
Efficient implementation of finite-field arithmetic

Peter Schwabe

Radboud University Nijmegen, The Netherlands

November 22, 2013

Pairing 2013 Tutorial



Elliptic-curve addition

I Computing P +Q for two elliptic-curve points P and Q means
performing a few operations in the underlying field

I Example: Add projective (XP : YP : ZP ) and (XQ : YQ : ZQ) on
curve E : y2 = x3 + ax+ b.

t1 ← YP · ZQ

t2 ← XP · ZQ

t3 ← ZP · ZQ

u← YQ · ZP − t1
uu← u2

v ← XQ · ZP − t2
vv ← v2

vvv ← v · vv
R← vv · t2
A← uu · t3 − vvv − 2 ·R
XR ← v ·A
YR ← u · (R−A)− vvv · t1
ZR ← vvv · t3
return (XR : YR : ZR)

Efficient implementation of finite-field arithmetic 2



The EFD

I There are many formulas for different curve shapes and point
representations

I Best overview: The Explicit Formulas Database (EFD):

http://www.hyperelliptic.org/EFD/

I Compiled by Dan Bernstein and Tanja Lange from many papers and
talks

I Contains verification scripts, 3-operand code, . . .

Efficient implementation of finite-field arithmetic 3

http://www.hyperelliptic.org/EFD/


The problem with large integers
I C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
I Why are there no data types for 256-bit integers?

I Magma does not have problems with large integers
I Python has datatype long for arbitrary-size integers
I Java has BigInteger class

I C is “portable assembly”, very close to what computers really do
I Computers work on data in registers (very small, very fast storage

units)
I Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit . . . but not 256 bit
I That’s a lie!
I Yeah, you’re right. We do have 256-bit registers (AVX on Intel and

AMD processors)
I But those do not hold a single 256-bit integer (but vectors of

integers or floats)
I Why can’t they just hold a 256-bit integer?
I Because arithmetic units cannot perform arithmetic on 256-bit

integers (only on 8-bit, 16-bit, 32-bit, and 64-bit integers)

Efficient implementation of finite-field arithmetic 4



The problem with large integers
I C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
I Why are there no data types for 256-bit integers?

I Magma does not have problems with large integers
I Python has datatype long for arbitrary-size integers
I Java has BigInteger class

I C is “portable assembly”, very close to what computers really do
I Computers work on data in registers (very small, very fast storage

units)

I Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit . . . but not 256 bit
I That’s a lie!
I Yeah, you’re right. We do have 256-bit registers (AVX on Intel and

AMD processors)
I But those do not hold a single 256-bit integer (but vectors of

integers or floats)
I Why can’t they just hold a 256-bit integer?
I Because arithmetic units cannot perform arithmetic on 256-bit

integers (only on 8-bit, 16-bit, 32-bit, and 64-bit integers)

Efficient implementation of finite-field arithmetic 4



The problem with large integers
I C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
I Why are there no data types for 256-bit integers?

I Magma does not have problems with large integers
I Python has datatype long for arbitrary-size integers
I Java has BigInteger class

I C is “portable assembly”, very close to what computers really do
I Computers work on data in registers (very small, very fast storage

units)
I Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit . . . but not 256 bit

I That’s a lie!
I Yeah, you’re right. We do have 256-bit registers (AVX on Intel and

AMD processors)
I But those do not hold a single 256-bit integer (but vectors of

integers or floats)
I Why can’t they just hold a 256-bit integer?
I Because arithmetic units cannot perform arithmetic on 256-bit

integers (only on 8-bit, 16-bit, 32-bit, and 64-bit integers)

Efficient implementation of finite-field arithmetic 4



The problem with large integers
I C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
I Why are there no data types for 256-bit integers?

I Magma does not have problems with large integers
I Python has datatype long for arbitrary-size integers
I Java has BigInteger class

I C is “portable assembly”, very close to what computers really do
I Computers work on data in registers (very small, very fast storage

units)
I Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit . . . but not 256 bit
I That’s a lie!

I Yeah, you’re right. We do have 256-bit registers (AVX on Intel and
AMD processors)

I But those do not hold a single 256-bit integer (but vectors of
integers or floats)

I Why can’t they just hold a 256-bit integer?
I Because arithmetic units cannot perform arithmetic on 256-bit

integers (only on 8-bit, 16-bit, 32-bit, and 64-bit integers)

Efficient implementation of finite-field arithmetic 4



The problem with large integers
I C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
I Why are there no data types for 256-bit integers?

I Magma does not have problems with large integers
I Python has datatype long for arbitrary-size integers
I Java has BigInteger class

I C is “portable assembly”, very close to what computers really do
I Computers work on data in registers (very small, very fast storage

units)
I Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit . . . but not 256 bit
I That’s a lie!
I Yeah, you’re right. We do have 256-bit registers (AVX on Intel and

AMD processors)
I But those do not hold a single 256-bit integer (but vectors of

integers or floats)

I Why can’t they just hold a 256-bit integer?
I Because arithmetic units cannot perform arithmetic on 256-bit

integers (only on 8-bit, 16-bit, 32-bit, and 64-bit integers)

Efficient implementation of finite-field arithmetic 4



The problem with large integers
I C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
I Why are there no data types for 256-bit integers?

I Magma does not have problems with large integers
I Python has datatype long for arbitrary-size integers
I Java has BigInteger class

I C is “portable assembly”, very close to what computers really do
I Computers work on data in registers (very small, very fast storage

units)
I Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit . . . but not 256 bit
I That’s a lie!
I Yeah, you’re right. We do have 256-bit registers (AVX on Intel and

AMD processors)
I But those do not hold a single 256-bit integer (but vectors of

integers or floats)
I Why can’t they just hold a 256-bit integer?

I Because arithmetic units cannot perform arithmetic on 256-bit
integers (only on 8-bit, 16-bit, 32-bit, and 64-bit integers)

Efficient implementation of finite-field arithmetic 4



The problem with large integers
I C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
I Why are there no data types for 256-bit integers?

I Magma does not have problems with large integers
I Python has datatype long for arbitrary-size integers
I Java has BigInteger class

I C is “portable assembly”, very close to what computers really do
I Computers work on data in registers (very small, very fast storage

units)
I Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit . . . but not 256 bit
I That’s a lie!
I Yeah, you’re right. We do have 256-bit registers (AVX on Intel and

AMD processors)
I But those do not hold a single 256-bit integer (but vectors of

integers or floats)
I Why can’t they just hold a 256-bit integer?
I Because arithmetic units cannot perform arithmetic on 256-bit

integers (only on 8-bit, 16-bit, 32-bit, and 64-bit integers)
Efficient implementation of finite-field arithmetic 4



So, what do we have?

I Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)

I Addition, subtraction and multiplication of 64-bit integers
I Multiplication produces a 128-bit result in 2 registers
I Addition, subtraction and multiplication of smaller integers (less

interesting)
I Single-precision and double-precision floating-point arithmetic
I Arithmetic on vectors of 2 64-bit integers
I Integer-vector multiplication only produces 2 64-bit results
I Arithmetic on vectors of 4 double-precision floats

Efficient implementation of finite-field arithmetic 5



So, what do we have?

I Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
I Addition, subtraction and multiplication of 64-bit integers
I Multiplication produces a 128-bit result in 2 registers

I Addition, subtraction and multiplication of smaller integers (less
interesting)

I Single-precision and double-precision floating-point arithmetic
I Arithmetic on vectors of 2 64-bit integers
I Integer-vector multiplication only produces 2 64-bit results
I Arithmetic on vectors of 4 double-precision floats

Efficient implementation of finite-field arithmetic 5



So, what do we have?

I Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
I Addition, subtraction and multiplication of 64-bit integers
I Multiplication produces a 128-bit result in 2 registers
I Addition, subtraction and multiplication of smaller integers (less

interesting)

I Single-precision and double-precision floating-point arithmetic
I Arithmetic on vectors of 2 64-bit integers
I Integer-vector multiplication only produces 2 64-bit results
I Arithmetic on vectors of 4 double-precision floats

Efficient implementation of finite-field arithmetic 5



So, what do we have?

I Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
I Addition, subtraction and multiplication of 64-bit integers
I Multiplication produces a 128-bit result in 2 registers
I Addition, subtraction and multiplication of smaller integers (less

interesting)
I Single-precision and double-precision floating-point arithmetic

I Arithmetic on vectors of 2 64-bit integers
I Integer-vector multiplication only produces 2 64-bit results
I Arithmetic on vectors of 4 double-precision floats

Efficient implementation of finite-field arithmetic 5



So, what do we have?

I Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
I Addition, subtraction and multiplication of 64-bit integers
I Multiplication produces a 128-bit result in 2 registers
I Addition, subtraction and multiplication of smaller integers (less

interesting)
I Single-precision and double-precision floating-point arithmetic
I Arithmetic on vectors of 2 64-bit integers
I Integer-vector multiplication only produces 2 64-bit results

I Arithmetic on vectors of 4 double-precision floats

Efficient implementation of finite-field arithmetic 5



So, what do we have?

I Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
I Addition, subtraction and multiplication of 64-bit integers
I Multiplication produces a 128-bit result in 2 registers
I Addition, subtraction and multiplication of smaller integers (less

interesting)
I Single-precision and double-precision floating-point arithmetic
I Arithmetic on vectors of 2 64-bit integers
I Integer-vector multiplication only produces 2 64-bit results
I Arithmetic on vectors of 4 double-precision floats

Efficient implementation of finite-field arithmetic 5



What do we need?

I For this talk consider arithmetic in a field Fp of large prime order p
(for example 256-bit long)

I Addition of ≈ 256-bit integers
I Subtraction of ≈ 256-bit integers
I Reduction modulo p after addition and subtraction
I Multiplication of ≈ 256-bit integers
I Squaring of ≈ 256-bit integers
I Reduction of a ≈ 512-bit multiplication result modulo p
I Inversion modulo p

Efficient implementation of finite-field arithmetic 6



What do we need?

I For this talk consider arithmetic in a field Fp of large prime order p
(for example 256-bit long)

I Addition of ≈ 256-bit integers
I Subtraction of ≈ 256-bit integers

I Reduction modulo p after addition and subtraction
I Multiplication of ≈ 256-bit integers
I Squaring of ≈ 256-bit integers
I Reduction of a ≈ 512-bit multiplication result modulo p
I Inversion modulo p

Efficient implementation of finite-field arithmetic 6



What do we need?

I For this talk consider arithmetic in a field Fp of large prime order p
(for example 256-bit long)

I Addition of ≈ 256-bit integers
I Subtraction of ≈ 256-bit integers
I Reduction modulo p after addition and subtraction

I Multiplication of ≈ 256-bit integers
I Squaring of ≈ 256-bit integers
I Reduction of a ≈ 512-bit multiplication result modulo p
I Inversion modulo p

Efficient implementation of finite-field arithmetic 6



What do we need?

