Pychkine, 2007)

• RC4 is used in a more secure way in WPA and SSL.

In 2004 the European Network of Excellence in Cryptography (ECRYPT) Started eS-
TREAM:

• Call for submissions for a new stream-cipher algorithm.

• 2 profiles:

2

http://groups.google.com/group/sci.crypt/msg/10a300c9d21afca0


– Profile 1 : designed for software implementation aiming at high throughput.

– Profile 2 : designed for hardware implementation with restricted resources.

• 23 submissions for profile 1 and 25 for profile 2 (with overlaps)

• 3 phases of public evaluation until April 2008.

• Suggested portfolio:

Profile 1:

– HC-128 (Hongjun Wu);

– Rabbit (Martin Boesgaard, Mette Vesterager, Thomas Christensen, and
Erik Zenner);

– Salsa20/12 (Daniel J. Bernstein);

– SOSEMANUK (Côme Berbain, Olivier Billet, Anne Canteaut, Nicolas
Courtois, Henri Gilbert, Louis Goubin, Aline Gouget, Louis Granboulan,
Cédric Lauradoux, Marine Minier, Thomas Pornin, and Herv Sibert)

Profile 2:

– Grain v1 (Martin Hell, Thomas Johansson and Willi Meier );

– MICKEY (Steve Babbage and Matthew Dodd);

– Trivium (Christophe De Cannière and Bart Preneel);

• The use of all algorithms in the eSTREAM portfolio is not restricted by any
patents.

Block Ciphers

Definition:
A block cipher maps n-bit blocks of plaintext to n-bit ciphertext blocks under the use
of a key K. For a fixed key K, it is an invertible map

EK : {0, 1}n → {0, 1}n.

The inverse is
E−1

K : {0, 1}n → {0, 1}n.

How do we use block ciphers?

Consider input M1, . . . ,Mt of n-bit message blocks. Apply the function EK using one
of the following modes of operation.

3



ECB (Electronic Code Book Mode)

Encryption:
Obtain ciphertext C1, . . . , Ct as Ci = EK(Mi), i = 1, . . . , t

Decryption:
Obtain the plaintext from C1, . . . , Ct as Mi = E−1

K (Ci), i = 1, . . . , t

CBC (Cipher Blockchaining mode)

CBC uses a (non-secret) initialization vector (IV ) of n bits.

Encryption:
Obtain ciphertext C1, . . . , Ct as Ci = EK(Mi ⊕ Ci−1), i = 1, . . . , t;C0 = IV

Decryption:
Obtain message from C1, . . . , Ct as Mi = E−1

K (Ci)⊕ Ci−1, i = 1, . . . , t;C0 = IV

CFB (Cipher Feedback Mode)

Also CFB uses a non-secret IV of n bits.

Encryption:
Obtain ciphertext C1, . . . , Ct as Ci = EK(Ci−1)⊕Mi, i = 1, . . . , t;C0 = IV

Decryption:
Obtain plaintext from C1, . . . , Ct as Mi = EK(Ci−1)⊕ Ci, i = 1, . . . , t;C0 = IV

OFB (Output Feedback Mode)

OFB also uses a non-secret IV of n bits.

Encryption:
Generate O1, . . . , Ot as Oi = EK(Oi−1), i = 1, . . . , t, O0 = IV
Obtain Ci = Mi ⊕Oi, i = 1, . . . , t

Decrytion:
Generate key stream O1, . . . , Ot as in encryption
Obtain Mi = Ci ⊕Oi, i = 1, . . . , t

CTR (Counter Mode)

The CTR mode uses a nonce N of l bits, l < n
CTR uses a counter start value C of n− l bits.

Encryption:
Generate a Keystream Oi, . . . , Ot as Oi = EK(N |((C + i) mod 2n−l)) Compute
Ci = Mi ⊕Oi, i = 1, . . . , t

Decryption:
Obtain the message as Mi = Ci ⊕Oi, i = 1, . . . , t

4



Properties of modes of operation (and remarks)

• ECB is considered insecure if applied to more than one block, because identi-
cal input blocks map to identical output blocks. See the pictures at http://en.

wikipedia.org/wiki/Electronic_code_book#Electronic_codebook_.28ECB.29.

• In CBC and CFB mode, the last ciphertext block Ct depends on all message blocks.
In ECB, OFB, CTR modes each ciphertext block only depends on one plaintext
block,

• CBC, CFB, and OFB encryption is not parallelizable. ECB and CTR encryption
is parallelizable. CBC and CFB decryption is also parallelizable (also ECB, CTR)

• Modes with parallelizable decryption allow random access to the ciphertext.

• CBC and ECB require padding of the input to a multiple of the block length.
CFB, OFB and CTR don’t.

• For OFB, CFB and CTR, each two messages encryted with the same key must use
a different IV(nonce)

• Most widely used: CBC and CTR

The Advanced Encryption Standard (AES)

For the description in comic form see
http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

History

Sept. 1997: NIST issued a public call for a new block cipher, supporting a block
length of 128 bits and lengths of 128, 192, and 256 bits.

August 98 and March 99: AES1 and AES2 conferences organized by NIST.

August 99: NIST announces 5 finalists:

• MARS(IBM)

• RCG (Rivest, Robshaw, Sidney, Yin)

• Rijndael (Daemen, Rijmen)

• Serpent (Anderson, Biham, Knudsen)

• Twofish (Schneier)

April 2000: AES3 conference

October 2, 2000: NIST announces that Rijndael has been selected as the proposed
AES

5

http://en.wikipedia.org/wiki/Electronic_code_book#Electronic_codebook_.28ECB.29
http://en.wikipedia.org/wiki/Electronic_code_book#Electronic_codebook_.28ECB.29
http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html


Description of AES

AES has a block length of 128 bits (16 bytes), keylengths of 128, 192, and 256 bits
Encryption transforms a 128-bit input in m rounds into a 128-bit output using m+1 16-
byte round keys K0, . . . ,Km derived from the AES key The number of rounds depends
on the length of the key, for 128-bit keys it uses 10 rounds, for 192-bit keys 12 rounds
and for 256-bit keys 14 rounds.

Algorithm 1 AES-128 encryption

Require: 128-bit input block B, 128-bit AES round keys K0, . . . ,K10

Ensure: 128-bit block of encrypted output
B ← AddRoundKey(B,K0)
for i from 1 to 9 do

B ← SubBytes(B)
B ← ShiftRows(B)
B ← MixColumns(B)
B ← AddRoundKey(B,Ki)

end for
B ← SubBytes(B)
B ← ShiftRows(B)
B ← AddRoundKey(B,K10)
return B

6


