Efficient implementation of finite-field arithmetic

Peter Schwabe

Radboud University Nijmegen, The Netherlands



November 22, 2013

Pairing 2013 Tutorial

#### Elliptic-curve addition

- Computing P + Q for two elliptic-curve points P and Q means performing a few operations in the underlying field
- ► Example: Add projective  $(X_P : Y_P : Z_P)$  and  $(X_Q : Y_Q : Z_Q)$  on curve  $E : y^2 = x^3 + ax + b$ .
  - $t_1 \leftarrow Y_P \cdot Z_O$  $t_2 \leftarrow X_P \cdot Z_O$  $t_3 \leftarrow Z_P \cdot Z_O$  $u \leftarrow Y_O \cdot Z_P - t_1$  $uu \leftarrow u^2$  $v \leftarrow X_Q \cdot Z_P - t_2$  $vv \leftarrow i$  $vvv \leftarrow v \cdot vv$  $R \leftarrow vv \cdot t_2$  $A \leftarrow uu \cdot t_3 - vvv - 2 \cdot R$  $X_{R} \leftarrow v \cdot A$  $Y_R \leftarrow u \cdot (R - A) - vvv \cdot t_1$  $Z_{B} \leftarrow vvv \cdot t_{3}$ return  $(X_B:Y_B:Z_B)$

# The EFD

- There are many formulas for different curve shapes and point representations
- Best overview: The Explicit Formulas Database (EFD):

### http://www.hyperelliptic.org/EFD/

- Compiled by Dan Bernstein and Tanja Lange from many papers and talks
- ► Contains verification scripts, 3-operand code, ...

- ▶ C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
- ▶ Why are there no data types for 256-bit integers?
  - Magma does not have problems with large integers
  - Python has datatype long for arbitrary-size integers
  - Java has BigInteger class

- ▶ C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
- ▶ Why are there no data types for 256-bit integers?
  - Magma does not have problems with large integers
  - Python has datatype long for arbitrary-size integers
  - Java has BigInteger class
- ► C is "portable assembly", very close to what computers really do
- Computers work on data in *registers* (very small, very fast storage units)

- ▶ C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
- Why are there no data types for 256-bit integers?
  - Magma does not have problems with large integers
  - Python has datatype long for arbitrary-size integers
  - Java has BigInteger class
- ► C is "portable assembly", very close to what computers really do
- Computers work on data in *registers* (very small, very fast storage units)
- ▶ Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit

- ▶ C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
- Why are there no data types for 256-bit integers?
  - Magma does not have problems with large integers
  - Python has datatype long for arbitrary-size integers
  - Java has BigInteger class
- ► C is "portable assembly", very close to what computers really do
- Computers work on data in *registers* (very small, very fast storage units)
- ▶ Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit

That's a lie!

- ▶ C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
- Why are there no data types for 256-bit integers?
  - Magma does not have problems with large integers
  - Python has datatype long for arbitrary-size integers
  - Java has BigInteger class
- ► C is "portable assembly", very close to what computers really do
- Computers work on data in *registers* (very small, very fast storage units)
- ▶ Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
- That's a lie!
- ► Yeah, you're right. We *do* have 256-bit registers (AVX on Intel and AMD processors)
- ► But those do not hold a single 256-bit integer (but vectors of integers or floats)

- ▶ C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
- Why are there no data types for 256-bit integers?
  - Magma does not have problems with large integers
  - Python has datatype long for arbitrary-size integers
  - Java has BigInteger class
- ▶ C is "portable assembly", very close to what computers really do
- Computers work on data in *registers* (very small, very fast storage units)
- ▶ Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
- That's a lie!
- ► Yeah, you're right. We *do* have 256-bit registers (AVX on Intel and AMD processors)
- ► But those do not hold a single 256-bit integer (but vectors of integers or floats)
- ▶ Why can't they just hold a 256-bit integer?

- ▶ C has data types for 8-bit, 16-bit, 32-bit, and 64-bit integers
- Why are there no data types for 256-bit integers?
  - Magma does not have problems with large integers
  - Python has datatype long for arbitrary-size integers
  - Java has BigInteger class
- ▶ C is "portable assembly", very close to what computers really do
- Computers work on data in *registers* (very small, very fast storage units)
- ▶ Typical register sizes: 8 bit, 16 bit, 32 bit, 64 bit ... but not 256 bit
- That's a lie!
- ► Yeah, you're right. We *do* have 256-bit registers (AVX on Intel and AMD processors)
- ► But those do not hold a single 256-bit integer (but vectors of integers or floats)
- ▶ Why can't they just hold a 256-bit integer?
- ▶ Because arithmetic units cannot perform arithmetic on 256-bit integers (only on 8-bit, 16-bit, 32-bit, and 64-bit integers)

► Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)

- ► Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
- ▶ Addition, subtraction and multiplication of 64-bit integers
- ▶ Multiplication produces a 128-bit result in 2 registers

- ► Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
- ▶ Addition, subtraction and multiplication of 64-bit integers
- ▶ Multiplication produces a 128-bit result in 2 registers
- Addition, subtraction and multiplication of smaller integers (less interesting)

- ► Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
- Addition, subtraction and multiplication of 64-bit integers
- ▶ Multiplication produces a 128-bit result in 2 registers
- Addition, subtraction and multiplication of smaller integers (less interesting)
- Single-precision and double-precision floating-point arithmetic

- ► Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
- Addition, subtraction and multiplication of 64-bit integers
- ▶ Multiplication produces a 128-bit result in 2 registers
- Addition, subtraction and multiplication of smaller integers (less interesting)
- Single-precision and double-precision floating-point arithmetic
- ▶ Arithmetic on vectors of 2 64-bit integers
- ▶ Integer-vector multiplication only produces 2 64-bit results

- ► Consider the processor in my laptop here (Intel Core i7, Ivy Bridge)
- ▶ Addition, subtraction and multiplication of 64-bit integers
- ▶ Multiplication produces a 128-bit result in 2 registers
- Addition, subtraction and multiplication of smaller integers (less interesting)
- Single-precision and double-precision floating-point arithmetic
- ▶ Arithmetic on vectors of 2 64-bit integers
- ▶ Integer-vector multiplication only produces 2 64-bit results
- ► Arithmetic on vectors of 4 double-precision floats

For this talk consider arithmetic in a field  $\mathbb{F}_p$  of large prime order p (for example 256-bit long)

- For this talk consider arithmetic in a field  $\mathbb{F}_p$  of large prime order p (for example 256-bit long)
- $\blacktriangleright$  Addition of  $\approx 256\text{-bit}$  integers
- Subtraction of  $\approx 256$ -bit integers

- For this talk consider arithmetic in a field  $\mathbb{F}_p$  of large prime order p (for example 256-bit long)
- $\blacktriangleright$  Addition of  $\approx 256\text{-bit}$  integers
- Subtraction of  $\approx 256$ -bit integers
- $\blacktriangleright$  Reduction modulo p after addition and subtraction

- ► For this talk consider arithmetic in a field F<sub>p</sub> of large prime order p (for example 256-bit long)
- $\blacktriangleright$  Addition of  $\approx 256\text{-bit}$  integers
- Subtraction of  $\approx 256$ -bit integers
- $\blacktriangleright$  Reduction modulo p after addition and subtraction
- Multiplication of  $\approx 256$ -bit integers
- Squaring of  $\approx 256$ -bit integers

- ► For this talk consider arithmetic in a field F<sub>p</sub> of large prime order p (for example 256-bit long)
- $\blacktriangleright$  Addition of  $\approx 256\text{-bit}$  integers
- Subtraction of  $\approx 256$ -bit integers
- $\blacktriangleright$  Reduction modulo p after addition and subtraction
- Multiplication of  $\approx 256$ -bit integers
- Squaring of  $\approx 256$ -bit integers
- Reduction of a  $\approx 512$ -bit multiplication result modulo p