I For this talk consider arithmetic in a field Fp of large prime order p
(for example 256-bit long)

I Addition of ≈ 256-bit integers
I Subtraction of ≈ 256-bit integers
I Reduction modulo p after addition and subtraction
I Multiplication of ≈ 256-bit integers
I Squaring of ≈ 256-bit integers

I Reduction of a ≈ 512-bit multiplication result modulo p
I Inversion modulo p

Efficient implementation of finite-field arithmetic 6



What do we need?

I For this talk consider arithmetic in a field Fp of large prime order p
(for example 256-bit long)

I Addition of ≈ 256-bit integers
I Subtraction of ≈ 256-bit integers
I Reduction modulo p after addition and subtraction
I Multiplication of ≈ 256-bit integers
I Squaring of ≈ 256-bit integers
I Reduction of a ≈ 512-bit multiplication result modulo p

I Inversion modulo p

Efficient implementation of finite-field arithmetic 6



What do we need?

I For this talk consider arithmetic in a field Fp of large prime order p
(for example 256-bit long)

I Addition of ≈ 256-bit integers
I Subtraction of ≈ 256-bit integers
I Reduction modulo p after addition and subtraction
I Multiplication of ≈ 256-bit integers
I Squaring of ≈ 256-bit integers
I Reduction of a ≈ 512-bit multiplication result modulo p
I Inversion modulo p

Efficient implementation of finite-field arithmetic 6



Representing 256-bit integers

I Let’s start with 64-bit integers, that seems easiest
I Represent 256-bit integer A through 4 64-bit integers a0, a1, a2, a3

(a total of 256 bits)

I Value of A is
∑3

i=0 ai2
64·i

I This is called radix-264 representation
I Let’s write that in C code:

typedef struct{
unsigned long long a[4];

} bigint256;

Efficient implementation of finite-field arithmetic 7



Representing 256-bit integers

I Let’s start with 64-bit integers, that seems easiest
I Represent 256-bit integer A through 4 64-bit integers a0, a1, a2, a3

(a total of 256 bits)
I Value of A is

∑3
i=0 ai2

64·i

I This is called radix-264 representation
I Let’s write that in C code:

typedef struct{
unsigned long long a[4];

} bigint256;

Efficient implementation of finite-field arithmetic 7



Representing 256-bit integers

I Let’s start with 64-bit integers, that seems easiest
I Represent 256-bit integer A through 4 64-bit integers a0, a1, a2, a3

(a total of 256 bits)
I Value of A is

∑3
i=0 ai2

64·i

I This is called radix-264 representation

I Let’s write that in C code:

typedef struct{
unsigned long long a[4];

} bigint256;

Efficient implementation of finite-field arithmetic 7



Representing 256-bit integers

I Let’s start with 64-bit integers, that seems easiest
I Represent 256-bit integer A through 4 64-bit integers a0, a1, a2, a3

(a total of 256 bits)
I Value of A is

∑3
i=0 ai2

64·i

I This is called radix-264 representation
I Let’s write that in C code:

typedef struct{
unsigned long long a[4];

} bigint256;

Efficient implementation of finite-field arithmetic 7



Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];

}

I What’s wrong about this?
I This performs arithmetic on a vector of 4 independent 64-bit

integers (modulo 264)
I This is not the same as arithmetic on 256-bit integers
I x->a[0] + y->a[0] may have 65 bits
I Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
I Same for all subsequent additions
I Note: The result may not even fit into a bigint256!

Efficient implementation of finite-field arithmetic 8



Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];

}

I What’s wrong about this?

I This performs arithmetic on a vector of 4 independent 64-bit
integers (modulo 264)

I This is not the same as arithmetic on 256-bit integers
I x->a[0] + y->a[0] may have 65 bits
I Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
I Same for all subsequent additions
I Note: The result may not even fit into a bigint256!

Efficient implementation of finite-field arithmetic 8



Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];

}

I What’s wrong about this?
I This performs arithmetic on a vector of 4 independent 64-bit

integers (modulo 264)

I This is not the same as arithmetic on 256-bit integers
I x->a[0] + y->a[0] may have 65 bits
I Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
I Same for all subsequent additions
I Note: The result may not even fit into a bigint256!

Efficient implementation of finite-field arithmetic 8



Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];

}

I What’s wrong about this?
I This performs arithmetic on a vector of 4 independent 64-bit

integers (modulo 264)
I This is not the same as arithmetic on 256-bit integers

I x->a[0] + y->a[0] may have 65 bits
I Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
I Same for all subsequent additions
I Note: The result may not even fit into a bigint256!

Efficient implementation of finite-field arithmetic 8



Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];

}

I What’s wrong about this?
I This performs arithmetic on a vector of 4 independent 64-bit

integers (modulo 264)
I This is not the same as arithmetic on 256-bit integers
I x->a[0] + y->a[0] may have 65 bits
I Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
I Same for all subsequent additions

I Note: The result may not even fit into a bigint256!

Efficient implementation of finite-field arithmetic 8



Addition of two bigint256

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];

}

I What’s wrong about this?
I This performs arithmetic on a vector of 4 independent 64-bit

integers (modulo 264)
I This is not the same as arithmetic on 256-bit integers
I x->a[0] + y->a[0] may have 65 bits
I Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
I Same for all subsequent additions
I Note: The result may not even fit into a bigint256!

Efficient implementation of finite-field arithmetic 8



How do we get the carry bits?

I in C something like:
unsigned long long carry = 0;
if(r.a[0] < x.a[0]) carry = 1;

I The computer actually remembers the carry in a flag register
I We can use this carry flag when using assembly
I No direct access from C level (so much for “portable assembly”)
I So, let’s do it in assembly (no worries, it’s not dark arts)
I Use somewhat simplified “C-like” qhasm syntax for assembly

Efficient implementation of finite-field arithmetic 9



How do we get the carry bits?

I in C something like:
unsigned long long carry = 0;
if(r.a[0] < x.a[0]) carry = 1;

I The computer actually remembers the carry in a flag register
I We can use this carry flag when using assembly
I No direct access from C level (so much for “portable assembly”)

I So, let’s do it in assembly (no worries, it’s not dark arts)
I Use somewhat simplified “C-like” qhasm syntax for assembly

Efficient implementation of finite-field arithmetic 9



How do we get the carry bits?

I in C something like:
unsigned long long carry = 0;
if(r.a[0] < x.a[0]) carry = 1;

I The computer actually remembers the carry in a flag register
I We can use this carry flag when using assembly
I No direct access from C level (so much for “portable assembly”)
I So, let’s do it in assembly (no worries, it’s not dark arts)

I Use somewhat simplified “C-like” qhasm syntax for assembly

Efficient implementation of finite-field arithmetic 9



How do we get the carry bits?

I in C something like:
unsigned long long carry = 0;
if(r.a[0] < x.a[0]) carry = 1;

I The computer actually remembers the carry in a flag register
I We can use this carry flag when using assembly
I No direct access from C level (so much for “portable assembly”)
I So, let’s do it in assembly (no worries, it’s not dark arts)
I Use somewhat simplified “C-like” qhasm syntax for assembly

Efficient implementation of finite-field arithmetic 9



bigint256 addition in qhasm

int64 x
int64 y

enter bigint256_add

x = mem64[input_1 + 0]
y = mem64[input_2 + 0]
carry? x += y
mem64[input_0 + 0] = x

x = mem64[input_1 + 8]
y = mem64[input_2 + 8]
carry? x += y + carry
mem64[input_0 + 8] = x

x = mem64[input_1 + 16]
y = mem64[input_2 + 16]
carry? x += y + carry
mem64[input_0 + 16] = x

x = mem64[input_1 + 24]
y = mem64[input_2 + 24]
carry? x += y + carry
mem64[input_0 + 24] = x

x = 0
x += x + carry

return x

Efficient implementation of finite-field arithmetic 10



bigint256 subtraction in qhasm

int64 x
int64 y

enter bigint256_sub

x = mem64[input_1 + 0]
y = mem64[input_2 + 0]
carry? x -= y
mem64[input_0 + 0] = x

x = mem64[input_1 + 8]
y = mem64[input_2 + 8]
carry? x -= y - carry
mem64[input_0 + 8] = x

x = mem64[input_1 + 16]
y = mem64[input_2 + 16]
carry? x -= y - carry
mem64[input_0 + 16] = x

x = mem64[input_1 + 24]
y = mem64[input_2 + 24]
carry? x -= y - carry
mem64[input_0 + 24] = x

x = 0
x += x + carry

return x

Efficient implementation of finite-field arithmetic 11



One step back. . .
I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries

I Example 1: Intel Nehalem can do 3 additions every cycle, but only 1
addition with carry every two cycles (carries cost a factor of 6!)

I Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =
4∑

i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Let’s call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Efficient implementation of finite-field arithmetic 12



One step back. . .
I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)

I Example 2: When using vector arithmetic, carries are typically lost
(very expensive to recompute)

I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =
4∑

i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Let’s call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Efficient implementation of finite-field arithmetic 12



One step back. . .
I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)
I Example 2: When using vector arithmetic, carries are typically lost

(very expensive to recompute)

I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =
4∑

i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Let’s call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Efficient implementation of finite-field arithmetic 12



One step back. . .
I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)
I Example 2: When using vector arithmetic, carries are typically lost

(very expensive to recompute)
I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =

4∑
i=0

ai2
51·i

I This is called radix-251 representation

I Multiple ways to write the same integer A, for example A = 252:
I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Let’s call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Efficient implementation of finite-field arithmetic 12



One step back. . .
I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)
I Example 2: When using vector arithmetic, carries are typically lost

(very expensive to recompute)
I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =

4∑
i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Let’s call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Efficient implementation of finite-field arithmetic 12



One step back. . .
I Radix-264 representation works and is sometimes a good choice
I Highly depends on the efficiency of handling carries
I Example 1: Intel Nehalem can do 3 additions every cycle, but only 1

addition with carry every two cycles (carries cost a factor of 6!)
I Example 2: When using vector arithmetic, carries are typically lost

(very expensive to recompute)
I Let’s get rid of the carries, represent A as (a0, a1, a2, a3, a4) with

A =

4∑
i=0

ai2
51·i

I This is called radix-251 representation
I Multiple ways to write the same integer A, for example A = 252:

I (252, 0, 0, 0, 0)
I (0, 2, 0, 0, 0)

I Let’s call a representation (a0, a1, a2, a3, a4) reduced, if all
ai ∈ [0, . . . , 252 − 1]

Efficient implementation of finite-field arithmetic 12



Addition of two bigint256

typedef struct{
unsigned long long a[5];

} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];
r->a[4] = x->a[4] + y->a[4];

}

I This definitely works for reduced inputs
I This actually works as long as all coefficients are in [0, . . . , 263 − 1]
I We can do quite a few additions before we have to carry (reduce)

Efficient implementation of finite-field arithmetic 13



Addition of two bigint256

typedef struct{
unsigned long long a[5];

} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];
r->a[4] = x->a[4] + y->a[4];

}

I This definitely works for reduced inputs

I This actually works as long as all coefficients are in [0, . . . , 263 − 1]
I We can do quite a few additions before we have to carry (reduce)

Efficient implementation of finite-field arithmetic 13



Addition of two bigint256

typedef struct{
unsigned long long a[5];

} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];
r->a[4] = x->a[4] + y->a[4];

}

I This definitely works for reduced inputs
I This actually works as long as all coefficients are in [0, . . . , 263 − 1]

I We can do quite a few additions before we have to carry (reduce)

Efficient implementation of finite-field arithmetic 13



Addition of two bigint256

typedef struct{
unsigned long long a[5];

} bigint256;

void bigint256_add(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] + y->a[0];
r->a[1] = x->a[1] + y->a[1];
r->a[2] = x->a[2] + y->a[2];
r->a[3] = x->a[3] + y->a[3];
r->a[4] = x->a[4] + y->a[4];

}

I This definitely works for reduced inputs
I This actually works as long as all coefficients are in [0, . . . , 263 − 1]
I We can do quite a few additions before we have to carry (reduce)

Efficient implementation of finite-field arithmetic 13



Subtraction of two bigint256

typedef struct{
unsigned long long a[5];

} bigint256;

void bigint256_sub(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] - y->a[0];
r->a[1] = x->a[1] - y->a[1];
r->a[2] = x->a[2] - y->a[2];
r->a[3] = x->a[3] - y->a[3];
r->a[4] = x->a[4] - y->a[4];

}

I Again: what’s wrong here?

