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Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.
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All the way back in 2016. . .

“We’re indebted to Erdem Alkim, Léo Ducas, Thomas Pöppelmann and
Peter Schwabe, the researchers who developed “New Hope”, the
post-quantum algorithm that we selected for this experiment.”

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
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All the way back in 2016. . .

“Key Agreement using the ‘NewHope’ lattice-based algorithm detailed in
the New Hope paper, and LUKE (Lattice-based Unique Key Exchange), an
ISARA speed-optimized version of the NewHope algorithm.”

https://www.isara.com/isara-radiate/
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All the way back in 2016. . .

“The deployed algorithm is a variant of “New Hope”, a quantum-resistant
cryptosystem”

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html
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Learning with errors (LWE)

• Given uniform A ∈ Zk×ℓ
q

• Given “noise distribution” χ

• Given samples As + e, with e←χ

• Search version: find s
• Decision version: distinguish from uniform random
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Learning with rounding (LWR)

• Given uniform A ∈ Zk×ℓ
q

• Given samples ⌈As⌋p, with p < q

• Search version: find s
• Decision version: distinguish from uniform random
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Using structured lattices

• Problem with LWE-based cryptosystems: public-key size

• Only NIST candidate exclusively using standard LWE: FrodoKEM

• Idea to solve this: allow structured matrix A, e.g.,

• NewHope: work inRq = Zq[X]/(Xn + 1); n a power of 2, q prime
• NTRU: work inRq = Zq[X]/(Xn − 1); n prime, q a power of 2
• NTRU Prime: work inRq = Zq[X]/(Xn − X− 1); q prime, n prime
• Kyber/Saber: use small-dimension matrices and vectors over
Rq = Zq[X]/(X256 + 1)

• Perform arithmetic on (vectors of) polynomials instead of
vectors/matrices over Zq
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How to build a KEM?

Alice (server) Bob (client)
s, e $← χ s′, e′ $← χ

b←as + e b−−−−→ u←as′ + e′
u←−−−−

Alice has v = us = ass′ + e′s
Bob has v′ = bs′ = ass′ + es′

• Secret and noise polynomials s, s′, e, e′ are small

• v and v′ are approximately the same
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How to build a KEM, part 2

Alice Bob

seed $← {0, 1}256

a←Parse(XOF(seed))

s, e $← χ s′, e′

, e′′

$← χ

b←as + e (b

,seed

)−−−−−→

a←Parse(XOF(seed))

u←as′ + e′
v←bs′

k $← {0, 1}n

k←Encode(k)

v′←us (u

,c

)←−−−

c←v + k
k′←c− v′ µ←Extract(k)
µ←Extract(k′)

This is LPR encryption, written as KEM (except for generation of a)
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Encode and Extract

• Encoding in LPR encryption: map n bits to n coefficients:
• A zero bit maps to 0

• A one bit maps to q/2

• Idea: Noise affects low bits of coefficients, put data into high bits

• Decode: map coefficient into [−q/2, q/2]
• Closer to 0 (i.e., in [−q/4, q/4]): set bit to zero
• Closer to ±q/2: set bit to one
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From passive to CCA security

• The base scheme does not have active security

• Attacker can choose arbitrary noise, learns s from failures

• Fujisaki-Okamoto transform (sketched):

Alice (Server) Bob (Client)

Gen():
pk, sk←KeyGen() Enc(seed, b):

seed, b←pk seed,b→ x←{0, . . . , 255}32
k, coins←SHA3-512(x)

u,v← u, v←Encrypt((seed, b), x, coins)
Dec(s, (u, v)):
x′← Decrypt(s, (u, v))
k′, coins′←SHA3-512(x′)
u′, v′←Encrypt((seed, b), x′, coins′)
verify if (u′, v′) = (u, v)
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Design space 0: The NTRU approach

• Historically first: NTRU
• Use parameters q and p = 3

• Keygen:
• Find f, g ∈ Rq and fq = f−1 mod q, fp = f−1 mod p
• public key: h = pfqg, secret key: (f, fp)

• Encrypt:
• Map message m to m ∈ Rq with coefficients in {−1, 0, 1}
• Sample random small-coefficient polynomial r ∈ Rq

• Compute ciphertext e = r · h + m
• Decrypt:

• Compute v = f · e

= f · (r · h + m) = f(r · (pfqg) + m) = prg + f ·m
• Compute m = v · fp mod p

• Advantages/Disadvantages compared to LPR:
• Asymptotically weaker than Ring-LWE approach
• Slower keygen, but faster encryption/decryption
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Design space 1: What ring?

• Structured lattice-based schemes use ringRq = Zq[X]/f
• q typically either prime or a power of two
• f typically of degree between 512 and 1024

• First option: q = 2k, f = (Xn − 1), n prime (NTRU)
• Second option: q = 2k, f = (Xn + 1), n = 2m (Saber)
• Third option: q = 2k, f = Φn+1, n+ 1 prime (Round5)
• Fourth option: q prime, f = (Xn + 1) = Φ2n, n = 2m

(NewHope, Kyber, LAC)
• Fifth option: q prime, f = (Xn − X− 1) irreducible, n prime

(NTRU Prime)
• Sixth option: ThreeBears works on large integers instead of

polynomials
• No proof that any option is more or less secure
• NTRU Prime advertises “less structure” in theirRq

• NewHope and Kyber have fastest (NTT-based) arithmetic
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Design space 2: module vs. ring?