- ► For this talk consider arithmetic in a field F<sub>p</sub> of large prime order p (for example 256-bit long)
- $\blacktriangleright$  Addition of  $\approx 256\text{-bit}$  integers
- Subtraction of  $\approx 256$ -bit integers
- $\blacktriangleright$  Reduction modulo p after addition and subtraction
- Multiplication of  $\approx 256$ -bit integers
- Squaring of  $\approx 256$ -bit integers
- $\blacktriangleright$  Reduction of a  $\approx 512\text{-bit}$  multiplication result modulo p
- Inversion modulo p

- ▶ Let's start with 64-bit integers, that seems easiest
- ▶ Represent 256-bit integer A through 4 64-bit integers a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub> (a total of 256 bits)

▶ Let's start with 64-bit integers, that seems easiest

- ▶ Represent 256-bit integer A through 4 64-bit integers a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub> (a total of 256 bits)
- Value of A is  $\sum_{i=0}^{3} a_i 2^{64 \cdot i}$

- ▶ Let's start with 64-bit integers, that seems easiest
- ▶ Represent 256-bit integer A through 4 64-bit integers a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub> (a total of 256 bits)
- Value of A is  $\sum_{i=0}^{3} a_i 2^{64 \cdot i}$
- This is called *radix*- $2^{64}$  representation

▶ Let's start with 64-bit integers, that seems easiest

- ▶ Represent 256-bit integer A through 4 64-bit integers a<sub>0</sub>, a<sub>1</sub>, a<sub>2</sub>, a<sub>3</sub> (a total of 256 bits)
- Value of A is  $\sum_{i=0}^{3} a_i 2^{64 \cdot i}$
- This is called *radix*- $2^{64}$  representation
- Let's write that in C code:

```
typedef struct{
    unsigned long long a[4];
} bigint256;
```

What's wrong about this?

- What's wrong about this?
- ► This performs arithmetic on a vector of 4 independent 64-bit integers (modulo 2<sup>64</sup>)

- What's wrong about this?
- ► This performs arithmetic on a vector of 4 independent 64-bit integers (modulo 2<sup>64</sup>)
- ▶ This is *not* the same as arithmetic on 256-bit integers

- What's wrong about this?
- ► This performs arithmetic on a vector of 4 independent 64-bit integers (modulo 2<sup>64</sup>)
- ▶ This is *not* the same as arithmetic on 256-bit integers
- x->a[0] + y->a[0] may have 65 bits
- Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
- Same for all subsequent additions

- What's wrong about this?
- ► This performs arithmetic on a vector of 4 independent 64-bit integers (modulo 2<sup>64</sup>)
- ▶ This is *not* the same as arithmetic on 256-bit integers
- x->a[0] + y->a[0] may have 65 bits
- ▶ Need to put low 64 bits into r.a[0] and add carry bit into r.a[1]
- Same for all subsequent additions
- Note: The result may not even fit into a bigint256!

▶ in C something like:

unsigned long long carry = 0; if(r.a[0] < x.a[0]) carry = 1;</pre>

▶ in C something like:

```
unsigned long long carry = 0;
if(r.a[0] < x.a[0]) carry = 1;</pre>
```

- ▶ The computer actually remembers the carry in a *flag register*
- We can use this carry flag when using assembly
- ▶ No direct access from C level (so much for "portable assembly")

▶ in C something like:

unsigned long long carry = 0; if(r.a[0] < x.a[0]) carry = 1;</pre>

- ▶ The computer actually remembers the carry in a *flag register*
- We can use this carry flag when using assembly
- ▶ No direct access from C level (so much for "portable assembly")
- So, let's do it in assembly (no worries, it's not dark arts)

▶ in C something like:

unsigned long long carry = 0; if(r.a[0] < x.a[0]) carry = 1;</pre>

- ▶ The computer actually remembers the carry in a *flag register*
- We can use this carry flag when using assembly
- ▶ No direct access from C level (so much for "portable assembly")
- So, let's do it in assembly (no worries, it's not dark arts)
- Use somewhat simplified "C-like" qhasm syntax for assembly

### bigint256 addition in qhasm

int64 x int64 y

enter bigint256\_add

```
x = mem64[input_1 + 0]
y = mem64[input_2 + 0]
carry? x += y
mem64[input_0 + 0] = x
```

x = mem64[input\_1 + 8] y = mem64[input\_2 + 8] carry? x += y + carry mem64[input\_0 + 8] = x x = mem64[input\_1 + 16] y = mem64[input\_2 + 16] carry? x += y + carry mem64[input\_0 + 16] = x

x = mem64[input\_1 + 24] y = mem64[input\_2 + 24] carry? x += y + carry mem64[input\_0 + 24] = x

x = 0x += x + carry

return x

#### bigint256 subtraction in qhasm

int64 x int64 y

enter bigint256\_sub

x = mem64[input\_1 + 0] y = mem64[input\_2 + 0] carry? x -= y mem64[input\_0 + 0] = x

x = mem64[input\_1 + 8] y = mem64[input\_2 + 8] carry? x -= y - carry mem64[input\_0 + 8] = x x = mem64[input\_1 + 16] y = mem64[input\_2 + 16] carry? x -= y - carry mem64[input\_0 + 16] = x

x = mem64[input\_1 + 24] y = mem64[input\_2 + 24] carry? x -= y - carry mem64[input\_0 + 24] = x

x = 0x += x + carry

return x

- $\blacktriangleright$  Radix- $2^{64}$  representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries

- $\blacktriangleright$  Radix-2<sup>64</sup> representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- ► Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)

- $\blacktriangleright$  Radix-2<sup>64</sup> representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- ► Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)

- $\blacktriangleright$  Radix-2<sup>64</sup> representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- ► Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)
- Let's get rid of the carries, represent A as  $(a_0, a_1, a_2, a_3, a_4)$  with

$$A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$$

▶ This is called radix-2<sup>51</sup> representation

- $\blacktriangleright$  Radix-2<sup>64</sup> representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- ► Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)
- Let's get rid of the carries, represent A as  $(a_0, a_1, a_2, a_3, a_4)$  with

$$A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$$

- This is called radix- $2^{51}$  representation
- Multiple ways to write the same integer A, for example  $A = 2^{52}$ :
  - $(2^{52}, 0, 0, 0, 0)$
  - (0, 2, 0, 0, 0)

- $\blacktriangleright$  Radix-2<sup>64</sup> representation works and is sometimes a good choice
- Highly depends on the efficiency of handling carries
- ► Example 1: Intel Nehalem can do 3 additions every cycle, but only 1 addition with carry every two cycles (carries cost a factor of 6!)
- Example 2: When using vector arithmetic, carries are typically lost (very expensive to recompute)
- Let's get rid of the carries, represent A as  $(a_0, a_1, a_2, a_3, a_4)$  with

$$A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$$

- This is called radix- $2^{51}$  representation
- Multiple ways to write the same integer A, for example  $A = 2^{52}$ :
  - $\blacktriangleright (2^{52}, 0, 0, 0, 0)$
  - (0, 2, 0, 0, 0)
- ▶ Let's call a representation  $(a_0, a_1, a_2, a_3, a_4)$  reduced, if all  $a_i \in [0, \dots, 2^{52} 1]$

```
typedef struct{
   unsigned long long a[5];
} bigint256;
void bigint256_add(bigint256 *r,
                             const bigint256 *x,
                             const bigint256 *y)
ł
   r \rightarrow a[0] = x \rightarrow a[0] + y \rightarrow a[0];
   r \rightarrow a[1] = x \rightarrow a[1] + y \rightarrow a[1];
   r \rightarrow a[2] = x \rightarrow a[2] + y \rightarrow a[2];
   r > a[3] = x - a[3] + y - a[3];
   r \rightarrow a[4] = x \rightarrow a[4] + y \rightarrow a[4];
}
```

```
typedef struct{
   unsigned long long a[5];
} bigint256;
void bigint256_add(bigint256 *r,
                             const bigint256 *x,
                             const bigint256 *y)
ł
   r \rightarrow a[0] = x \rightarrow a[0] + y \rightarrow a[0];
   r \rightarrow a[1] = x \rightarrow a[1] + y \rightarrow a[1];
   r \rightarrow a[2] = x \rightarrow a[2] + y \rightarrow a[2];
   r > a[3] = x - a[3] + y - a[3];
   r \rightarrow a[4] = x \rightarrow a[4] + y \rightarrow a[4];
}
```