I Slightly update our bigint256 definition to work with signed 64-bit
integers

I Reduced if coefficients are in [−252 − 1, 252 − 1]

Efficient implementation of finite-field arithmetic 14



Subtraction of two bigint256

typedef struct{
signed long long a[5];

} bigint256;

void bigint256_sub(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] - y->a[0];
r->a[1] = x->a[1] - y->a[1];
r->a[2] = x->a[2] - y->a[2];
r->a[3] = x->a[3] - y->a[3];
r->a[4] = x->a[4] - y->a[4];

}

I Again: what’s wrong here?
I Slightly update our bigint256 definition to work with signed 64-bit

integers

I Reduced if coefficients are in [−252 − 1, 252 − 1]

Efficient implementation of finite-field arithmetic 14



Subtraction of two bigint256

typedef struct{
signed long long a[5];

} bigint256;

void bigint256_sub(bigint256 *r,
const bigint256 *x,
const bigint256 *y)

{
r->a[0] = x->a[0] - y->a[0];
r->a[1] = x->a[1] - y->a[1];
r->a[2] = x->a[2] - y->a[2];
r->a[3] = x->a[3] - y->a[3];
r->a[4] = x->a[4] - y->a[4];

}

I Again: what’s wrong here?
I Slightly update our bigint256 definition to work with signed 64-bit

integers
I Reduced if coefficients are in [−252 − 1, 252 − 1]

Efficient implementation of finite-field arithmetic 14



Back to reduced representation
I An addition/subtraction does not produce a reduced output for

reduced inputs
I Can do quite a few additions, but at some point we need to reduce

(i.e., carry)

I Let’s carry high bits of r.a[0] over to r.a[1]:
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 251)

I Not defined in C standard (usually works, and no problem in
assembly)

I Proceed:
I Carry from r.a[1] to r.a[2];

I Carry from r.a[2] to r.a[3];
I Carry from r.a[3] to r.a[4];
I Carry from r.a[4] to . . . ?

Efficient implementation of finite-field arithmetic 15



Back to reduced representation
I An addition/subtraction does not produce a reduced output for

reduced inputs
I Can do quite a few additions, but at some point we need to reduce

(i.e., carry)
I Let’s carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 251)

I Not defined in C standard (usually works, and no problem in
assembly)

I Proceed:
I Carry from r.a[1] to r.a[2];

I Carry from r.a[2] to r.a[3];
I Carry from r.a[3] to r.a[4];
I Carry from r.a[4] to . . . ?

Efficient implementation of finite-field arithmetic 15



Back to reduced representation
I An addition/subtraction does not produce a reduced output for

reduced inputs
I Can do quite a few additions, but at some point we need to reduce

(i.e., carry)
I Let’s carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 251)

I Not defined in C standard (usually works, and no problem in
assembly)

I Proceed:
I Carry from r.a[1] to r.a[2];

I Carry from r.a[2] to r.a[3];
I Carry from r.a[3] to r.a[4];
I Carry from r.a[4] to . . . ?

Efficient implementation of finite-field arithmetic 15



Back to reduced representation
I An addition/subtraction does not produce a reduced output for

reduced inputs
I Can do quite a few additions, but at some point we need to reduce

(i.e., carry)
I Let’s carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 251)

I Not defined in C standard (usually works, and no problem in
assembly)

I Proceed:
I Carry from r.a[1] to r.a[2];

I Carry from r.a[2] to r.a[3];
I Carry from r.a[3] to r.a[4];
I Carry from r.a[4] to . . . ?

Efficient implementation of finite-field arithmetic 15



Back to reduced representation
I An addition/subtraction does not produce a reduced output for

reduced inputs
I Can do quite a few additions, but at some point we need to reduce

(i.e., carry)
I Let’s carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 251)

I Not defined in C standard (usually works, and no problem in
assembly)

I Proceed:
I Carry from r.a[1] to r.a[2];
I Carry from r.a[2] to r.a[3];

I Carry from r.a[3] to r.a[4];
I Carry from r.a[4] to . . . ?

Efficient implementation of finite-field arithmetic 15



Back to reduced representation
I An addition/subtraction does not produce a reduced output for

reduced inputs
I Can do quite a few additions, but at some point we need to reduce

(i.e., carry)
I Let’s carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 251)

I Not defined in C standard (usually works, and no problem in
assembly)

I Proceed:
I Carry from r.a[1] to r.a[2];
I Carry from r.a[2] to r.a[3];
I Carry from r.a[3] to r.a[4];

I Carry from r.a[4] to . . . ?

Efficient implementation of finite-field arithmetic 15



Back to reduced representation
I An addition/subtraction does not produce a reduced output for

reduced inputs
I Can do quite a few additions, but at some point we need to reduce

(i.e., carry)
I Let’s carry high bits of r.a[0] over to r.a[1]:

signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I This requires that >> 51 is an arithmetic shift (i.e., truncating
division by 251)

I Not defined in C standard (usually works, and no problem in
assembly)

I Proceed:
I Carry from r.a[1] to r.a[2];
I Carry from r.a[2] to r.a[3];
I Carry from r.a[3] to r.a[4];
I Carry from r.a[4] to . . . ?

Efficient implementation of finite-field arithmetic 15



Reducing modulo p

I When adding integers, the result naturally grows
I For integers, we do not really have any place to carry from r.a[4],

except create a new limb r.a[5], etc.

I We want to perform arithmetic in a field Fp, we can reduce modulo p
I Let’s fix some p, say p = 2255 − 19

I Imagine, that we did carry to r.a[5]. Then we get an integer

A = a0 + 251a1 + 2102a2 + 2153a3 + 2204a4 + 2255a5

I Note that 2255 ≡ 19 (mod p)

I Modulo p, the integer A is congruent to

A = (a0 + 19a5) + 251a1 + 2102a2 + 2153a3 + 2204a4

I We can reduce r.a[4] as follows (modulo p):
signed long long carry = r.a[4] >> 51;
r.a[0] += 19*carry;
carry <<= 51;
r.a[4] -= carry;

Efficient implementation of finite-field arithmetic 16



Reducing modulo p

I When adding integers, the result naturally grows
I For integers, we do not really have any place to carry from r.a[4],

except create a new limb r.a[5], etc.
I We want to perform arithmetic in a field Fp, we can reduce modulo p

I Let’s fix some p, say p = 2255 − 19

I Imagine, that we did carry to r.a[5]. Then we get an integer

A = a0 + 251a1 + 2102a2 + 2153a3 + 2204a4 + 2255a5

I Note that 2255 ≡ 19 (mod p)

I Modulo p, the integer A is congruent to

A = (a0 + 19a5) + 251a1 + 2102a2 + 2153a3 + 2204a4

I We can reduce r.a[4] as follows (modulo p):
signed long long carry = r.a[4] >> 51;
r.a[0] += 19*carry;
carry <<= 51;
r.a[4] -= carry;

Efficient implementation of finite-field arithmetic 16



Reducing modulo p

I When adding integers, the result naturally grows
I For integers, we do not really have any place to carry from r.a[4],

except create a new limb r.a[5], etc.
I We want to perform arithmetic in a field Fp, we can reduce modulo p
I Let’s fix some p, say p = 2255 − 19

I Imagine, that we did carry to r.a[5]. Then we get an integer

A = a0 + 251a1 + 2102a2 + 2153a3 + 2204a4 + 2255a5

I Note that 2255 ≡ 19 (mod p)

I Modulo p, the integer A is congruent to

A = (a0 + 19a5) + 251a1 + 2102a2 + 2153a3 + 2204a4

I We can reduce r.a[4] as follows (modulo p):
signed long long carry = r.a[4] >> 51;
r.a[0] += 19*carry;
carry <<= 51;
r.a[4] -= carry;

Efficient implementation of finite-field arithmetic 16



Reducing modulo p

I When adding integers, the result naturally grows
I For integers, we do not really have any place to carry from r.a[4],

except create a new limb r.a[5], etc.
I We want to perform arithmetic in a field Fp, we can reduce modulo p
I Let’s fix some p, say p = 2255 − 19

I Imagine, that we did carry to r.a[5]. Then we get an integer

A = a0 + 251a1 + 2102a2 + 2153a3 + 2204a4 + 2255a5

I Note that 2255 ≡ 19 (mod p)

I Modulo p, the integer A is congruent to

A = (a0 + 19a5) + 251a1 + 2102a2 + 2153a3 + 2204a4

I We can reduce r.a[4] as follows (modulo p):
signed long long carry = r.a[4] >> 51;
r.a[0] += 19*carry;
carry <<= 51;
r.a[4] -= carry;

Efficient implementation of finite-field arithmetic 16



Reducing modulo p

I When adding integers, the result naturally grows
I For integers, we do not really have any place to carry from r.a[4],

except create a new limb r.a[5], etc.
I We want to perform arithmetic in a field Fp, we can reduce modulo p
I Let’s fix some p, say p = 2255 − 19

I Imagine, that we did carry to r.a[5]. Then we get an integer

A = a0 + 251a1 + 2102a2 + 2153a3 + 2204a4 + 2255a5

I Note that 2255 ≡ 19 (mod p)

I Modulo p, the integer A is congruent to

A = (a0 + 19a5) + 251a1 + 2102a2 + 2153a3 + 2204a4

I We can reduce r.a[4] as follows (modulo p):
signed long long carry = r.a[4] >> 51;
r.a[0] += 19*carry;
carry <<= 51;
r.a[4] -= carry;

Efficient implementation of finite-field arithmetic 16



Reducing modulo p

I When adding integers, the result naturally grows
I For integers, we do not really have any place to carry from r.a[4],

except create a new limb r.a[5], etc.
I We want to perform arithmetic in a field Fp, we can reduce modulo p
I Let’s fix some p, say p = 2255 − 19

I Imagine, that we did carry to r.a[5]. Then we get an integer

A = a0 + 251a1 + 2102a2 + 2153a3 + 2204a4 + 2255a5

I Note that 2255 ≡ 19 (mod p)

I Modulo p, the integer A is congruent to

A = (a0 + 19a5) + 251a1 + 2102a2 + 2153a3 + 2204a4

I We can reduce r.a[4] as follows (modulo p):
signed long long carry = r.a[4] >> 51;
r.a[0] += 19*carry;
carry <<= 51;
r.a[4] -= carry;

Efficient implementation of finite-field arithmetic 16



Primes are not rabbits

I “You cannot just simply pull some nice prime out of your hat!”

