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Crypto today

5 building blocks for a “secure channel”
Symmetric crypto

• Block or stream cipher (e.g., AES, ChaCha20)

• Authenticator (e.g., HMAC, GMAC, Poly1305)

• Hash function (e.g., SHA-2, SHA-3)

Asymmetric crypto

• Key agreement / public-key encryption (e.g., RSA, Diffie-Hellman,
ECDH)

• Signatures (e.g., RSA, DSA, ECDSA, EdDSA)

The asymmetric monoculture

• All widely deployed asymmetric crypto relies on
• the hardness of factoring, or
• the hardness of (elliptic-curve) discrete logarithms
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. . . Shor, 1996
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Post-quantum crypto

Definition
Post-quantum crypto is asymmetric crypto that’s not based on factoring
or DLP.

5 main directions

• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

3



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions

• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

3



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions

• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

3



Post-quantum crypto

Definition
Post-quantum crypto is (asymmetric) crypto that resists attacks using
classical and quantum computers.

5 main directions

• Lattice-based crypto (PKE and Sigs)

• Code-based crypto (mainly PKE)

• Multivariate-based crypto (mainly Sigs)

• Hash-based signatures (only Sigs)

• Isogeny-based crypto (so far, mainly PKE)

3



The NIST competition

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.
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The NIST competition

Status today

• 69 submissions accepted as “complete and proper”

• Several already broken

• 3 withdrawn
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Learning with errors (LWE)

• Given uniform A ∈ Zk×`
q

• Given “noise distribution” χ

• Given samples As+ e, with e← χ

• Search version: find s

• Decision version: distinguish from uniform random
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Short integer solution (SIS)

• Given uniform A ∈ Zk×`
q

• Find nonzero x ∈ Z`, s.t.:
• Ax = 0 ∈ Zk

q

• ‖x‖ < β

• Needs β < q, otherwise trivial
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Using structured lattices

• Problem with LWE/SIS-based cryptosystems: public-key size

• Idea to solve this: allow structured matrix A:
• Ring-LWE: work in Zq[X ]/(X n + 1); n a power of 2, q typically prime
• NTRU: work in Zq[X ]/(X n − 1); n prime, q a power of 2
• NTRU Prime: work in Zq[X ]/(X n − X − 1); q prime, n prime

• Perform arithmetic on polynomials instead of vectors/matrices

• Particularly efficient Zq[X ]/(X n + 1), with n = 2m and 2n | (q − 1)

• Reason: efficient NTT-based multiplication:

f · g = NTT−1(NTT(f ) ◦ NTT(g))

• Problem with these highly structured instances of LWE/SIS:
• Scaling security levels via n: requires re-optimizing code
• Strong structure in LWE instances may enable attacks

7



Using structured lattices

• Problem with LWE/SIS-based cryptosystems: public-key size

• Idea to solve this: allow structured matrix A:
• Ring-LWE: work in Zq[X ]/(X n + 1); n a power of 2, q typically prime
• NTRU: work in Zq[X ]/(X n − 1); n prime, q a power of 2
• NTRU Prime: work in Zq[X ]/(X n − X − 1); q prime, n prime

• Perform arithmetic on polynomials instead of vectors/matrices

• Particularly efficient Zq[X ]/(X n + 1), with n = 2m and 2n | (q − 1)

• Reason: efficient NTT-based multiplication:

f · g = NTT−1(NTT(f ) ◦ NTT(g))

• Problem with these highly structured instances of LWE/SIS:
• Scaling security levels via n: requires re-optimizing code
• Strong structure in LWE instances may enable attacks

7



Using structured lattices

• Problem with LWE/SIS-based cryptosystems: public-key size

• Idea to solve this: allow structured matrix A:
• Ring-LWE: work in Zq[X ]/(X n + 1); n a power of 2, q typically prime
• NTRU: work in Zq[X ]/(X n − 1); n prime, q a power of 2
• NTRU Prime: work in Zq[X ]/(X n − X − 1); q prime, n prime

• Perform arithmetic on polynomials instead of vectors/matrices

• Particularly efficient Zq[X ]/(X n + 1), with n = 2m and 2n | (q − 1)

• Reason: efficient NTT-based multiplication:

f · g = NTT−1(NTT(f ) ◦ NTT(g))

• Problem with these highly structured instances of LWE/SIS:
• Scaling security levels via n: requires re-optimizing code
• Strong structure in LWE instances may enable attacks