This definitely works for reduced inputs

```
typedef struct{
   unsigned long long a[5];
} bigint256;
void bigint256_add(bigint256 *r,
                             const bigint256 *x,
                             const bigint256 *y)
ł
   r \rightarrow a[0] = x \rightarrow a[0] + y \rightarrow a[0];
   r \rightarrow a[1] = x \rightarrow a[1] + y \rightarrow a[1];
   r \rightarrow a[2] = x \rightarrow a[2] + y \rightarrow a[2];
   r > a[3] = x - a[3] + y - a[3];
   r \rightarrow a[4] = x \rightarrow a[4] + y \rightarrow a[4];
}
```

This definitely works for reduced inputs

▶ This actually works as long as all coefficients are in  $[0, \ldots, 2^{63} - 1]$ 

```
typedef struct{
   unsigned long long a[5];
} bigint256;
void bigint256_add(bigint256 *r,
                             const bigint256 *x,
                             const bigint256 *y)
ł
   r \rightarrow a[0] = x \rightarrow a[0] + y \rightarrow a[0];
   r \rightarrow a[1] = x \rightarrow a[1] + y \rightarrow a[1];
   r \rightarrow a[2] = x \rightarrow a[2] + y \rightarrow a[2];
   r > a[3] = x - a[3] + y - a[3];
   r \rightarrow a[4] = x \rightarrow a[4] + y \rightarrow a[4];
}
```

- This definitely works for reduced inputs
- ▶ This actually works as long as all coefficients are in  $[0, \ldots, 2^{63} 1]$
- ▶ We can do quite a few additions before we have to carry (reduce)

### Subtraction of two bigint256

```
typedef struct{
  unsigned long long a[5];
} bigint256;
void bigint256_sub(bigint256 *r,
                           const bigint256 *x.
                           const bigint256 *y)
ł
  r \rightarrow a[0] = x \rightarrow a[0] - y \rightarrow a[0];
  r \rightarrow a[1] = x \rightarrow a[1] - y \rightarrow a[1];
  r > a[2] = x - a[2] - y - a[2];
  r > a[3] = x - a[3] - y - a[3];
  r \rightarrow a[4] = x \rightarrow a[4] - y \rightarrow a[4];
}
```

Again: what's wrong here?

### Subtraction of two bigint256

```
typedef struct{
  signed long long a[5];
} bigint256;
void bigint256_sub(bigint256 *r,
                           const bigint256 *x.
                           const bigint256 *y)
ł
  r \rightarrow a[0] = x \rightarrow a[0] - y \rightarrow a[0];
  r \rightarrow a[1] = x \rightarrow a[1] - y \rightarrow a[1];
  r > a[2] = x - a[2] - y - a[2];
  r > a[3] = x - a[3] - y - a[3];
  r \rightarrow a[4] = x \rightarrow a[4] - y \rightarrow a[4];
}
```

- Again: what's wrong here?
- Slightly update our bigint256 definition to work with signed 64-bit integers

### Subtraction of two bigint256

```
typedef struct{
   signed long long a[5];
} bigint256;
void bigint256_sub(bigint256 *r,
                             const bigint256 *x.
                             const bigint256 *y)
ł
   r \rightarrow a[0] = x \rightarrow a[0] - y \rightarrow a[0];
   r \rightarrow a[1] = x \rightarrow a[1] - y \rightarrow a[1];
   r \rightarrow a[2] = x \rightarrow a[2] - y \rightarrow a[2];
   r > a[3] = x - a[3] - y - a[3];
  r \rightarrow a[4] = x \rightarrow a[4] - y \rightarrow a[4];
}
```

- Again: what's wrong here?
- Slightly update our bigint256 definition to work with signed 64-bit integers
- Reduced if coefficients are in  $[-2^{52}-1, 2^{52}-1]$

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., *carry*)

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., *carry*)
- Let's carry high bits of r.a[0] over to r.a[1]:

```
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
```

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., *carry*)
- Let's carry high bits of r.a[0] over to r.a[1]:

```
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
```

- This requires that >> 51 is an arithmetic shift (i.e., truncating division by 2<sup>51</sup>)
- Not defined in C standard (usually works, and no problem in assembly)

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., *carry*)
- Let's carry high bits of r.a[0] over to r.a[1]:

```
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
```

- ► This requires that >> 51 is an arithmetic shift (i.e., truncating division by 2<sup>51</sup>)
- Not defined in C standard (usually works, and no problem in assembly)
- Proceed:
  - Carry from r.a[1] to r.a[2];

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., *carry*)
- Let's carry high bits of r.a[0] over to r.a[1]:

```
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
```

- This requires that >> 51 is an arithmetic shift (i.e., truncating division by 2<sup>51</sup>)
- Not defined in C standard (usually works, and no problem in assembly)
- Proceed:
  - Carry from r.a[1] to r.a[2];
  - Carry from r.a[2] to r.a[3];

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., carry)
- Let's carry high bits of r.a[0] over to r.a[1]:

```
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
```

- This requires that >> 51 is an arithmetic shift (i.e., truncating division by 2<sup>51</sup>)
- Not defined in C standard (usually works, and no problem in assembly)
- Proceed:
  - Carry from r.a[1] to r.a[2];
  - Carry from r.a[2] to r.a[3];
  - Carry from r.a[3] to r.a[4];

- An addition/subtraction does not produce a reduced output for reduced inputs
- Can do quite a few additions, but at some point we need to reduce (i.e., *carry*)
- Let's carry high bits of r.a[0] over to r.a[1]:

```
signed long long carry = r.a[0] >> 51;
r.a[1] += carry;
carry <<= 51;
r.a[0] -= carry;
```

- This requires that >> 51 is an arithmetic shift (i.e., truncating division by 2<sup>51</sup>)
- Not defined in C standard (usually works, and no problem in assembly)
- Proceed:
  - Carry from r.a[1] to r.a[2];
  - Carry from r.a[2] to r.a[3];
  - Carry from r.a[3] to r.a[4];
  - Carry from r.a[4] to ...?

# Reducing modulo $\boldsymbol{p}$

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.
- We want to perform arithmetic in a field  $\mathbb{F}_p$ , we can reduce modulo p

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.
- We want to perform arithmetic in a field  $\mathbb{F}_p$ , we can reduce modulo p
- Let's fix some p, say  $p = 2^{255} 19$

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.
- We want to perform arithmetic in a field  $\mathbb{F}_p$ , we can reduce modulo p

• Let's fix some 
$$p$$
, say  $p = 2^{255} - 19$ 

Imagine, that we did carry to r.a[5]. Then we get an integer

$$A = a_0 + 2^{51}a_1 + 2^{102}a_2 + 2^{153}a_3 + 2^{204}a_4 + 2^{255}a_5$$

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.
- We want to perform arithmetic in a field  $\mathbb{F}_p$ , we can reduce modulo p
- Let's fix some p, say  $p = 2^{255} 19$
- Imagine, that we did carry to r.a[5]. Then we get an integer

$$A = a_0 + 2^{51}a_1 + 2^{102}a_2 + 2^{153}a_3 + 2^{204}a_4 + 2^{255}a_5$$

- Note that  $2^{255} \equiv 19 \pmod{p}$
- Modulo p, the integer A is congruent to

$$A = (a_0 + 19a_5) + 2^{51}a_1 + 2^{102}a_2 + 2^{153}a_3 + 2^{204}a_4$$

- When adding integers, the result naturally grows
- For integers, we do not really have any place to carry from r.a[4], except create a new limb r.a[5], etc.
- We want to perform arithmetic in a field  $\mathbb{F}_p$ , we can reduce modulo p
- Let's fix some p, say  $p = 2^{255} 19$
- Imagine, that we did carry to r.a[5]. Then we get an integer

$$A = a_0 + 2^{51}a_1 + 2^{102}a_2 + 2^{153}a_3 + 2^{204}a_4 + 2^{255}a_5$$

- Note that  $2^{255} \equiv 19 \pmod{p}$
- Modulo p, the integer A is congruent to

$$A = (a_0 + 19a_5) + 2^{51}a_1 + 2^{102}a_2 + 2^{153}a_3 + 2^{204}a_4$$

We can reduce r.a[4] as follows (modulo p): signed long long carry = r.a[4] >> 51;

"You cannot just simply pull some nice prime out of your hat!"