I In fact, very often we can.
I For cryptography we construct curves over fields of “nice” order
I Examples:

I 2192 − 264 − 1 (“NIST-P192”, FIPS186-2, 2000)
I 2224 − 296 + 1 (“NIST-P224”, FIPS186-2, 2000)
I 2256 − 2224 + 2192 + 296 − 1 (“NIST-P256”, FIPS186-2, 2000)
I 2255 − 19 (Bernstein, 2006)
I 2251 − 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)

I All these primes come with (more or less) fast reduction algorithms
I More about general primes later
I For the moment let’s stick to 2255 − 19

Efficient implementation of finite-field arithmetic 17



Primes are not rabbits

I “You cannot just simply pull some nice prime out of your hat!”
I In fact, very often we can.
I For cryptography we construct curves over fields of “nice” order

I Examples:
I 2192 − 264 − 1 (“NIST-P192”, FIPS186-2, 2000)
I 2224 − 296 + 1 (“NIST-P224”, FIPS186-2, 2000)
I 2256 − 2224 + 2192 + 296 − 1 (“NIST-P256”, FIPS186-2, 2000)
I 2255 − 19 (Bernstein, 2006)
I 2251 − 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)

I All these primes come with (more or less) fast reduction algorithms
I More about general primes later
I For the moment let’s stick to 2255 − 19

Efficient implementation of finite-field arithmetic 17



Primes are not rabbits

I “You cannot just simply pull some nice prime out of your hat!”
I In fact, very often we can.
I For cryptography we construct curves over fields of “nice” order
I Examples:

I 2192 − 264 − 1 (“NIST-P192”, FIPS186-2, 2000)
I 2224 − 296 + 1 (“NIST-P224”, FIPS186-2, 2000)
I 2256 − 2224 + 2192 + 296 − 1 (“NIST-P256”, FIPS186-2, 2000)
I 2255 − 19 (Bernstein, 2006)
I 2251 − 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)

I All these primes come with (more or less) fast reduction algorithms
I More about general primes later
I For the moment let’s stick to 2255 − 19

Efficient implementation of finite-field arithmetic 17



Primes are not rabbits

I “You cannot just simply pull some nice prime out of your hat!”
I In fact, very often we can.
I For cryptography we construct curves over fields of “nice” order
I Examples:

I 2192 − 264 − 1 (“NIST-P192”, FIPS186-2, 2000)
I 2224 − 296 + 1 (“NIST-P224”, FIPS186-2, 2000)
I 2256 − 2224 + 2192 + 296 − 1 (“NIST-P256”, FIPS186-2, 2000)
I 2255 − 19 (Bernstein, 2006)
I 2251 − 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)

I All these primes come with (more or less) fast reduction algorithms

I More about general primes later
I For the moment let’s stick to 2255 − 19

Efficient implementation of finite-field arithmetic 17



Primes are not rabbits

I “You cannot just simply pull some nice prime out of your hat!”
I In fact, very often we can.
I For cryptography we construct curves over fields of “nice” order
I Examples:

I 2192 − 264 − 1 (“NIST-P192”, FIPS186-2, 2000)
I 2224 − 296 + 1 (“NIST-P224”, FIPS186-2, 2000)
I 2256 − 2224 + 2192 + 296 − 1 (“NIST-P256”, FIPS186-2, 2000)
I 2255 − 19 (Bernstein, 2006)
I 2251 − 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)

I All these primes come with (more or less) fast reduction algorithms
I More about general primes later
I For the moment let’s stick to 2255 − 19

Efficient implementation of finite-field arithmetic 17



Briefly back to carrying

I We first reduced r.a[0], i.e., produced r.a[0] in interval
[−251, 251]

I At the end we add 19*carry to r.a[0]
I Carry has at most 12 bits (obtained by dividing a signed 64-bit

integer by 251)
I The absolute value of 19*carry has at most 17 bits
I r.a[0]+19*carry is still within [−252 − 1, 252 − 1], i.e., reduced

Efficient implementation of finite-field arithmetic 18



Multiplication
I We want to multiply two integers
A =

∑4
i=0 ai2

51·i and B =
∑4

i=0 bi2
51·i

I Think about it like this:

I Multiply polynomials A =
∑4

i=0 aiX
i and B =

∑4
i=0 biX

i

I Obtain result polynomial R =
∑8

i=0 riX
i

I Evaluate R at 251

I The coefficients of R are:

r0 = a0b0

r1 = a0b1 + a1b0

r2 = a0b2 + a1b1 + a2b0

. . .

r8 = a4b4

I If all ai and bi have 52 bits, the ri will have up to 107 bits
I Doesn’t fit into 64-bit registers, but remember that there is a

multiplication instruction that produces 128-bit results in two
registers.

Efficient implementation of finite-field arithmetic 19



Multiplication
I We want to multiply two integers
A =

∑4
i=0 ai2

51·i and B =
∑4

i=0 bi2
51·i

I Think about it like this:
I Multiply polynomials A =

∑4
i=0 aiX

i and B =
∑4

i=0 biX
i

I Obtain result polynomial R =
∑8

i=0 riX
i

I Evaluate R at 251

I The coefficients of R are:

r0 = a0b0

r1 = a0b1 + a1b0

r2 = a0b2 + a1b1 + a2b0

. . .

r8 = a4b4

I If all ai and bi have 52 bits, the ri will have up to 107 bits
I Doesn’t fit into 64-bit registers, but remember that there is a

multiplication instruction that produces 128-bit results in two
registers.

Efficient implementation of finite-field arithmetic 19



Multiplication
I We want to multiply two integers
A =

∑4
i=0 ai2

51·i and B =
∑4

i=0 bi2
51·i

I Think about it like this:
I Multiply polynomials A =

∑4
i=0 aiX

i and B =
∑4

i=0 biX
i

I Obtain result polynomial R =
∑8

i=0 riX
i

I Evaluate R at 251

I The coefficients of R are:

r0 = a0b0

r1 = a0b1 + a1b0

r2 = a0b2 + a1b1 + a2b0

. . .

r8 = a4b4

I If all ai and bi have 52 bits, the ri will have up to 107 bits
I Doesn’t fit into 64-bit registers, but remember that there is a

multiplication instruction that produces 128-bit results in two
registers.

Efficient implementation of finite-field arithmetic 19



Multiplication
I We want to multiply two integers
A =

∑4
i=0 ai2

51·i and B =
∑4

i=0 bi2
51·i

I Think about it like this:
I Multiply polynomials A =

∑4
i=0 aiX

i and B =
∑4

i=0 biX
i

I Obtain result polynomial R =
∑8

i=0 riX
i

I Evaluate R at 251

I The coefficients of R are:

r0 = a0b0

r1 = a0b1 + a1b0

r2 = a0b2 + a1b1 + a2b0

. . .

r8 = a4b4

I If all ai and bi have 52 bits, the ri will have up to 107 bits
I Doesn’t fit into 64-bit registers, but remember that there is a

multiplication instruction that produces 128-bit results in two
registers.

Efficient implementation of finite-field arithmetic 19



Multiplication
I We want to multiply two integers
A =

∑4
i=0 ai2

51·i and B =
∑4

i=0 bi2
51·i

I Think about it like this:
I Multiply polynomials A =

∑4
i=0 aiX

i and B =
∑4

i=0 biX
i

I Obtain result polynomial R =
∑8

i=0 riX
i

I Evaluate R at 251

I The coefficients of R are:

r0 = a0b0

r1 = a0b1 + a1b0

r2 = a0b2 + a1b1 + a2b0

. . .

r8 = a4b4

I If all ai and bi have 52 bits, the ri will have up to 107 bits
I Doesn’t fit into 64-bit registers, but remember that there is a

multiplication instruction that produces 128-bit results in two
registers.

Efficient implementation of finite-field arithmetic 19



Multiplication
I We want to multiply two integers
A =

∑4
i=0 ai2

51·i and B =
∑4

i=0 bi2
51·i

I Think about it like this:
I Multiply polynomials A =

∑4
i=0 aiX

i and B =
∑4

i=0 biX
i

I Obtain result polynomial R =
∑8

i=0 riX
i

I Evaluate R at 251

I The coefficients of R are:

r0 = a0b0

r1 = a0b1 + a1b0

r2 = a0b2 + a1b1 + a2b0

. . .

r8 = a4b4

I If all ai and bi have 52 bits, the ri will have up to 107 bits
I Doesn’t fit into 64-bit registers, but remember that there is a

multiplication instruction that produces 128-bit results in two
registers.