7



CRYSTALS – use module lattices

• In CRYSTALS: use matrices and vectors of small dimension k × `
over Zq[X ]/(X 256 + 1)

• Scale security levels by varying k :

void polyvec_ntt(polyvec *r) {
int i;
for(i=0;i<KYBER_K;i++)

poly_ntt(&r->vec[i]);
}

• Breaks some of the structure in LWE/SIS
• Naturally gives us dimension 768
• Achieves similar performance as Ring-LWE-based systems
• Important for performance: sample uniformly in NTT domain
• For Kyber use q = 7681, for Dilithium q = 8380417
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Kyber: The KEM

joint work with

Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, Damien Stehlé



The design of Kyber

• Inspired by NewHope, can see it as successor:
• Against-all-authority approach for generating A
• Centered binomial noise (no discrete Gaussians)
• Conservative parameters and analysis
• Easy and efficient to implement

• Improvements:
• Module-LWE instead of Ring-LWE
• CCA-secure instead of CPA-secure (now also adopted by NewHope)
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Kyber.CPAPKE (“noisy ElGamal”)

Gen()

ρ← {0, 1}256

A← XOF(ρ)

s, e← χ

t←

Compress(

As+ e

, dt)

pk =

(

t

, ρ)

, sk = s

Dec(sk , c)

u := Decompress(u, du)
v := Decompress(v , dv )
m = Compress(v −

sTu

, 1)

Enc(pk ,m ∈ {0, 1}256)

t := Decompress(t, dt)
A← XOF(ρ)

r, e1

, e2

← χ

u←

Compress(

AT r + e1

, du)

v ← Compress(

tT r

+ e2 +
⌈
q
2

⌋
·m, dv )

c =

(

u

, v)
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A point we missed. . .

• When compressing the public key, v is not an MLWE sample

• t = Decompress(Compress(As+ e, dt)), dt) is not uniform

• This was pointed out by Jan Pieter D’Anvers

• Possible fix: re-randomize after decompression

• Not easy/efficient to do with the current compression

• Can simply drop bits
• Easy and efficient to re-randomize
• Introduces more “deterministic noise”

• Doesn’t lead to an actual attack
• Compression of v hides almost all differences
• On average, 4% of coeffs are different w and w/o compression of t
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Kyber security

• Tight reduction from MLWE in the ROM (if we didn’t compress pk)

• Non-tight reduction in the QROM

• Tight reduction in the QROM with non-standard assumption

• Failure probability of < 2−140

• Interesting questions:
• How much of a problem are a few failures?
• How much can an attacker exploit Grover to produce failures?

• Three different parameter sets submitted:
• Kyber512: 102 bits of post-quantum security
• Kyber768: 161 bits of post-quantum security
• Kyber1024: 218 bits of post-quantum security

• Security estimates are based on “core-SVP hardness” (see NewHope
paper)
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Kyber performance

Kyber512

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)
sk: 1632 gen: 141872 gen: 55160
pk: 736 enc: 205468 enc: 75680
ct: 800 dec: 246040 dec: 74428

• Cycle counts on one core, without TurboBoost and HyperThreading

• Comparison: X25519 gen: 90668 cycles, enc/dec: 138963

• However, only 32 bytes for X25519 pk and ct
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Kyber performance

Kyber768

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)
sk: 2400 gen: 243004 gen: 85472
pk: 1088 enc: 332616 enc: 112660
ct: 1152 dec: 394424 dec: 108904

• Cycle counts on one core, without TurboBoost and HyperThreading

• Comparison: X25519 gen: 90668 cycles, enc/dec: 138963

• However, only 32 bytes for X25519 pk and ct
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Kyber performance

Kyber1024

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)
sk: 3168 gen: 368564 gen: 121056
pk: 1440 enc: 481042 enc: 157964
ct: 1504 dec: 558740 dec: 154952

• Cycle counts on one core, without TurboBoost and HyperThreading

• Comparison: X25519 gen: 90668 cycles, enc/dec: 138963

• However, only 32 bytes for X25519 pk and ct

14



Kyber performance

Kyber1024

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)
sk: 3168 gen: 368564 gen: 121056
pk: 1440 enc: 481042 enc: 157964
ct: 1504 dec: 558740 dec: 154952

• Cycle counts on one core, without TurboBoost and HyperThreading

• Comparison: X25519 gen: 90668 cycles, enc/dec: 138963

• However, only 32 bytes for X25519 pk and ct

14



Dilithium: The signature scheme

joint work with

Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, Gregor Seiler, Damien Stehlé