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- ▶ For cryptography we construct curves over fields of "nice" order

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- ▶ For cryptography we construct curves over fields of "nice" order
- Examples:
  - ▶  $2^{192} 2^{64} 1$  ("NIST-P<sub>192</sub>", FIPS186-2, 2000)
  - ▶  $2^{224} 2^{96} + 1$  ("NIST-P<sub>224</sub>", FIPS186-2, 2000)
  - ►  $2^{256} 2^{224} + 2^{192} + 2^{96} 1$  ("NIST-P<sub>256</sub>", FIPS186-2, 2000)
  - ▶  $2^{255} 19$  (Bernstein, 2006)
  - ▶  $2^{251} 9$  (Bernstein, Hamburg, Krasnova, Lange, 2013)

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- For cryptography we construct curves over fields of "nice" order
- Examples:
  - ▶  $2^{192} 2^{64} 1$  ("NIST-P<sub>192</sub>", FIPS186-2, 2000)
  - ▶  $2^{224} 2^{96} + 1$  ("NIST-P<sub>224</sub>", FIPS186-2, 2000)
  - ►  $2^{256} 2^{224} + 2^{192} + 2^{96} 1$  ("NIST-P<sub>256</sub>", FIPS186-2, 2000)
  - ▶ 2<sup>255</sup> 19 (Bernstein, 2006)
  - ▶  $2^{251} 9$  (Bernstein, Hamburg, Krasnova, Lange, 2013)
- ▶ All these primes come with (more or less) fast reduction algorithms

- "You cannot just simply pull some nice prime out of your hat!"
- In fact, very often we can.
- For cryptography we construct curves over fields of "nice" order
- Examples:
  - ▶  $2^{192} 2^{64} 1$  ("NIST-P<sub>192</sub>", FIPS186-2, 2000)
  - ▶  $2^{224} 2^{96} + 1$  ("NIST-P<sub>224</sub>", FIPS186-2, 2000)
  - ▶  $2^{256} 2^{224} + 2^{192} + 2^{96} 1$  ("NIST-P<sub>256</sub>", FIPS186-2, 2000)
  - ▶  $2^{255} 19$  (Bernstein, 2006)
  - ▶ 2<sup>251</sup> 9 (Bernstein, Hamburg, Krasnova, Lange, 2013)
- > All these primes come with (more or less) fast reduction algorithms
- More about general primes later
- For the moment let's stick to  $2^{255} 19$

## Briefly back to carrying

- We first reduced r.a[0], i.e., produced r.a[0] in interval [-2<sup>51</sup>, 2<sup>51</sup>]
- At the end we add 19\*carry to r.a[0]
- Carry has at most 12 bits (obtained by dividing a signed 64-bit integer by 2<sup>51</sup>)
- ▶ The absolute value of 19\*carry has at most 17 bits
- ▶ r.a[0]+19\*carry is still within  $[-2^{52}-1, 2^{52}-1]$ , i.e., reduced

### Multiplication

• We want to multiply two integers  $A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$  and  $B = \sum_{i=0}^{4} b_i 2^{51 \cdot i}$ 

### Multiplication

- ▶ We want to multiply two integers  $A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$  and  $B = \sum_{i=0}^{4} b_i 2^{51 \cdot i}$
- Think about it like this:
  - Multiply polynomials  $A = \sum_{i=0}^{4} a_i X^i$  and  $B = \sum_{i=0}^{4} b_i X^i$

- We want to multiply two integers  $A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$  and  $B = \sum_{i=0}^{4} b_i 2^{51 \cdot i}$
- Think about it like this:
  - Multiply polynomials  $A = \sum_{i=0}^{4} a_i X^i$  and  $B = \sum_{i=0}^{4} b_i X^i$
  - Obtain result polynomial  $R = \sum_{i=0}^{8} r_i X^i$

- We want to multiply two integers  $A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$  and  $B = \sum_{i=0}^{4} b_i 2^{51 \cdot i}$
- Think about it like this:
  - Multiply polynomials  $A = \sum_{i=0}^{4} a_i X^i$  and  $B = \sum_{i=0}^{4} b_i X^i$
  - Obtain result polynomial  $R = \sum_{i=0}^{8} r_i X^i$
  - ▶ Evaluate R at 2<sup>51</sup>

- ▶ We want to multiply two integers  $A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$  and  $B = \sum_{i=0}^{4} b_i 2^{51 \cdot i}$
- Think about it like this:
  - Multiply polynomials  $A = \sum_{i=0}^{4} a_i X^i$  and  $B = \sum_{i=0}^{4} b_i X^i$
  - Obtain result polynomial  $R = \sum_{i=0}^{8} r_i X^i$
  - Evaluate R at 2<sup>51</sup>
- ▶ The coefficients of *R* are:

$$r_{0} = a_{0}b_{0}$$

$$r_{1} = a_{0}b_{1} + a_{1}b_{0}$$

$$r_{2} = a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0}$$
...
$$r_{8} = a_{4}b_{4}$$

- We want to multiply two integers  $A = \sum_{i=0}^{4} a_i 2^{51 \cdot i}$  and  $B = \sum_{i=0}^{4} b_i 2^{51 \cdot i}$
- Think about it like this:
  - Multiply polynomials  $A = \sum_{i=0}^{4} a_i X^i$  and  $B = \sum_{i=0}^{4} b_i X^i$
  - Obtain result polynomial  $R = \sum_{i=0}^{8} r_i X^i$
  - ► Evaluate R at 2<sup>51</sup>
- ▶ The coefficients of *R* are:

$$r_{0} = a_{0}b_{0}$$

$$r_{1} = a_{0}b_{1} + a_{1}b_{0}$$

$$r_{2} = a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0}$$
...
$$r_{8} = a_{4}b_{4}$$

- ▶ If all  $a_i$  and  $b_i$  have 52 bits, the  $r_i$  will have up to 107 bits
- Doesn't fit into 64-bit registers, but remember that there is a multiplication instruction that produces 128-bit results in two registers.

# Multiplication in C (idealized)

```
void mul(int128 r[9], const bigint256 *x, const bigint256 *v)
Ł
  const signed long long *a = x->a:
 const signed long long *b = y->a;
 r[0] = (int128) a[0]*b[0];
 r[1] = (int128) a[0]*b[1] + (int128) a[1]*b[0];
 r[2] = (int128) a[0]*b[2] + (int128) a[1]*b[1] + (int128) a[2]*b[0];
 r[3] = (int128) a[0]*b[3] + (int128) a[1]*b[2] + 
         (int128) a[2]*b[1] + (int128) a[3]*b[0]:
 r[4] = (int128) a[0]*b[4] + (int128) a[1]*b[3] + (int128) a[2]*b[2] + 
         (int128) a[3]*b[1] + (int128) a[4]*b[0];
 r[5] = (int128) a[1]*b[4] + (int128) a[2]*b[3] + 
         (int128) a[3]*b[2] + (int128) a[4]*b[1];
 r[6] = (int128) a[2]*b[4] + (int128) a[3]*b[3] + (int128) a[4]*b[2]:
 r[7] = (int128) a[3]*b[4] + (int128) a[4]*b[3];
 r[8] = (int128) a[4]*b[4];
3
```