Efficient implementation of finite-field arithmetic 19



Multiplication in C (idealized)

void mul(int128 r[9], const bigint256 *x, const bigint256 *y)
{

const signed long long *a = x->a;
const signed long long *b = y->a;
r[0] = (int128) a[0]*b[0];
r[1] = (int128) a[0]*b[1] + (int128) a[1]*b[0];
r[2] = (int128) a[0]*b[2] + (int128) a[1]*b[1] + (int128) a[2]*b[0];
r[3] = (int128) a[0]*b[3] + (int128) a[1]*b[2] + \

(int128) a[2]*b[1] + (int128) a[3]*b[0];
r[4] = (int128) a[0]*b[4] + (int128) a[1]*b[3] + (int128) a[2]*b[2] + \

(int128) a[3]*b[1] + (int128) a[4]*b[0];
r[5] = (int128) a[1]*b[4] + (int128) a[2]*b[3] + \

(int128) a[3]*b[2] + (int128) a[4]*b[1];
r[6] = (int128) a[2]*b[4] + (int128) a[3]*b[3] + (int128) a[4]*b[2];
r[7] = (int128) a[3]*b[4] + (int128) a[4]*b[3];
r[8] = (int128) a[4]*b[4];

}

I Can evaluate in arbitrary order:
“operand scanning” vs. “product scanning”

I Datatype int128 not in ANSI C (but can get it with gcc)
I Even in assembly, we don’t have addition of 128-bit integers

Efficient implementation of finite-field arithmetic 20



Multiplication in C (idealized)

void mul(int128 r[9], const bigint256 *x, const bigint256 *y)
{

const signed long long *a = x->a;
const signed long long *b = y->a;
r[0] = (int128) a[0]*b[0];
r[1] = (int128) a[0]*b[1] + (int128) a[1]*b[0];
r[2] = (int128) a[0]*b[2] + (int128) a[1]*b[1] + (int128) a[2]*b[0];
r[3] = (int128) a[0]*b[3] + (int128) a[1]*b[2] + \

(int128) a[2]*b[1] + (int128) a[3]*b[0];
r[4] = (int128) a[0]*b[4] + (int128) a[1]*b[3] + (int128) a[2]*b[2] + \

(int128) a[3]*b[1] + (int128) a[4]*b[0];
r[5] = (int128) a[1]*b[4] + (int128) a[2]*b[3] + \

(int128) a[3]*b[2] + (int128) a[4]*b[1];
r[6] = (int128) a[2]*b[4] + (int128) a[3]*b[3] + (int128) a[4]*b[2];
r[7] = (int128) a[3]*b[4] + (int128) a[4]*b[3];
r[8] = (int128) a[4]*b[4];

}

I Can evaluate in arbitrary order:
“operand scanning” vs. “product scanning”

I Datatype int128 not in ANSI C (but can get it with gcc)
I Even in assembly, we don’t have addition of 128-bit integers

Efficient implementation of finite-field arithmetic 20



Multiplication in C (idealized)

void mul(int128 r[9], const bigint256 *x, const bigint256 *y)
{

const signed long long *a = x->a;
const signed long long *b = y->a;
r[0] = (int128) a[0]*b[0];
r[1] = (int128) a[0]*b[1] + (int128) a[1]*b[0];
r[2] = (int128) a[0]*b[2] + (int128) a[1]*b[1] + (int128) a[2]*b[0];
r[3] = (int128) a[0]*b[3] + (int128) a[1]*b[2] + \

(int128) a[2]*b[1] + (int128) a[3]*b[0];
r[4] = (int128) a[0]*b[4] + (int128) a[1]*b[3] + (int128) a[2]*b[2] + \

(int128) a[3]*b[1] + (int128) a[4]*b[0];
r[5] = (int128) a[1]*b[4] + (int128) a[2]*b[3] + \

(int128) a[3]*b[2] + (int128) a[4]*b[1];
r[6] = (int128) a[2]*b[4] + (int128) a[3]*b[3] + (int128) a[4]*b[2];
r[7] = (int128) a[3]*b[4] + (int128) a[4]*b[3];
r[8] = (int128) a[4]*b[4];

}

I Can evaluate in arbitrary order:
“operand scanning” vs. “product scanning”

I Datatype int128 not in ANSI C (but can get it with gcc)
I Even in assembly, we don’t have addition of 128-bit integers

Efficient implementation of finite-field arithmetic 20



A peek at multiplication in qhasm

rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 0]
r0 = rax
r0h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 8]
r1 = rax
r1h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 16]
r2 = rax
r2h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 24]
r3 = rax
r3h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 32]
r4 = rax
r4h = rdx

Efficient implementation of finite-field arithmetic 21



A peek at multiplication in qhasm

rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 0]
carry? r1 += rax
r1h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 8]
carry? r2 += rax
r2h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 16]
carry? r3 += rax
r3h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 24]
carry? r4 += rax
r4h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 32]
r5 = rax
r5h = rdx

Efficient implementation of finite-field arithmetic 21



A peek at multiplication in qhasm

...

mem64[input_0 + 0] = r0
mem64[input_0 + 8] = r0h
mem64[input_0 + 16] = r1
mem64[input_0 + 24] = r1h
mem64[input_0 + 32] = r2
mem64[input_0 + 40] = r2h

...

mem64[input_0 + 128] = r8
mem64[input_0 + 136] = r8h

Efficient implementation of finite-field arithmetic 21



Again: back to reduced representation

I We now have r0, . . . , r8, such that

8∑
i=0

riX
i =

(
4∑

i=0

aiX
i

)(
4∑

i=0

biX
i

)

I We want to have r0, . . . , r4, such that

4∑
i=0

ri2
51·i ≡

(
4∑

i=0

ai2
51·i

)(
4∑

i=0

bi2
51·i

)
(mod 2255 − 19)

I With the same reasoning as before, we can reduce modulo p as
r0 ← r0 + 19r5

r1 ← r1 + 19r6
r2 ← r2 + 19r7
r3 ← r3 + 19r8

I Remaining problem: r0, . . . , r4 are too large
I Solution: carry!

Efficient implementation of finite-field arithmetic 22



Again: back to reduced representation

I We now have r0, . . . , r8, such that

8∑
i=0

riX
i =

(
4∑

i=0

aiX
i

)(
4∑

i=0

biX
i

)

I We want to have r0, . . . , r4, such that

4∑
i=0

ri2
51·i ≡

(
4∑

i=0

ai2
51·i

)(
4∑

i=0

bi2
51·i

)
(mod 2255 − 19)

I With the same reasoning as before, we can reduce modulo p as
r0 ← r0 + 19r5

r1 ← r1 + 19r6
r2 ← r2 + 19r7
r3 ← r3 + 19r8

I Remaining problem: r0, . . . , r4 are too large
I Solution: carry!

Efficient implementation of finite-field arithmetic 22



Again: back to reduced representation

I We now have r0, . . . , r8, such that

8∑
i=0

riX
i =

(
4∑

i=0

aiX
i

)(
4∑

i=0

biX
i

)

I We want to have r0, . . . , r4, such that

4∑
i=0

ri2
51·i ≡

(
4∑

i=0

ai2
51·i

)(
4∑

i=0

bi2
51·i

)
(mod 2255 − 19)

I With the same reasoning as before, we can reduce modulo p as
r0 ← r0 + 19r5
r1 ← r1 + 19r6
r2 ← r2 + 19r7
r3 ← r3 + 19r8

I Remaining problem: r0, . . . , r4 are too large
I Solution: carry!

Efficient implementation of finite-field arithmetic 22



Again: back to reduced representation

I We now have r0, . . . , r8, such that

8∑
i=0

riX
i =

(
4∑

i=0

aiX
i

)(
4∑

i=0

biX
i

)

I We want to have r0, . . . , r4, such that

4∑
i=0

ri2
51·i ≡

(
4∑

i=0

ai2
51·i

)(
4∑

i=0

bi2
51·i

)
(mod 2255 − 19)

I With the same reasoning as before, we can reduce modulo p as
r0 ← r0 + 19r5
r1 ← r1 + 19r6
r2 ← r2 + 19r7
r3 ← r3 + 19r8

I Remaining problem: r0, . . . , r4 are too large

I Solution: carry!

Efficient implementation of finite-field arithmetic 22



Again: back to reduced representation

I We now have r0, . . . , r8, such that

8∑
i=0

riX
i =

(
4∑

i=0

aiX
i

)(
4∑

i=0

biX
i

)

I We want to have r0, . . . , r4, such that

4∑
i=0

ri2
51·i ≡

(
4∑

i=0

ai2
51·i

)(
4∑

i=0

bi2
51·i

)
(mod 2255 − 19)

I With the same reasoning as before, we can reduce modulo p as
r0 ← r0 + 19r5
r1 ← r1 + 19r6
r2 ← r2 + 19r7
r3 ← r3 + 19r8

I Remaining problem: r0, . . . , r4 are too large
I Solution: carry!

Efficient implementation of finite-field arithmetic 22



A suitable carry chain

I Basically the same as before, but now with 128-bit values (tricky,
but possible in assembly)

signed int128 carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I Carry from r0 to r1; from r1 to r2, and so on
I Multiply carry from r4 by 19 and add to r0

I After one round of carries we have signed 64-bit integers
I Perform another round of carries to obtain reduced coefficients

Efficient implementation of finite-field arithmetic 23



A suitable carry chain

I Basically the same as before, but now with 128-bit values (tricky,
but possible in assembly)

signed int128 carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;

I Carry from r0 to r1; from r1 to r2, and so on
I Multiply carry from r4 by 19 and add to r0
I After one round of carries we have signed 64-bit integers
I Perform another round of carries to obtain reduced coefficients

Efficient implementation of finite-field arithmetic 23



Squaring

I Obviously working solution for squaring:
#define square(R,X) mul(R,X,X)

I Question: Can we do better?

I Using multiplication for squarings:
void mul(int128 r[9], const bigint256 *x, const bigint256 *y)
{

const signed long long *a = x->a;
const signed long long *b = y->a;
r[0] = (int128) a[0]*a[0];
r[1] = (int128) a[0]*a[1] + (int128) a[1]*a[0];
r[2] = (int128) a[0]*a[2] + (int128) a[1]*a[1] + (int128) a[2]*a[0];
r[3] = (int128) a[0]*a[3] + (int128) a[1]*a[2] + \

(int128) a[2]*a[1] + (int128) a[3]*a[0];
r[4] = (int128) a[0]*a[4] + (int128) a[1]*a[3] + (int128) a[2]*a[2] + \

(int128) a[3]*a[1] + (int128) a[4]*a[0];
r[5] = (int128) a[1]*a[4] + (int128) a[2]*a[3] + \

(int128) a[3]*a[2] + (int128) a[4]*a[1];
r[6] = (int128) a[2]*a[4] + (int128) a[3]*a[3] + (int128) a[4]*a[2];
r[7] = (int128) a[3]*a[4] + (int128) a[4]*a[3];
r[8] = (int128) a[4]*a[4];

}

I Observation: We perform many multiplications twice!

Efficient implementation of finite-field arithmetic 24



Squaring

I Obviously working solution for squaring:
#define square(R,X) mul(R,X,X)

I Question: Can we do better?
I Using multiplication for squarings:

void mul(int128 r[9], const bigint256 *x, const bigint256 *y)
{

const signed long long *a = x->a;
const signed long long *b = y->a;
r[0] = (int128) a[0]*a[0];
r[1] = (int128) a[0]*a[1] + (int128) a[1]*a[0];
r[2] = (int128) a[0]*a[2] + (int128) a[1]*a[1] + (int128) a[2]*a[0];
r[3] = (int128) a[0]*a[3] + (int128) a[1]*a[2] + \

(int128) a[2]*a[1] + (int128) a[3]*a[0];
r[4] = (int128) a[0]*a[4] + (int128) a[1]*a[3] + (int128) a[2]*a[2] + \

(int128) a[3]*a[1] + (int128) a[4]*a[0];
r[5] = (int128) a[1]*a[4] + (int128) a[2]*a[3] + \

(int128) a[3]*a[2] + (int128) a[4]*a[1];
r[6] = (int128) a[2]*a[4] + (int128) a[3]*a[3] + (int128) a[4]*a[2];
r[7] = (int128) a[3]*a[4] + (int128) a[4]*a[3];
r[8] = (int128) a[4]*a[4];

}

I Observation: We perform many multiplications twice!