• “Traditionally”, work directly with elements ofRq (“Ring-LWE”)
• Alternative: Module-LWE (MLWE):

• Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
• Work with small-dimension matrices and vectors overRq

• MLWE encrypts shorter messages than Ring-LWE

• MLWE eliminates some of the structure of Ring-LWE
• MLWE can very easily scale security (change dimension of

matrix):
• Optimize arithmetic inRq once
• Use same optimizedRq arithmetic for all security levels
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Design space 3: what noise?

• Need to sample noise (for LWE schemes) and small secrets
• More noise means

• more security from the underlying hard problem
• higher failure probability of decryption

• Three main choices to make:
• Narrow or wide noise

• Narrow noise (e.g., in {−1, 0, 1}) not conservative
• Wide noise requires larger q (or more failures)
• Larger q means larger public key and ciphertext

• LWE or LWR
• LWE considered more conservative (independent noise)
• LWR easier to implement (no noise sampling)
• LWR allows more compact public key and ciphertext

• Fixed-weight noise or not?
• Fixed-weight noise needs random permutation (sorting)
• Naive implementations leak secrets through timing
• Advantage of fixed-weight: easier to bound (or eliminate) decryption

failures
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Design space 4: allow failures?

• Can avoid decryption failures entirely (NTRU, NTRU Prime)
• Advantage:

• Easier CCA security transform and analysis

• Disadvantage:
• Need to limit noise (or have larger q)

• For passive-security-only can go the other way:
• Allow failure probability of, e.g., 2−30

• Reduce size of public key and ciphertext

• Active (CCA) security needs negligible failure probability
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Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

15



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once

• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

15



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

• Even without backdoor:
• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

15



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

15



Design space 5: public parameters?

• “Traditional” approach to choosing a in LWE/LWR schemes:
“Let a be a uniformly random. . . ”

• Before NewHope: real-world approach: generate fixed a once
• What if a is backdoored?
• Parameter-generating authority can break key exchange
• “Solution”: Nothing-up-my-sleeves (involves endless discussion!)
• Even without backdoor:

• Perform massive precomputation based on a
• Use precomputation to break all key exchanges
• Infeasible today, but who knows. . .
• Attack in the spirit of Logjam

• Solution in NewHope: Choose a fresh a every time
• Server can cache a for some time (e.g., 1h)
• All NIST PQC candidates now use this approach

15



Design space 6: error-correcting codes?

• Ring-LWE/LWR schemes work with polynomials of > 256

coefficients

• “Encrypt” messages of > 256 bits

• Need to encrypt only 256-bit key

• Question: How do we put those additional bits to use?

• Answer: Use error-correcting code (ECC) to reduce failure
probability

• NewHope: very simple threshold decoding
• LAC, Round5: more advanced ECC

• Correct more errors, obtain smaller public key and ciphertext
• More complex to implement, in particular without leaking through

timing
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Design space 7: CCA security?

• Ephemeral key exchange does not need CCA security

• Can offer passively secure version

• Protocols will combine this with signatures for authentication

• Advantages:
• Higher failure probability→more compact
• Simpler to implement, no CCA transform
• More flexibility for secret/noise generation

• Disadvantages:
• Less robust (will somebody reuse keys?)
• More options (CCA vs. CPA): easier to make mistakes
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Design space 8: CCA transforms

• General Fujisaki-Okamoto principle is the same for most KEMs
(exception: NTRU)

• Tweaks to FO transform:
• Hash public-key into coins: multitarget protection (for non-zero

failure probability)

• Hash public-key into shared key: KEM becomes contributory
• Hash ciphertext into shared key: more robust (?)

• How to handle rejection?
• Return special symbol (return -1): explicit
• Return H(s,C) for secret s: implicit

• As of round 2, no proposal uses explicit rejection
• Would break some security reduction
• More robust in practice (return value alwas 0)
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Summary

• Lattice-based KEMs offer best overall performance in the PQ
world

• Many tradeoffs between
• Security (including passive vs. active)
• Failure rate
• Size
• Speed

• More information about NIST PQC:
• https://csrc.nist.gov/projects/post-quantum-cryptography
• https://pqc-wiki.fau.edu/
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Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz
Slides at https://cryptojedi.org/latticekems.pdf

• CPA-secure “LPR KEM”, see slide 7

• Work in polynomial ringRq = Zq[X]/(Xn + 1)

• Parameters q = 4096, n = 1024

• Centered binomial noise with k = 8

• “Messages” have n bits⇒ trivial encoding (see slide 8)

1. Implement arithmetic inRq (file poly.c)

2. Implement the Wookie KEM (file kem.c)

• make builds various unit tests in test/ subdirectory

• Running test.sh in test/ subdirectory runs all tests

20
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Centered binomial noise with k = 8

• Let HW(b) be the Hamming weight of a byte b

• To sample one coefficient p[i] of a polynomial inRq:
• Sample two uniformly random bytes a and b
• Set p[i] = HW(a)− HW(b)

• Resulting coefficient will be in {−8, ..., 8}
• Sampling a polynomial needs 2n = 2048 uniformly random bytes
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Some remarks

• Software skeleton assumes Linux system

• Need basic build tools (make, gcc, . . . ) installed:

apt install build-essential

• Some unit tests and test.sh script assume Sage to be installed

apt install sagemath

• Can also download pre-compiled binaries of Sage:
https://doc.sagemath.org/html/en/installation/binary.html
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