# Multiplication in C (idealized)

```
void mul(int128 r[9], const bigint256 *x, const bigint256 *v)
Ł
  const signed long long *a = x->a:
 const signed long long *b = y->a;
 r[0] = (int128) a[0]*b[0];
 r[1] = (int128) a[0]*b[1] + (int128) a[1]*b[0];
 r[2] = (int128) a[0]*b[2] + (int128) a[1]*b[1] + (int128) a[2]*b[0];
 r[3] = (int128) a[0]*b[3] + (int128) a[1]*b[2] + 
         (int128) a[2]*b[1] + (int128) a[3]*b[0]:
 r[4] = (int128) a[0]*b[4] + (int128) a[1]*b[3] + (int128) a[2]*b[2] + 
         (int128) a[3]*b[1] + (int128) a[4]*b[0];
 r[5] = (int128) a[1]*b[4] + (int128) a[2]*b[3] + \
         (int128) a[3]*b[2] + (int128) a[4]*b[1];
 r[6] = (int128) a[2]*b[4] + (int128) a[3]*b[3] + (int128) a[4]*b[2]:
 r[7] = (int128) a[3]*b[4] + (int128) a[4]*b[3];
 r[8] = (int128) a[4]*b[4];
3
```

 Can evaluate in arbitrary order: "operand scanning" vs. "product scanning"

# Multiplication in C (idealized)

```
void mul(int128 r[9], const bigint256 *x, const bigint256 *v)
Ł
  const signed long long *a = x->a;
  const signed long long *b = y->a;
 r[0] = (int128) a[0]*b[0];
 r[1] = (int128) a[0]*b[1] + (int128) a[1]*b[0];
 r[2] = (int128) a[0]*b[2] + (int128) a[1]*b[1] + (int128) a[2]*b[0];
 r[3] = (int128) a[0]*b[3] + (int128) a[1]*b[2] + 
         (int128) a[2]*b[1] + (int128) a[3]*b[0]:
 r[4] = (int128) a[0]*b[4] + (int128) a[1]*b[3] + (int128) a[2]*b[2] + 
         (int128) a[3]*b[1] + (int128) a[4]*b[0];
 r[5] = (int128) a[1]*b[4] + (int128) a[2]*b[3] + 
         (int128) a[3]*b[2] + (int128) a[4]*b[1]:
 r[6] = (int128) a[2]*b[4] + (int128) a[3]*b[3] + (int128) a[4]*b[2]:
 r[7] = (int128) a[3]*b[4] + (int128) a[4]*b[3];
 r[8] = (int128) a[4]*b[4];
3
```

- Can evaluate in arbitrary order: "operand scanning" vs. "product scanning"
- Datatype int128 not in ANSI C (but can get it with gcc)
- ▶ Even in assembly, we don't have addition of 128-bit integers

### A peek at multiplication in qhasm

```
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 0]
r0 = rax
r0h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 8]
r1 = rax
r1h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 16]
r_2 = rax
r2h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 24]
r3 = rax
r3h = rdx
rax = mem64[input_1 + 0]
(int128) rdx rax = rax * mem64[input_2 + 32]
r4 = rax
r4h = rdx
```

### A peek at multiplication in qhasm

```
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 0]
carry? r1 += rax
r1h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 8]
carry? r2 += rax
r2h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 16]
carry? r3 += rax
r3h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 24]
carry? r4 += rax
r4h += rdx + carry
rax = mem64[input_1 + 8]
(int128) rdx rax = rax * mem64[input_2 + 32]
r5 = rax
r5h = rdx
```

### A peek at multiplication in qhasm

mem64[input\_0 + 0] = r0
mem64[input\_0 + 8] = r0h
mem64[input\_0 + 16] = r1
mem64[input\_0 + 24] = r1h
mem64[input\_0 + 32] = r2
mem64[input\_0 + 40] = r2h

. . .

. . .

mem64[input\_0 + 128] = r8 mem64[input\_0 + 136] = r8h

• We now have  $r_0, \ldots, r_8$ , such that

$$\sum_{i=0}^{8} r_i X^i = \left(\sum_{i=0}^{4} a_i X^i\right) \left(\sum_{i=0}^{4} b_i X^i\right)$$

• We want to have  $r_0, \ldots, r_4$ , such that

$$\sum_{i=0}^{4} r_i 2^{51 \cdot i} \equiv \left(\sum_{i=0}^{4} a_i 2^{51 \cdot i}\right) \left(\sum_{i=0}^{4} b_i 2^{51 \cdot i}\right) \pmod{2^{255} - 19}$$

• We now have  $r_0, \ldots, r_8$ , such that

$$\sum_{i=0}^{8} r_i X^i = \left(\sum_{i=0}^{4} a_i X^i\right) \left(\sum_{i=0}^{4} b_i X^i\right)$$

• We want to have  $r_0, \ldots, r_4$ , such that

$$\sum_{i=0}^{4} r_i 2^{51 \cdot i} \equiv \left(\sum_{i=0}^{4} a_i 2^{51 \cdot i}\right) \left(\sum_{i=0}^{4} b_i 2^{51 \cdot i}\right) \pmod{2^{255} - 19}$$

 $\blacktriangleright$  With the same reasoning as before, we can reduce modulo p as  $r_0 \leftarrow r_0 + 19 r_5$ 

• We now have  $r_0, \ldots, r_8$ , such that

$$\sum_{i=0}^{8} r_i X^i = \left(\sum_{i=0}^{4} a_i X^i\right) \left(\sum_{i=0}^{4} b_i X^i\right)$$

• We want to have  $r_0, \ldots, r_4$ , such that

$$\sum_{i=0}^{4} r_i 2^{51 \cdot i} \equiv \left(\sum_{i=0}^{4} a_i 2^{51 \cdot i}\right) \left(\sum_{i=0}^{4} b_i 2^{51 \cdot i}\right) \pmod{2^{255} - 19}$$

 $\blacktriangleright$  With the same reasoning as before, we can reduce modulo p as

$$r_0 \leftarrow r_0 + 19r_5$$
  

$$r_1 \leftarrow r_1 + 19r_6$$
  

$$r_2 \leftarrow r_2 + 19r_7$$
  

$$r_3 \leftarrow r_3 + 19r_8$$

• We now have  $r_0, \ldots, r_8$ , such that

$$\sum_{i=0}^{8} r_i X^i = \left(\sum_{i=0}^{4} a_i X^i\right) \left(\sum_{i=0}^{4} b_i X^i\right)$$

• We want to have  $r_0, \ldots, r_4$ , such that

$$\sum_{i=0}^{4} r_i 2^{51 \cdot i} \equiv \left(\sum_{i=0}^{4} a_i 2^{51 \cdot i}\right) \left(\sum_{i=0}^{4} b_i 2^{51 \cdot i}\right) \pmod{2^{255} - 19}$$

 $\blacktriangleright$  With the same reasoning as before, we can reduce modulo p as

 $r_0 \leftarrow r_0 + 19r_5$   $r_1 \leftarrow r_1 + 19r_6$   $r_2 \leftarrow r_2 + 19r_7$  $r_3 \leftarrow r_3 + 19r_8$ 

• Remaining problem:  $r_0, \ldots, r_4$  are too large

• We now have  $r_0, \ldots, r_8$ , such that

$$\sum_{i=0}^{8} r_i X^i = \left(\sum_{i=0}^{4} a_i X^i\right) \left(\sum_{i=0}^{4} b_i X^i\right)$$

• We want to have  $r_0, \ldots, r_4$ , such that

$$\sum_{i=0}^{4} r_i 2^{51 \cdot i} \equiv \left(\sum_{i=0}^{4} a_i 2^{51 \cdot i}\right) \left(\sum_{i=0}^{4} b_i 2^{51 \cdot i}\right) \pmod{2^{255} - 19}$$

 $\blacktriangleright$  With the same reasoning as before, we can reduce modulo p as

 $\begin{array}{l} r_0 \leftarrow r_0 + 19r_5 \\ r_1 \leftarrow r_1 + 19r_6 \\ r_2 \leftarrow r_2 + 19r_7 \\ r_3 \leftarrow r_3 + 19r_8 \end{array}$ 

- Remaining problem:  $r_0, \ldots, r_4$  are too large
- Solution: carry!