Efficient implementation of finite-field arithmetic 24



Squaring

I Obviously working solution for squaring:
#define square(R,X) mul(R,X,X)

I Question: Can we do better?
I Using multiplication for squarings:

void mul(int128 r[9], const bigint256 *x, const bigint256 *y)
{

const signed long long *a = x->a;
const signed long long *b = y->a;
r[0] = (int128) a[0]*a[0];
r[1] = (int128) a[0]*a[1] + (int128) a[1]*a[0];
r[2] = (int128) a[0]*a[2] + (int128) a[1]*a[1] + (int128) a[2]*a[0];
r[3] = (int128) a[0]*a[3] + (int128) a[1]*a[2] + \

(int128) a[2]*a[1] + (int128) a[3]*a[0];
r[4] = (int128) a[0]*a[4] + (int128) a[1]*a[3] + (int128) a[2]*a[2] + \

(int128) a[3]*a[1] + (int128) a[4]*a[0];
r[5] = (int128) a[1]*a[4] + (int128) a[2]*a[3] + \

(int128) a[3]*a[2] + (int128) a[4]*a[1];
r[6] = (int128) a[2]*a[4] + (int128) a[3]*a[3] + (int128) a[4]*a[2];
r[7] = (int128) a[3]*a[4] + (int128) a[4]*a[3];
r[8] = (int128) a[4]*a[4];

}

I Observation: We perform many multiplications twice!

Efficient implementation of finite-field arithmetic 24



Faster squaring

signed long long _2a[4];
_2a[0] = a[0] << 1;
_2a[1] = a[1] << 1;
_2a[2] = a[2] << 1;
_2a[3] = a[3] << 1;

r[0] = (int128) a[0]*a[0];
r[1] = (int128) _2a[0]*a[1];
r[2] = (int128) _2a[0]*a[2] + (int128) a[1]*a[1];
r[3] = (int128) _2a[0]*a[3] + (int128) _2a[1]*a[2];
r[4] = (int128) _2a[0]*a[4] + (int128) _2a[1]*a[3] + (int128) a[2]*a[2];
r[5] = (int128) _2a[1]*a[4] + (int128) _2a[2]*a[3];
r[6] = (int128) _2a[2]*a[4] + (int128) a[3]*a[3];
r[7] = (int128) _2a[3]*a[4];
r[8] = (int128) a[4]*a[4];

I Multiplication needs 25 multiplications, 16 additions
I Squaring needs 15 multiplications, 6 additions (and 4 shifts)

Efficient implementation of finite-field arithmetic 25



Faster multiplication?
I Consider multiplication of two n-coefficient polynomials (degree
≤ n− 1)

I So far we needed n2 multiplications and (n− 1)2 additions
I Kolmogorov conjectured 1952: You can’t do better, multiplication

has quadratic complexity

I Proven wrong by 23-year old student Karatsuba in 1960
I Assume that n = 2m, then write an n-coefficient polynomial A as
A0 +XmA1

I Perform multiplication as

= (A0 +XmA1) · (B0 +XmB1)

= A0B0 + (A0B1 +A1B0)X
m +A1B1X

2m

= A0B0 + ((A0 +A1)(B0 +B1)−A0B0 −A1B1)X
m +A1B1X

2m

I We just turned one multiplication of size n into 3 multiplications of
size n/2 (and about 8m additions)

I Recursive application yields asymptotic complexity O(nlog2 3)

Efficient implementation of finite-field arithmetic 26



Faster multiplication?
I Consider multiplication of two n-coefficient polynomials (degree
≤ n− 1)

I So far we needed n2 multiplications and (n− 1)2 additions
I Kolmogorov conjectured 1952: You can’t do better, multiplication

has quadratic complexity
I Proven wrong by 23-year old student Karatsuba in 1960
I Assume that n = 2m, then write an n-coefficient polynomial A as
A0 +XmA1

I Perform multiplication as

= (A0 +XmA1) · (B0 +XmB1)

= A0B0 + (A0B1 +A1B0)X
m +A1B1X

2m

= A0B0 + ((A0 +A1)(B0 +B1)−A0B0 −A1B1)X
m +A1B1X

2m

I We just turned one multiplication of size n into 3 multiplications of
size n/2 (and about 8m additions)

I Recursive application yields asymptotic complexity O(nlog2 3)

Efficient implementation of finite-field arithmetic 26



Faster multiplication?
I Consider multiplication of two n-coefficient polynomials (degree
≤ n− 1)

I So far we needed n2 multiplications and (n− 1)2 additions
I Kolmogorov conjectured 1952: You can’t do better, multiplication

has quadratic complexity
I Proven wrong by 23-year old student Karatsuba in 1960
I Assume that n = 2m, then write an n-coefficient polynomial A as
A0 +XmA1

I Perform multiplication as

= (A0 +XmA1) · (B0 +XmB1)

= A0B0 + (A0B1 +A1B0)X
m +A1B1X

2m

= A0B0 + ((A0 +A1)(B0 +B1)−A0B0 −A1B1)X
m +A1B1X

2m

I We just turned one multiplication of size n into 3 multiplications of
size n/2 (and about 8m additions)

I Recursive application yields asymptotic complexity O(nlog2 3)

Efficient implementation of finite-field arithmetic 26



Faster multiplication?
I Consider multiplication of two n-coefficient polynomials (degree
≤ n− 1)

I So far we needed n2 multiplications and (n− 1)2 additions
I Kolmogorov conjectured 1952: You can’t do better, multiplication

has quadratic complexity
I Proven wrong by 23-year old student Karatsuba in 1960
I Assume that n = 2m, then write an n-coefficient polynomial A as
A0 +XmA1

I Perform multiplication as

= (A0 +XmA1) · (B0 +XmB1)

= A0B0 + (A0B1 +A1B0)X
m +A1B1X

2m

= A0B0 + ((A0 +A1)(B0 +B1)−A0B0 −A1B1)X
m +A1B1X

2m

I We just turned one multiplication of size n into 3 multiplications of
size n/2 (and about 8m additions)

I Recursive application yields asymptotic complexity O(nlog2 3)

Efficient implementation of finite-field arithmetic 26



Even faster multiplication?

I Karatsuba equality:

(A0 +XmA1) · (B0 +XmB1)

=A0B0 + ((A0 +A1)(B0 +B1)−A0B0 −A1B1)X
m +A1B1X

2m

I Refined Karatsuba equality:

(A0 +XmA1)(B0 +XmB1)

=(1−Xm)(A0B0 −XmA1B1) +Xm(A0 +A1)(B0 +B1)

I This reduces the ≈ 8m additions to ≈ 7m additions
(see Bernstein “Batch binary Edwards”, 2009)

I No reduction of asymptotic running time, but speedup in practice

Efficient implementation of finite-field arithmetic 27



Even faster multiplication?

I Karatsuba equality:

(A0 +XmA1) · (B0 +XmB1)

=A0B0 + ((A0 +A1)(B0 +B1)−A0B0 −A1B1)X
m +A1B1X

2m

I Refined Karatsuba equality:

(A0 +XmA1)(B0 +XmB1)

=(1−Xm)(A0B0 −XmA1B1) +Xm(A0 +A1)(B0 +B1)

I This reduces the ≈ 8m additions to ≈ 7m additions
(see Bernstein “Batch binary Edwards”, 2009)

I No reduction of asymptotic running time, but speedup in practice

Efficient implementation of finite-field arithmetic 27



Even faster multiplication?

I Karatsuba equality:

(A0 +XmA1) · (B0 +XmB1)

=A0B0 + ((A0 +A1)(B0 +B1)−A0B0 −A1B1)X
m +A1B1X

2m

I Refined Karatsuba equality:

(A0 +XmA1)(B0 +XmB1)

=(1−Xm)(A0B0 −XmA1B1) +Xm(A0 +A1)(B0 +B1)

I This reduces the ≈ 8m additions to ≈ 7m additions
(see Bernstein “Batch binary Edwards”, 2009)

I No reduction of asymptotic running time, but speedup in practice

Efficient implementation of finite-field arithmetic 27



Multiplication, can we go further?

I Toom-Cook multiplication has asymptotic complexity O(nlog3 5)

I Schönhage-Strassen multiplication has asymptotic complexity
O(n log n log log n)

I Fürer’s multiplication algorithm has running time n log n2O(log∗ n)

Efficient implementation of finite-field arithmetic 28



Karatsuba for F2255−19 (in idealized C)

signed int128 rm0,rm1,rm2,rm3,rm4;
signed long long am0,am1,am2,bm0,bm1,bm2;

am0 = a[0] + a[3];
am0 = a[1] + a[4];
am0 = a[2];
am0 = b[0] + b[3];
am0 = b[1] + b[4];
am0 = b[2];

r[0] = (int128) a[0]*b[0];
r[1] = (int128) a[0]*b[1] + (int128) a[1]*b[0];
r[2] = (int128) a[0]*b[2] + (int128) a[1]*b[1] + (int128) a[2]*b[0];
r[3] = (int128) a[1]*b[2] + (int128) a[2]*b[1];
r[4] = (int128) a[2]*b[2];

r[6] = (int128) a[3]*b[3];
r[7] = (int128) a[3]*b[4] + (int128) a[4]*b[3];
r[8] = (int128) a[4]*b[4];

Efficient implementation of finite-field arithmetic 29



Karatsuba for F2255−19 (in idealized C) ctd.

rm[0] = (int128) am[0]*bm[0] - r[0] - r[6];
rm[1] = (int128) am[0]*bm[1] + (int128) am[1]*b[0] - r[1] - r[7];
rm[2] = (int128) am[0]*bm[2] + (int128) am[1]*b[1] + \

(int128) am[2]*b[0] - r[2] - r[8];
rm[3] = (int128) am[1]*bm[2] + (int128) am[2]*b[1] - r[3];
rm[4] = (int128) am[2]*bm[2] - r[4];

r[3] += rm[0];
r[4] += rm[1];
r[5] = rm[2];
r[6] += rm[3];
r[6] += rm[4];

I 22 multiplications, 4 small additions, 21 big additions
I Is this better? I doubt it.