The design of Dilithium

• Use “Fiat-Shamir with aborts” (Lyubashevsky 2009)

• Can think of Dilithium as instantiation of Bai-Gailbraith signatures
(2013)

• Avoid Gaussian sampling, use uniform noise

• Reason: easy to implement efficiently

• Optimize for (public-key + signature) size
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Fiat-Shamir with aborts (“noisy Schnorr”)

Gen()

ρ← {0, 1}256

A← XOF(ρ)

s1, s2 ← Sη
t← As1 + s2
pk = (ρ, t), sk = (ρ, s1, s2)

Verif(pk ,m, σ)

A← XOF(ρ)

w′1 ←

HighBits(

Az− ct

, 2γ2)

Verify that ‖z‖∞ < γ1 − β

Verify that c = H (M,w′1)

Sign(sk,m)

Repeat:
A← XOF(ρ)

y← Sγ1−1

w1 ←

HighBits(

Ay

, 2γ2)

c ∈ B60 ← H(M,w1)

z← y + cs1

RejSample(z)
RejSample(Ay − cs2)

σ = (z, c)
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Rejection sampling

• Attacker knows that coefficients of y are in {−γ1 + 1, . . . , γ1− 1}
• What if a coefficient of z = y + cs1 is close to the border?

• Answer: attacker learns something about s1!

• Solution: reject if any coefficient of z is larger than γ1 − β
• Obvious safe value for β: 60 · η
• Similar: restart if ‖LowBits(Ay − cs2, 2γ2)‖∞ ≥ γ2 − β
• This second rejection is also required for correctness

18
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Compressing the public key

• During verification, compute w′1 ← HighBits(Az− ct, 2γ2)

• This does not really need the low bits of t

• Only requires the carries of ct into the high bits

• Idea: compress public key by only including the high bits

• Signature needs to include carries of ct into high bits

• Interesting when public-key size matters:
• factor-2.5 size reduction of the public key
• increase signature size by ≈4%

• Public-key size matters, for example, in certificates
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Dilithium security

• Non-tight ROM reduction from MLWE and MSIS

• Tight QROM reduction from MLWE, MSIS, and SelfTargetMSIS

• Choose β slightly smaller than 60η
• Requires careful analysis, no concern in practice
• Drastically reduces number of repetitions

• Four parameter sets:
• Dilithium-weak: 53 bits of post-quantum security
• Dilithium-medium: 91 bits of post-quantum security
• Dilithium-recommended: 125 bits of post-quantum security
• Dilithium-very-high: 158 bits of post-quantum security

• Again, use core-SVP hardness of MLWE/MSIS
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Dilithium performance

Dilithium-1024x768 (medium)

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)
sk: 2800 gen: 269K gen: 156K
pk: 1184 sign: 1285K sign: 493K
sig: 2044 verify: 296K verify: 150K

• Comparison with Ed25519:
• Cycles for signing: 61212
• Cycles for verification: 182812
• Signature bytes: 64
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Dilithium performance

Dilithium-1280x1024

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)
sk: 3504 gen: 382K gen: 225K
pk: 1472 sign: 1817K sign: 673K
sig: 2701 verify: 395K verify: 207K

• Comparison with Ed25519:
• Cycles for signing: 61212
• Cycles for verification: 182812
• Signature bytes: 64
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Dilithium performance

Dilithium-1536x1280

Sizes (in bytes) Haswell cycles (ref) Haswell cycles (AVX2)
sk: 3856 gen: 512K gen: 292K
pk: 1760 sign: 1677K sign: 711K
sig: 3366 verify: 548K verify: 288K

• Comparison with Ed25519:
• Cycles for signing: 61212
• Cycles for verification: 182812
• Signature bytes: 64
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My personal view on post-quantum crypto

Encryption and KEMs

• If you don’t care about public-key size: use McEliece

• If you do care about public-key size: use Kyber768 or NewHope

• Combine with pre-quantum crypto, e.g., X25519

Signatures

• If you can, use forward-secure stateful hash-based signatures
(XMSS-SHA3)

• Elseif you can, use (large, slow) stateless hash-based signatures
(SPHINCS+-SHA3)

• Else use Dilithium-recommended plus Ed25519
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Resources online

• Personal website: https://cryptojedi.org

• CRYSTALS website: https://pq-crystals.org
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