# A suitable carry chain

 Basically the same as before, but now with 128-bit values (tricky, but possible in assembly)

signed int128 carry = r.a[0] >> 51; r.a[1] += carry; carry <<= 51; r.a[0] -= carry;

- Carry from  $r_0$  to  $r_1$ ; from  $r_1$  to  $r_2$ , and so on
- Multiply carry from  $r_4$  by 19 and add to  $r_0$

# A suitable carry chain

 Basically the same as before, but now with 128-bit values (tricky, but possible in assembly)

signed int128 carry = r.a[0] >> 51; r.a[1] += carry; carry <<= 51; r.a[0] -= carry;

- Carry from  $r_0$  to  $r_1$ ; from  $r_1$  to  $r_2$ , and so on
- Multiply carry from  $r_4$  by 19 and add to  $r_0$
- ▶ After one round of carries we have signed 64-bit integers
- Perform another round of carries to obtain reduced coefficients

# Squaring

- Obviously working solution for squaring: #define square(R,X) mul(R,X,X)
- Question: Can we do better?

# Squaring

Obviously working solution for squaring: #define square(R,X) mul(R,X,X) Question: Can we do better? Using multiplication for squarings: void mul(int128 r[9], const bigint256 \*x, const bigint256 \*y) Ł const signed long long \*a = x->a; const signed long long \*b = y->a; r[0] = (int128) a[0]\*a[0]:r[1] = (int128) a[0]\*a[1] + (int128) a[1]\*a[0];r[2] = (int128) a[0]\*a[2] + (int128) a[1]\*a[1] + (int128) a[2]\*a[0];r[3] = (int128) a[0]\*a[3] + (int128) a[1]\*a[2] +(int128) a[2]\*a[1] + (int128) a[3]\*a[0]: r[4] = (int128) a[0]\*a[4] + (int128) a[1]\*a[3] + (int128) a[2]\*a[2] +(int128) a[3]\*a[1] + (int128) a[4]\*a[0]: r[5] = (int128) a[1]\*a[4] + (int128) a[2]\*a[3] + \ (int128) a[3]\*a[2] + (int128) a[4]\*a[1]; r[6] = (int128) a[2]\*a[4] + (int128) a[3]\*a[3] + (int128) a[4]\*a[2]:r[7] = (int128) a[3]\*a[4] + (int128) a[4]\*a[3]; r[8] = (int128) a[4]\*a[4];}

# Squaring

Obviously working solution for squaring: #define square(R,X) mul(R,X,X) Question: Can we do better? Using multiplication for squarings: void mul(int128 r[9], const bigint256 \*x, const bigint256 \*y) Ł const signed long long \*a = x->a; const signed long long \*b = y->a; r[0] = (int128) a[0]\*a[0]:r[1] = (int128) a[0]\*a[1] + (int128) a[1]\*a[0];r[2] = (int128) a[0]\*a[2] + (int128) a[1]\*a[1] + (int128) a[2]\*a[0];r[3] = (int128) a[0]\*a[3] + (int128) a[1]\*a[2] +(int128) a[2]\*a[1] + (int128) a[3]\*a[0]: r[4] = (int128) a[0]\*a[4] + (int128) a[1]\*a[3] + (int128) a[2]\*a[2] +(int128) a[3]\*a[1] + (int128) a[4]\*a[0]: r[5] = (int128) a[1]\*a[4] + (int128) a[2]\*a[3] + \ (int128) a[3]\*a[2] + (int128) a[4]\*a[1]; r[6] = (int128) a[2]\*a[4] + (int128) a[3]\*a[3] + (int128) a[4]\*a[2]:r[7] = (int128) a[3]\*a[4] + (int128) a[4]\*a[3]; r[8] = (int128) a[4]\*a[4];}

Observation: We perform many multiplications twice!

#### Faster squaring

```
signed long long _2a[4];
_2a[0] = a[0] << 1;
_2a[1] = a[1] << 1;
_2a[2] = a[2] << 1;
_2a[3] = a[3] << 1;
r[0] = (int128) a[0]*a[0];
r[1] = (int128) _2a[0]*a[2] + (int128) a[1]*a[1];
r[3] = (int128) _2a[0]*a[3] + (int128) _2a[1]*a[2];
r[4] = (int128) _2a[0]*a[3] + (int128) _2a[1]*a[3] + (int128) a[2]*a[2];
r[5] = (int128) _2a[2]*a[4] + (int128) _2a[2]*a[3];
r[6] = (int128) _2a[2]*a[4] + (int128) a[3]*a[3];
r[7] = (int128) _2a[3]*a[4];
r[8] = (int128) _2a[3]*a[4];
```

- Multiplication needs 25 multiplications, 16 additions
- Squaring needs 15 multiplications, 6 additions (and 4 shifts)

- ▶ Consider multiplication of two *n*-coefficient polynomials (degree  $\leq n-1$ )
- $\blacktriangleright$  So far we needed  $n^2$  multiplications and  $(n-1)^2$  additions
- Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity

- Consider multiplication of two *n*-coefficient polynomials (degree  $\leq n-1$ )
- $\blacktriangleright$  So far we needed  $n^2$  multiplications and  $(n-1)^2$  additions
- Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
- ▶ Proven wrong by 23-year old student Karatsuba in 1960
- ▶ Assume that n = 2m, then write an *n*-coefficient polynomial A as  $A_0 + X^m A_1$
- Perform multiplication as

$$= (A_0 + X^m A_1) \cdot (B_0 + X^m B_1)$$
  
=  $A_0 B_0 + (A_0 B_1 + A_1 B_0) X^m + A_1 B_1 X^{2m}$ 

- Consider multiplication of two *n*-coefficient polynomials (degree  $\leq n-1$ )
- $\blacktriangleright$  So far we needed  $n^2$  multiplications and  $(n-1)^2$  additions
- Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
- ▶ Proven wrong by 23-year old student Karatsuba in 1960
- Assume that n = 2m, then write an n-coefficient polynomial A as  $A_0 + X^m A_1$
- Perform multiplication as

$$= (A_0 + X^m A_1) \cdot (B_0 + X^m B_1)$$
  
=  $A_0 B_0 + (A_0 B_1 + A_1 B_0) X^m + A_1 B_1 X^{2m}$   
=  $A_0 B_0 + ((A_0 + A_1)(B_0 + B_1) - A_0 B_0 - A_1 B_1) X^m + A_1 B_1 X^{2m}$ 

- Consider multiplication of two *n*-coefficient polynomials (degree  $\leq n-1$ )
- $\blacktriangleright$  So far we needed  $n^2$  multiplications and  $(n-1)^2$  additions
- Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
- ▶ Proven wrong by 23-year old student Karatsuba in 1960
- ▶ Assume that n = 2m, then write an n-coefficient polynomial A as  $A_0 + X^m A_1$
- Perform multiplication as

$$= (A_0 + X^m A_1) \cdot (B_0 + X^m B_1)$$
  
=  $A_0 B_0 + (A_0 B_1 + A_1 B_0) X^m + A_1 B_1 X^{2m}$   
=  $A_0 B_0 + ((A_0 + A_1)(B_0 + B_1) - A_0 B_0 - A_1 B_1) X^m + A_1 B_1 X^{2m}$ 

- ▶ We just turned one multiplication of size n into 3 multiplications of size n/2 (and about 8m additions)
- ▶ Recursive application yields asymptotic complexity  $O(n^{\log_2 3})$

## Even faster multiplication?

Karatsuba equality:

 $(A_0 + X^m A_1) \cdot (B_0 + X^m B_1)$ =  $A_0 B_0 + ((A_0 + A_1)(B_0 + B_1) - A_0 B_0 - A_1 B_1) X^m + A_1 B_1 X^{2m}$ 

## Even faster multiplication?

Karatsuba equality:

 $(A_0 + X^m A_1) \cdot (B_0 + X^m B_1)$ =  $A_0 B_0 + ((A_0 + A_1)(B_0 + B_1) - A_0 B_0 - A_1 B_1) X^m + A_1 B_1 X^{2m}$ 

Refined Karatsuba equality:

 $(A_0 + X^m A_1)(B_0 + X^m B_1)$ =(1 - X<sup>m</sup>)(A\_0B\_0 - X<sup>m</sup> A\_1B\_1) + X<sup>m</sup>(A\_0 + A\_1)(B\_0 + B\_1)

## Even faster multiplication?

Karatsuba equality:

 $(A_0 + X^m A_1) \cdot (B_0 + X^m B_1)$ =  $A_0 B_0 + ((A_0 + A_1)(B_0 + B_1) - A_0 B_0 - A_1 B_1) X^m + A_1 B_1 X^{2m}$ 

Refined Karatsuba equality:

 $(A_0 + X^m A_1)(B_0 + X^m B_1)$ =(1 - X<sup>m</sup>)(A\_0B\_0 - X<sup>m</sup> A\_1B\_1) + X<sup>m</sup>(A\_0 + A\_1)(B\_0 + B\_1)

- ► This reduces the ≈ 8m additions to ≈ 7m additions (see Bernstein "Batch binary Edwards", 2009)
- No reduction of asymptotic running time, but speedup in practice

# Multiplication, can we go further?

- ▶ Toom-Cook multiplication has asymptotic complexity  $O(n^{\log_3 5})$
- ► Schönhage-Strassen multiplication has asymptotic complexity O(n log n log log n)
- Fürer's multiplication algorithm has running time  $n \log n 2^{O(\log^* n)}$

## Karatsuba for $\mathbb{F}_{2^{255}-19}$ (in idealized C)

```
signed int128 rm0,rm1,rm2,rm3,rm4;
signed long long am0, am1, am2, bm0, bm1, bm2;
am0 = a[0] + a[3]:
am0 = a[1] + a[4]:
am0 = a[2]:
am0 = b[0] + b[3]:
am0 = b[1] + b[4];
am0 = b[2]:
r[0] = (int128) a[0]*b[0];
r[1] = (int128) a[0]*b[1] + (int128) a[1]*b[0];
r[2] = (int128) a[0]*b[2] + (int128) a[1]*b[1] + (int128) a[2]*b[0];
r[3] = (int128) a[1]*b[2] + (int128) a[2]*b[1];
r[4] = (int128) a[2]*b[2];
r[6] = (int128) a[3]*b[3];
r[7] = (int128) a[3]*b[4] + (int128) a[4]*b[3];
r[8] = (int128) a[4] * b[4];
```

## Karatsuba for $\mathbb{F}_{2^{255}-19}$ (in idealized C) ctd.

```
r[3] += rm[0];
r[4] += rm[1];
r[5] = rm[2];
r[6] += rm[3];
r[6] += rm[4];
```

## Karatsuba for $\mathbb{F}_{2^{255}-19}$ (in idealized C) ctd.

```
r[3] += rm[0];
r[4] += rm[1];
r[5] = rm[2];
r[6] += rm[3];
r[6] += rm[4];
```

- ▶ 22 multiplications, 4 small additions, 21 big additions
- Is this better? I doubt it.

Depends on the size of the field

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)
- Depends on computer microarchitecture (speed of multiplication vs. speed of addition)

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)
- Depends on computer microarchitecture (speed of multiplication vs. speed of addition)
- Rule of thumb:
  - For  $\leq 10$  limbs (coefficients) use schoolbook multiplication

# Which multiplication algorithm to use

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)
- Depends on computer microarchitecture (speed of multiplication vs. speed of addition)
- Rule of thumb:
  - For  $\leq 10$  limbs (coefficients) use schoolbook multiplication
  - For > 10 start to think about (refined) Karatsuba

# Which multiplication algorithm to use

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)
- Depends on computer microarchitecture (speed of multiplication vs. speed of addition)
- Rule of thumb:
  - For  $\leq 10$  limbs (coefficients) use schoolbook multiplication
  - For > 10 start to think about (refined) Karatsuba
  - For field sizes appearing in ECC, I never saw anybody using Toom-Cook or Schönhage-Strassen (however, Toom-Cook may become interesting in pairing computations)

# Which multiplication algorithm to use

- Depends on the size of the field
- Depends on representation of field elements (signed vs. unsigned, radix, etc.)
- Depends on computer microarchitecture (speed of multiplication vs. speed of addition)
- Rule of thumb:
  - For  $\leq 10$  limbs (coefficients) use schoolbook multiplication
  - For > 10 start to think about (refined) Karatsuba
  - For field sizes appearing in ECC, I never saw anybody using Toom-Cook or Schönhage-Strassen (however, Toom-Cook may become interesting in pairing computations)
  - I don't know of any application using Fürer's algorithm

# Still missing: inversion

- ▶ Inversion is typically *much* more expensive than multiplication
- This is why we like projective coordinates

# Still missing: inversion

- Inversion is typically much more expensive than multiplication
- This is why we like projective coordinates
- Before sending an elliptic-curve point, we need to convert from projective coordinates to affine coordinates (for security reasons!)
- ▶ We need inversion, but we do (usually) not need it often

# Still missing: inversion

- Inversion is typically much more expensive than multiplication
- This is why we like projective coordinates
- Before sending an elliptic-curve point, we need to convert from projective coordinates to affine coordinates (for security reasons!)
- ▶ We need inversion, but we do (usually) not need it often
- Two approaches to inversion:
  - 1. Extended Euclidean algorithm
  - 2. Fermat's little theorem

## Extended Euclidean algorithm

 $\blacktriangleright$  Given two integers a,b, the Extended Euclidean algorithm finds

- The greatest common divisor of a and b
- Integers u and v, such that  $a \cdot u + b \cdot v = \gcd(a, b)$

### Extended Euclidean algorithm

 $\blacktriangleright$  Given two integers a, b, the Extended Euclidean algorithm finds

- The greatest common divisor of a and b
- Integers u and v, such that  $a \cdot u + b \cdot v = gcd(a, b)$
- It is based on the observation that

$$gcd(a,b) = gcd(b,a-qb) \quad \forall q \in \mathbb{Z}$$

#### Extended Euclidean algorithm

▶ Given two integers *a*, *b*, the Extended Euclidean algorithm finds

- The greatest common divisor of a and b
- Integers u and v, such that  $a \cdot u + b \cdot v = \gcd(a, b)$

It is based on the observation that

$$gcd(a,b) = gcd(b,a-qb) \quad \forall q \in \mathbb{Z}$$

▶ To compute  $a^{-1} \pmod{p}$ , use the algorithm to compute

$$a \cdot u + p \cdot v = \gcd(a, p) = 1$$

• Now it holds that  $u \equiv a^{-1} \pmod{p}$ 

### Extended Euclidean algorithm (pseudocode)

```
Input: Integers a and b.
Output: An integer tuple (u, v, d) satisfying a \cdot u + b \cdot v = d = \gcd(a, b)
   u \leftarrow 1
   v \leftarrow 0
   d \leftarrow a
   v_1 \leftarrow 0
   v_3 \leftarrow b
   while (v_3 \neq 0) do
         q \leftarrow \lfloor \frac{d}{v_2} \rfloor
         t_3 \leftarrow \tilde{d} \mod v_3
         t_1 \leftarrow u - qv_1
         u \leftarrow v_1
         d \leftarrow v_3
         v_1 \leftarrow t_1
         v_3 \leftarrow t_3
   end while
   v \leftarrow \frac{d-au}{b}
   return (u, v, d)
```

## Some notes about the Extended Euclidean algorithm

- Core operation are divisions with remainder
- Today: no details about big-integer division

## Some notes about the Extended Euclidean algorithm

- Core operation are divisions with remainder
- Today: no details about big-integer division
- ▶ The running time (number of loop iterations) depends on the inputs
- ▶ We usually do not want this for cryptography (timing attacks!)

#### Theorem

#### Theorem

- This implies that  $a^{p-2} \equiv a^{-1} \pmod{p}$
- ▶ Obvious algorithm for inversion: Exponentiation with p-2

#### Theorem

- This implies that  $a^{p-2} \equiv a^{-1} \pmod{p}$
- $\blacktriangleright$  Obvious algorithm for inversion: Exponentiation with p-2
- ▶ The exponent is quite large (e.g., 255 bits), is that efficient?