Efficient implementation of finite-field arithmetic 29



Karatsuba for F2255−19 (in idealized C) ctd.

rm[0] = (int128) am[0]*bm[0] - r[0] - r[6];
rm[1] = (int128) am[0]*bm[1] + (int128) am[1]*b[0] - r[1] - r[7];
rm[2] = (int128) am[0]*bm[2] + (int128) am[1]*b[1] + \

(int128) am[2]*b[0] - r[2] - r[8];
rm[3] = (int128) am[1]*bm[2] + (int128) am[2]*b[1] - r[3];
rm[4] = (int128) am[2]*bm[2] - r[4];

r[3] += rm[0];
r[4] += rm[1];
r[5] = rm[2];
r[6] += rm[3];
r[6] += rm[4];

I 22 multiplications, 4 small additions, 21 big additions
I Is this better? I doubt it.

Efficient implementation of finite-field arithmetic 29



Which multiplication algorithm to use

I Depends on the size of the field

I Depends on representation of field elements (signed vs. unsigned,
radix, etc.)

I Depends on computer microarchitecture (speed of multiplication vs.
speed of addition)

I Rule of thumb:
I For ≤ 10 limbs (coefficients) use schoolbook multiplication

I For > 10 start to think about (refined) Karatsuba
I For field sizes appearing in ECC, I never saw anybody using

Toom-Cook or Schönhage-Strassen (however, Toom-Cook may
become interesting in pairing computations)

I I don’t know of any application using Fürer’s algorithm

Efficient implementation of finite-field arithmetic 30



Which multiplication algorithm to use

I Depends on the size of the field
I Depends on representation of field elements (signed vs. unsigned,

radix, etc.)

I Depends on computer microarchitecture (speed of multiplication vs.
speed of addition)

I Rule of thumb:
I For ≤ 10 limbs (coefficients) use schoolbook multiplication

I For > 10 start to think about (refined) Karatsuba
I For field sizes appearing in ECC, I never saw anybody using

Toom-Cook or Schönhage-Strassen (however, Toom-Cook may
become interesting in pairing computations)

I I don’t know of any application using Fürer’s algorithm

Efficient implementation of finite-field arithmetic 30



Which multiplication algorithm to use

I Depends on the size of the field
I Depends on representation of field elements (signed vs. unsigned,

radix, etc.)
I Depends on computer microarchitecture (speed of multiplication vs.

speed of addition)

I Rule of thumb:
I For ≤ 10 limbs (coefficients) use schoolbook multiplication

I For > 10 start to think about (refined) Karatsuba
I For field sizes appearing in ECC, I never saw anybody using

Toom-Cook or Schönhage-Strassen (however, Toom-Cook may
become interesting in pairing computations)

I I don’t know of any application using Fürer’s algorithm

Efficient implementation of finite-field arithmetic 30



Which multiplication algorithm to use

I Depends on the size of the field
I Depends on representation of field elements (signed vs. unsigned,

radix, etc.)
I Depends on computer microarchitecture (speed of multiplication vs.

speed of addition)
I Rule of thumb:

I For ≤ 10 limbs (coefficients) use schoolbook multiplication

I For > 10 start to think about (refined) Karatsuba
I For field sizes appearing in ECC, I never saw anybody using

Toom-Cook or Schönhage-Strassen (however, Toom-Cook may
become interesting in pairing computations)

I I don’t know of any application using Fürer’s algorithm

Efficient implementation of finite-field arithmetic 30



Which multiplication algorithm to use

I Depends on the size of the field
I Depends on representation of field elements (signed vs. unsigned,

radix, etc.)
I Depends on computer microarchitecture (speed of multiplication vs.

speed of addition)
I Rule of thumb:

I For ≤ 10 limbs (coefficients) use schoolbook multiplication
I For > 10 start to think about (refined) Karatsuba

I For field sizes appearing in ECC, I never saw anybody using
Toom-Cook or Schönhage-Strassen (however, Toom-Cook may
become interesting in pairing computations)

I I don’t know of any application using Fürer’s algorithm

Efficient implementation of finite-field arithmetic 30



Which multiplication algorithm to use

I Depends on the size of the field
I Depends on representation of field elements (signed vs. unsigned,

radix, etc.)
I Depends on computer microarchitecture (speed of multiplication vs.

speed of addition)
I Rule of thumb:

I For ≤ 10 limbs (coefficients) use schoolbook multiplication
I For > 10 start to think about (refined) Karatsuba
I For field sizes appearing in ECC, I never saw anybody using

Toom-Cook or Schönhage-Strassen (however, Toom-Cook may
become interesting in pairing computations)

I I don’t know of any application using Fürer’s algorithm

Efficient implementation of finite-field arithmetic 30



Which multiplication algorithm to use

I Depends on the size of the field
I Depends on representation of field elements (signed vs. unsigned,

radix, etc.)
I Depends on computer microarchitecture (speed of multiplication vs.

speed of addition)
I Rule of thumb:

I For ≤ 10 limbs (coefficients) use schoolbook multiplication
I For > 10 start to think about (refined) Karatsuba
I For field sizes appearing in ECC, I never saw anybody using

Toom-Cook or Schönhage-Strassen (however, Toom-Cook may
become interesting in pairing computations)

I I don’t know of any application using Fürer’s algorithm

Efficient implementation of finite-field arithmetic 30



Still missing: inversion

I Inversion is typically much more expensive than multiplication
I This is why we like projective coordinates

I Before sending an elliptic-curve point, we need to convert from
projective coordinates to affine coordinates (for security reasons!)

I We need inversion, but we do (usually) not need it often
I Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat’s little theorem

Efficient implementation of finite-field arithmetic 31



Still missing: inversion

I Inversion is typically much more expensive than multiplication
I This is why we like projective coordinates
I Before sending an elliptic-curve point, we need to convert from

projective coordinates to affine coordinates (for security reasons!)
I We need inversion, but we do (usually) not need it often

I Two approaches to inversion:
1. Extended Euclidean algorithm
2. Fermat’s little theorem

Efficient implementation of finite-field arithmetic 31



Still missing: inversion

I Inversion is typically much more expensive than multiplication
I This is why we like projective coordinates
I Before sending an elliptic-curve point, we need to convert from

projective coordinates to affine coordinates (for security reasons!)
I We need inversion, but we do (usually) not need it often
I Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat’s little theorem

Efficient implementation of finite-field arithmetic 31



Extended Euclidean algorithm

I Given two integers a, b, the Extended Euclidean algorithm finds
I The greatest common divisor of a and b
I Integers u and v, such that a · u+ b · v = gcd(a, b)

I It is based on the observation that

gcd(a, b) = gcd(b, a− qb) ∀q ∈ Z

I To compute a−1 (mod p), use the algorithm to compute

a · u+ p · v = gcd(a, p) = 1

I Now it holds that u ≡ a−1 (mod p)

Efficient implementation of finite-field arithmetic 32



Extended Euclidean algorithm

I Given two integers a, b, the Extended Euclidean algorithm finds
I The greatest common divisor of a and b
I Integers u and v, such that a · u+ b · v = gcd(a, b)

I It is based on the observation that

gcd(a, b) = gcd(b, a− qb) ∀q ∈ Z

I To compute a−1 (mod p), use the algorithm to compute

a · u+ p · v = gcd(a, p) = 1

I Now it holds that u ≡ a−1 (mod p)

Efficient implementation of finite-field arithmetic 32



Extended Euclidean algorithm

I Given two integers a, b, the Extended Euclidean algorithm finds
I The greatest common divisor of a and b
I Integers u and v, such that a · u+ b · v = gcd(a, b)

I It is based on the observation that

gcd(a, b) = gcd(b, a− qb) ∀q ∈ Z

I To compute a−1 (mod p), use the algorithm to compute

a · u+ p · v = gcd(a, p) = 1

I Now it holds that u ≡ a−1 (mod p)

Efficient implementation of finite-field arithmetic 32



Extended Euclidean algorithm (pseudocode)

Input: Integers a and b.
Output: An integer tuple (u, v, d) satisfying a · u+ b · v = d = gcd(a, b)
u← 1
v ← 0
d← a
v1 ← 0
v3 ← b
while (v3 6= 0) do

q ← b d
v3
c

t3 ← d mod v3
t1 ← u− qv1
u← v1
d← v3
v1 ← t1
v3 ← t3

end while
v ← d−au

b
return (u, v, d)

Efficient implementation of finite-field arithmetic 33



Some notes about the Extended Euclidean algorithm

I Core operation are divisions with remainder
I Today: no details about big-integer division

I The running time (number of loop iterations) depends on the inputs
I We usually do not want this for cryptography (timing attacks!)

Efficient implementation of finite-field arithmetic 34



Some notes about the Extended Euclidean algorithm

I Core operation are divisions with remainder
I Today: no details about big-integer division
I The running time (number of loop iterations) depends on the inputs
I We usually do not want this for cryptography (timing attacks!)

Efficient implementation of finite-field arithmetic 34



Fermat’s little theorem

Theorem
Let p be prime. Then for any integer a it holds that ap−1 ≡ 1 (mod p)

I This implies that ap−2 ≡ a−1 (mod p)

I Obvious algorithm for inversion: Exponentiation with p− 2

I The exponent is quite large (e.g., 255 bits), is that efficient?
I Answer: yes, fairly. Inversion modulo 2255 − 19 needs 254 squarings

and 11 multiplications in F2255−19

Efficient implementation of finite-field arithmetic 35



Fermat’s little theorem

Theorem
Let p be prime. Then for any integer a it holds that ap−1 ≡ 1 (mod p)

I This implies that ap−2 ≡ a−1 (mod p)

I Obvious algorithm for inversion: Exponentiation with p− 2

I The exponent is quite large (e.g., 255 bits), is that efficient?
I Answer: yes, fairly. Inversion modulo 2255 − 19 needs 254 squarings

and 11 multiplications in F2255−19

Efficient implementation of finite-field arithmetic 35



Fermat’s little theorem

Theorem
Let p be prime. Then for any integer a it holds that ap−1 ≡ 1 (mod p)

I This implies that ap−2 ≡ a−1 (mod p)

I Obvious algorithm for inversion: Exponentiation with p− 2

I The exponent is quite large (e.g., 255 bits), is that efficient?