#### Theorem

- This implies that  $a^{p-2} \equiv a^{-1} \pmod{p}$
- $\blacktriangleright$  Obvious algorithm for inversion: Exponentiation with p-2
- ▶ The exponent is quite large (e.g., 255 bits), is that efficient?
- ▶ Answer: yes, fairly. Inversion modulo  $2^{255} 19$  needs 254 squarings and 11 multiplications in  $\mathbb{F}_{2^{255}-19}$

- We can *compress* a point (x, y) before sending
- Usually send only x and one bit of y
- $\blacktriangleright$  When receiving such a compressed point we need to recompute y as  $\sqrt{x^3 + ax + b}$

- We can *compress* a point (x, y) before sending
- Usually send only x and one bit of y
- $\blacktriangleright$  When receiving such a compressed point we need to recompute y as  $\sqrt{x^3 + ax + b}$
- If  $p \equiv 3 \pmod{4}$ : compute square root of a as  $a^{(p+1)/4}$

- We can *compress* a point (x, y) before sending
- Usually send only x and one bit of y
- $\blacktriangleright$  When receiving such a compressed point we need to recompute y as  $\sqrt{x^3 + ax + b}$
- If  $p \equiv 3 \pmod{4}$ : compute square root of a as  $a^{(p+1)/4}$
- If  $p \equiv 5 \pmod{8}$ : compute  $\beta$ , such that  $\beta^4 = a^2$  as  $a^{(p+3)/8}$
- If  $\beta^2 = -a$ : multiply by  $\sqrt{-1}$

- We can *compress* a point (x, y) before sending
- Usually send only x and one bit of y
- $\blacktriangleright$  When receiving such a compressed point we need to recompute y as  $\sqrt{x^3 + ax + b}$
- If  $p \equiv 3 \pmod{4}$ : compute square root of a as  $a^{(p+1)/4}$
- If  $p \equiv 5 \pmod{8}$ : compute  $\beta$ , such that  $\beta^4 = a^2$  as  $a^{(p+3)/8}$
- If  $\beta^2 = -a$ : multiply by  $\sqrt{-1}$
- Computing square roots is (typically) about as expensive as an inversion

## Getting back to the rabbits

What if somebody just throws an ugly prime at you?

### Getting back to the rabbits

- What if somebody just throws an ugly prime at you?
- Example: German BSI is pushing the "Brainpool curves", over fields  $\mathbb{F}_p$  with
  - $p_{224} = 2272162293245435278755253799591092807334073 \\ 2145944992304435472941311 \\ = 0xD7C134AA264366862A18302575D1D787B09F07579 \\ 7DA89F57EC8C0FF$

or

 $\begin{array}{l} p_{256} =& 7688495639704534422080974662900164909303795 \backslash \\ & 0200943055203735601445031516197751 \\ =& 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D \backslash \\ & 52620282013481D1F6E5377 \end{array}$ 

### Getting back to the rabbits

- What if somebody just throws an ugly prime at you?
- Example: German BSI is pushing the "Brainpool curves", over fields  $\mathbb{F}_p$  with
  - $\begin{array}{l} p_{224}=&2272162293245435278755253799591092807334073 \\ & 2145944992304435472941311 \\ =&0xD7C134AA264366862A18302575D1D787B09F07579 \\ & 7DA89F57EC8C0FF \end{array}$

or

 $\begin{array}{l} p_{256} =& 7688495639704534422080974662900164909303795 \backslash \\ & 0200943055203735601445031516197751 \\ =& 0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D \backslash \\ & 52620282013481D1F6E5377 \end{array}$ 

► Another example: Pairing-friendly curves are typically defined over fields F<sub>p</sub> where p has some structure, but hard to exploit for fast arithmetic

- We multiply two n-limb big integers and obtain a 2n-limb result t
- We need to find  $t \mod p$

- We multiply two n-limb big integers and obtain a 2n-limb result t
- We need to find  $t \mod p$
- ▶ Idea: Perform big-integer division with remainder

- We multiply two n-limb big integers and obtain a 2n-limb result t
- We need to find  $t \mod p$
- Idea: Perform big-integer division with remainder
- ▶ Better idea (Montgomery, 1985):
  - Let R be such that gcd(R, p) = 1 and t
  - Represent an element a of  $\mathbb{F}_p$  as  $aR \mod p$
  - Multiplication of aR and bR yields  $t = abR^2$  (2n limbs)
  - ▶ Now compute *Montgomery reduction*:  $tR^{-1} \mod p$

- We multiply two n-limb big integers and obtain a 2n-limb result t
- We need to find  $t \mod p$
- Idea: Perform big-integer division with remainder
- ▶ Better idea (Montgomery, 1985):
  - Let R be such that gcd(R, p) = 1 and t
  - Represent an element a of  $\mathbb{F}_p$  as  $aR \mod p$
  - Multiplication of aR and bR yields  $t = abR^2$  (2n limbs)
  - ▶ Now compute *Montgomery reduction*:  $tR^{-1} \mod p$
  - For some choices of R this is be more efficient than division
  - Typical choice for radix-b representation: b<sup>n</sup>

# Montgomery reduction (pseudocode)

Input: 
$$p = (p_{n-1}, \ldots, p_0)_b$$
 with  $gcd(p, b) = 1$ ,  $R = b^n$ ,  
 $p' = -p^{-1} \mod b$  and  $t = (t_{2n-1}, \ldots, t_0)_b$   
Output:  $tR^{-1} \mod p$   
 $A \leftarrow t$   
for *i* from 0 to  $n - 1$  do  
 $u \leftarrow a_i p' \mod b$   
 $A \leftarrow A + u \cdot p \cdot b^i$   
end for  
 $A \leftarrow A/b^n$   
if  $A > p$  then  
 $A \leftarrow A - p$   
end if  
return  $A$ 

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation
- ▶ The algorithms takes  $n^2 + n$  multiplication instructions
- $\triangleright$  *n* of those are "shortened" multiplications (modulo *b*)

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation
- ▶ The algorithms takes  $n^2 + n$  multiplication instructions
- ▶ *n* of those are "shortened" multiplications (modulo *b*)
- The cost is roughly the same as schoolbook multiplication

- Some cost for transforming to Montgomery representation and back
- Only efficient if many operations are performed in Montgomery representation
- The algorithms takes  $n^2 + n$  multiplication instructions
- ▶ *n* of those are "shortened" multiplications (modulo *b*)
- ▶ The cost is roughly the same as schoolbook multiplication
- One can merge schoolbook multiplication with Montgomery reduction: "Montgomery multiplication"



- Efficiency of finite-field arithmetic highly depends on the representation of field elements
- The obvious representation is not always the best one



- Efficiency of finite-field arithmetic highly depends on the representation of field elements
- The obvious representation is not always the best one
- Carries are annoying (not only in C)

# Summary

- Efficiency of finite-field arithmetic highly depends on the representation of field elements
- The obvious representation is not always the best one
- Carries are annoying (not only in C)
- Be careful with the complexity of multiplication
- ▶ In particular if somebody uses it to estimate real-world performance

# Summary

- Efficiency of finite-field arithmetic highly depends on the representation of field elements
- The obvious representation is not always the best one
- Carries are annoying (not only in C)
- Be careful with the complexity of multiplication
- ▶ In particular if somebody uses it to estimate real-world performance
- Don't be afraid to use assembly, but consider qhasm (http://cr.yp.to/qhasm.html)

# Summary

- Efficiency of finite-field arithmetic highly depends on the representation of field elements
- The obvious representation is not always the best one
- Carries are annoying (not only in C)
- Be careful with the complexity of multiplication
- ▶ In particular if somebody uses it to estimate real-world performance
- Don't be afraid to use assembly, but consider qhasm (http://cr.yp.to/qhasm.html)
- Remember the Explicit Formulas Database http://www.hyperelliptic.org/EFD/