I Answer: yes, fairly. Inversion modulo 2255 − 19 needs 254 squarings
and 11 multiplications in F2255−19

Efficient implementation of finite-field arithmetic 35



Fermat’s little theorem

Theorem
Let p be prime. Then for any integer a it holds that ap−1 ≡ 1 (mod p)

I This implies that ap−2 ≡ a−1 (mod p)

I Obvious algorithm for inversion: Exponentiation with p− 2

I The exponent is quite large (e.g., 255 bits), is that efficient?
I Answer: yes, fairly. Inversion modulo 2255 − 19 needs 254 squarings

and 11 multiplications in F2255−19

Efficient implementation of finite-field arithmetic 35



While we’re at it: square roots

I We can compress a point (x, y) before sending
I Usually send only x and one bit of y
I When receiving such a compressed point we need to recompute y as√

x3 + ax+ b

I If p ≡ 3 (mod 4): compute square root of a as a(p+1)/4

I If p ≡ 5 (mod 8): compute β, such that β4 = a2 as a(p+3)/8

I If β2 = −a: multiply by
√
−1

I Computing square roots is (typically) about as expensive as an
inversion

Efficient implementation of finite-field arithmetic 36



While we’re at it: square roots

I We can compress a point (x, y) before sending
I Usually send only x and one bit of y
I When receiving such a compressed point we need to recompute y as√

x3 + ax+ b

I If p ≡ 3 (mod 4): compute square root of a as a(p+1)/4

I If p ≡ 5 (mod 8): compute β, such that β4 = a2 as a(p+3)/8

I If β2 = −a: multiply by
√
−1

I Computing square roots is (typically) about as expensive as an
inversion

Efficient implementation of finite-field arithmetic 36



While we’re at it: square roots

I We can compress a point (x, y) before sending
I Usually send only x and one bit of y
I When receiving such a compressed point we need to recompute y as√

x3 + ax+ b

I If p ≡ 3 (mod 4): compute square root of a as a(p+1)/4

I If p ≡ 5 (mod 8): compute β, such that β4 = a2 as a(p+3)/8

I If β2 = −a: multiply by
√
−1

I Computing square roots is (typically) about as expensive as an
inversion

Efficient implementation of finite-field arithmetic 36



While we’re at it: square roots

I We can compress a point (x, y) before sending
I Usually send only x and one bit of y
I When receiving such a compressed point we need to recompute y as√

x3 + ax+ b

I If p ≡ 3 (mod 4): compute square root of a as a(p+1)/4

I If p ≡ 5 (mod 8): compute β, such that β4 = a2 as a(p+3)/8

I If β2 = −a: multiply by
√
−1

I Computing square roots is (typically) about as expensive as an
inversion

Efficient implementation of finite-field arithmetic 36



Getting back to the rabbits

I What if somebody just throws an ugly prime at you?

I Example: German BSI is pushing the “Brainpool curves”, over fields
Fp with

p224 =2272162293245435278755253799591092807334073\
2145944992304435472941311

=0xD7C134AA264366862A18302575D1D787B09F07579\
7DA89F57EC8C0FF

or

p256 =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751

=0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D\
52620282013481D1F6E5377

I Another example: Pairing-friendly curves are typically defined over
fields Fp where p has some structure, but hard to exploit for fast
arithmetic

Efficient implementation of finite-field arithmetic 37



Getting back to the rabbits

I What if somebody just throws an ugly prime at you?
I Example: German BSI is pushing the “Brainpool curves”, over fields

Fp with

p224 =2272162293245435278755253799591092807334073\
2145944992304435472941311

=0xD7C134AA264366862A18302575D1D787B09F07579\
7DA89F57EC8C0FF

or

p256 =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751

=0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D\
52620282013481D1F6E5377

I Another example: Pairing-friendly curves are typically defined over
fields Fp where p has some structure, but hard to exploit for fast
arithmetic

Efficient implementation of finite-field arithmetic 37



Getting back to the rabbits

I What if somebody just throws an ugly prime at you?
I Example: German BSI is pushing the “Brainpool curves”, over fields

Fp with

p224 =2272162293245435278755253799591092807334073\
2145944992304435472941311

=0xD7C134AA264366862A18302575D1D787B09F07579\
7DA89F57EC8C0FF

or

p256 =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751

=0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D\
52620282013481D1F6E5377

I Another example: Pairing-friendly curves are typically defined over
fields Fp where p has some structure, but hard to exploit for fast
arithmetic

Efficient implementation of finite-field arithmetic 37



Montgomery representation

I We have the following problem:
I We multiply two n-limb big integers and obtain a 2n-limb result t
I We need to find t mod p

I Idea: Perform big-integer division with remainder
I Better idea (Montgomery, 1985):

I Let R be such that gcd(R, p) = 1 and t < p ·R
I Represent an element a of Fp as aR mod p
I Multiplication of aR and bR yields t = abR2 (2n limbs)
I Now compute Montgomery reduction: tR−1 mod p

I For some choices of R this is be more efficient than division
I Typical choice for radix-b representation: bn

Efficient implementation of finite-field arithmetic 38



Montgomery representation

I We have the following problem:
I We multiply two n-limb big integers and obtain a 2n-limb result t
I We need to find t mod p

I Idea: Perform big-integer division with remainder

I Better idea (Montgomery, 1985):
I Let R be such that gcd(R, p) = 1 and t < p ·R
I Represent an element a of Fp as aR mod p
I Multiplication of aR and bR yields t = abR2 (2n limbs)
I Now compute Montgomery reduction: tR−1 mod p

I For some choices of R this is be more efficient than division
I Typical choice for radix-b representation: bn

Efficient implementation of finite-field arithmetic 38



Montgomery representation

I We have the following problem:
I We multiply two n-limb big integers and obtain a 2n-limb result t
I We need to find t mod p

I Idea: Perform big-integer division with remainder
I Better idea (Montgomery, 1985):

I Let R be such that gcd(R, p) = 1 and t < p ·R
I Represent an element a of Fp as aR mod p
I Multiplication of aR and bR yields t = abR2 (2n limbs)
I Now compute Montgomery reduction: tR−1 mod p

I For some choices of R this is be more efficient than division
I Typical choice for radix-b representation: bn

Efficient implementation of finite-field arithmetic 38



Montgomery representation

I We have the following problem:
I We multiply two n-limb big integers and obtain a 2n-limb result t
I We need to find t mod p

I Idea: Perform big-integer division with remainder
I Better idea (Montgomery, 1985):

I Let R be such that gcd(R, p) = 1 and t < p ·R
I Represent an element a of Fp as aR mod p
I Multiplication of aR and bR yields t = abR2 (2n limbs)
I Now compute Montgomery reduction: tR−1 mod p
I For some choices of R this is be more efficient than division
I Typical choice for radix-b representation: bn

Efficient implementation of finite-field arithmetic 38



Montgomery reduction (pseudocode)

Input: p = (pn−1, . . . , p0)b with gcd(p, b) = 1, R = bn,
p′ = −p−1 mod b and t = (t2n−1, . . . , t0)b

Output: tR−1 mod p
A← t
for i from 0 to n− 1 do

u← aip
′ mod b

A← A+ u · p · bi
end for
A← A/bn

if A > p then
A← A− p

end if
return A

Efficient implementation of finite-field arithmetic 39



Some notes about Montgomery reduction

I Some cost for transforming to Montgomery representation and back
I Only efficient if many operations are performed in Montgomery

representation

I The algorithms takes n2 + n multiplication instructions
I n of those are “shortened” multiplications (modulo b)
I The cost is roughly the same as schoolbook multiplication
I One can merge schoolbook multiplication with Montgomery

reduction: “Montgomery multiplication”

Efficient implementation of finite-field arithmetic 40



Some notes about Montgomery reduction

I Some cost for transforming to Montgomery representation and back
I Only efficient if many operations are performed in Montgomery

representation
I The algorithms takes n2 + n multiplication instructions
I n of those are “shortened” multiplications (modulo b)

I The cost is roughly the same as schoolbook multiplication
I One can merge schoolbook multiplication with Montgomery

reduction: “Montgomery multiplication”

Efficient implementation of finite-field arithmetic 40



Some notes about Montgomery reduction

I Some cost for transforming to Montgomery representation and back
I Only efficient if many operations are performed in Montgomery

representation
I The algorithms takes n2 + n multiplication instructions
I n of those are “shortened” multiplications (modulo b)
I The cost is roughly the same as schoolbook multiplication

I One can merge schoolbook multiplication with Montgomery
reduction: “Montgomery multiplication”

Efficient implementation of finite-field arithmetic 40



Some notes about Montgomery reduction

I Some cost for transforming to Montgomery representation and back
I Only efficient if many operations are performed in Montgomery

representation
I The algorithms takes n2 + n multiplication instructions
I n of those are “shortened” multiplications (modulo b)
I The cost is roughly the same as schoolbook multiplication
I One can merge schoolbook multiplication with Montgomery

reduction: “Montgomery multiplication”

Efficient implementation of finite-field arithmetic 40



Summary

I Efficiency of finite-field arithmetic highly depends on the
representation of field elements

I The obvious representation is not always the best one

I Carries are annoying (not only in C)
I Be careful with the complexity of multiplication
I In particular if somebody uses it to estimate real-world performance
I Don’t be afraid to use assembly, but consider qhasm

(http://cr.yp.to/qhasm.html)
I Remember the Explicit Formulas Database

http://www.hyperelliptic.org/EFD/

Efficient implementation of finite-field arithmetic 41

http://cr.yp.to/qhasm.html
http://www.hyperelliptic.org/EFD/


Summary

I Efficiency of finite-field arithmetic highly depends on the
representation of field elements

I The obvious representation is not always the best one
I Carries are annoying (not only in C)

I Be careful with the complexity of multiplication
I In particular if somebody uses it to estimate real-world performance
I Don’t be afraid to use assembly, but consider qhasm

(http://cr.yp.to/qhasm.html)
I Remember the Explicit Formulas Database

http://www.hyperelliptic.org/EFD/

Efficient implementation of finite-field arithmetic 41

http://cr.yp.to/qhasm.html
http://www.hyperelliptic.org/EFD/


Summary

I Efficiency of finite-field arithmetic highly depends on the
representation of field elements

I The obvious representation is not always the best one
I Carries are annoying (not only in C)
I Be careful with the complexity of multiplication
I In particular if somebody uses it to estimate real-world performance

I Don’t be afraid to use assembly, but consider qhasm
(http://cr.yp.to/qhasm.html)

I Remember the Explicit Formulas Database
http://www.hyperelliptic.org/EFD/

Efficient implementation of finite-field arithmetic 41

http://cr.yp.to/qhasm.html
http://www.hyperelliptic.org/EFD/


Summary

I Efficiency of finite-field arithmetic highly depends on the
representation of field elements

I The obvious representation is not always the best one
I Carries are annoying (not only in C)
I Be careful with the complexity of multiplication
I In particular if somebody uses it to estimate real-world performance
I Don’t be afraid to use assembly, but consider qhasm

(http://cr.yp.to/qhasm.html)

I Remember the Explicit Formulas Database
http://www.hyperelliptic.org/EFD/

Efficient implementation of finite-field arithmetic 41

http://cr.yp.to/qhasm.html
http://www.hyperelliptic.org/EFD/


Summary

I Efficiency of finite-field arithmetic highly depends on the
representation of field elements

I The obvious representation is not always the best one
I Carries are annoying (not only in C)
I Be careful with the complexity of multiplication
I In particular if somebody uses it to estimate real-world performance
I Don’t be afraid to use assembly, but consider qhasm

(http://cr.yp.to/qhasm.html)
I Remember the Explicit Formulas Database

http://www.hyperelliptic.org/EFD/

Efficient implementation of finite-field arithmetic 41

http://cr.yp.to/qhasm.html
http://www.hyperelliptic.org/EFD/

