

Introduction to lattice-based KEMs

May 4, 2022

Count of Problem Catego	ry ColumnLabels 💌		
Row Labels	Key Exchange	Signature	Grand Total
?	1		1
Braids	1	1	2
Chebychev	1		1
Codes	19	5	24
Finite Automata	1	1	2
Hash		4	4
Hypercomplex Numbers	1		1
Isogeny	1	-	1
Lattice	24	4	28
Mult. Var		7	13
Rand. walk	1		1
RSA	1	1	2
Grand Total	57	23	80
♀ 4	tl 31 ♡ 27		

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

All the way back in 2016...

Google Security Blog

The latest news and insights from Google on security and safety on the Internet

Experimenting with Post-Quantum Cryptography July 7, 2016	Q	Search blog	
Posted by Matt Braithwaite, Software Engineer		Archive	•

"We're indebted to Erdem Alkim, Léo Ducas, Thomas Pöppelmann and Peter Schwabe, the researchers who developed "New Hope", the post-quantum algorithm that we selected for this experiment."

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

All the way back in 2016...

"Key Agreement using the 'NewHope' lattice-based algorithm detailed in the New Hope paper, and LUKE (Lattice-based Unique Key Exchange), an ISARA speed-optimized version of the NewHope algorithm."

"The deployed algorithm is a variant of "New Hope", a quantum-resistant cryptosystem"

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- Given "noise distribution" χ
- Given samples $\mathbf{As} + \mathbf{e}$, with $\mathbf{e} {\leftarrow} \chi$

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k imes \ell}$
- Given "noise distribution" χ
- Given samples $\mathbf{As} + \mathbf{e}$, with $\mathbf{e} \leftarrow \chi$
- Search version: find ${\bf s}$
- Decision version: distinguish from uniform random

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- Given samples $[\mathbf{As}]_p$, with p < q

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- Given samples $[\mathbf{As}]_p$, with p < q
- Search version: find ${\bf s}$
- Decision version: distinguish from uniform random

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- · Idea to solve this: allow structured matrix A, e.g.,

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- · Idea to solve this: allow structured matrix A, e.g.,
 - NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; *n* a power of 2, *q* prime

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- · Idea to solve this: allow structured matrix A, e.g.,
 - NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; *n* a power of 2, *q* prime
 - NTRU: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n 1)$; *n* prime, *q* a power of 2

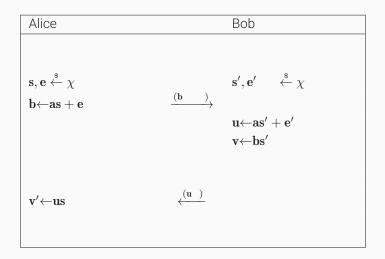
- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- · Idea to solve this: allow structured matrix A, e.g.,
 - NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; *n* a power of 2, *q* prime
 - NTRU: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n 1)$; *n* prime, *q* a power of 2
 - NTRU Prime: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n X 1)$; q prime, n prime

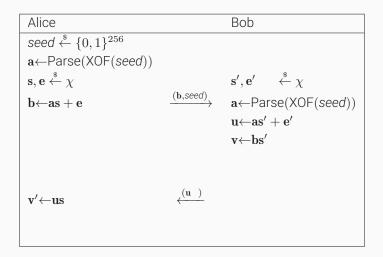
- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- · Idea to solve this: allow structured matrix A, e.g.,
 - NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; *n* a power of 2, *q* prime
 - NTRU: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n 1)$; *n* prime, *q* a power of 2
 - NTRU Prime: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n X 1)$; q prime, n prime
 - + Kyber/Saber: use small-dimension matrices and vectors over $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^{256}+1)$

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- · Idea to solve this: allow structured matrix A, e.g.,
 - NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; *n* a power of 2, *q* prime
 - NTRU: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n 1)$; *n* prime, *q* a power of 2
 - NTRU Prime: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n X 1)$; q prime, n prime
 - + Kyber/Saber: use small-dimension matrices and vectors over $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^{256}+1)$
- Perform arithmetic on (vectors of) polynomials instead of vectors/matrices over \mathbb{Z}_q

Alice (server)		Bob (client)
$\mathbf{s}, \mathbf{e} \xleftarrow{\hspace{0.1cm}\$} \chi$		$\mathbf{s}', \mathbf{e}' \xleftarrow{\hspace{0.15cm} \$} \chi$
$\mathbf{b} \leftarrow \mathbf{as} + \mathbf{e}$	$\xrightarrow{ \ \ b \ \ }$	$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
	\xleftarrow{u}	

- Secret and noise polynomials $\mathbf{s}, \mathbf{s}', \mathbf{e}, \mathbf{e}'$ are small
- \mathbf{v} and \mathbf{v}' are approximately the same





Alice		Bob
seed $\stackrel{\state{\state{\$}}}{\leftarrow} \{0,1\}^{256}$		
a←Parse(XOF(seed))		
$\mathbf{s}, \mathbf{e} \xleftarrow{\hspace{0.1cm}\$} \chi$		$\mathbf{s}', \mathbf{e}' \qquad \stackrel{\$}{\leftarrow} \chi$
$\mathbf{b} \leftarrow \mathbf{as} + \mathbf{e}$	$\xrightarrow{(\mathbf{b}, \text{seed})}$	$\mathbf{a} {\leftarrow} Parse(XOF(\textit{seed}))$
		$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
		$\mathbf{v} \leftarrow \mathbf{bs'}$
		$k \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \{0,1\}^n$
		$\mathbf{k} \leftarrow Encode(k)$
v′←us	$\xleftarrow{(\mathbf{u},\mathbf{c})}$	$\mathbf{c}{\leftarrow}\mathbf{v}+\mathbf{k}$

Alice		Bob
seed $\stackrel{\state{\state{\$}}}{\leftarrow} \{0,1\}^{256}$		
a←Parse(XOF(seed))		
$\mathbf{s}, \mathbf{e} \xleftarrow{\hspace{0.1cm}\$} \chi$		$\mathbf{s}', \mathbf{e}', \mathbf{e}'' \xleftarrow{\hspace{0.1in}\$} \chi$
$\mathbf{b} \leftarrow \mathbf{as} + \mathbf{e}$	$\xrightarrow{(\mathbf{b}, \text{seed})}$	$\mathbf{a} {\leftarrow} Parse(XOF(\textit{seed}))$
		$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
		$\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$
		$k \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \{0,1\}^n$
		$\mathbf{k} \leftarrow Encode(k)$
v′←us	$\xleftarrow{(\mathbf{u},\mathbf{c})}$	$\mathbf{c} {\leftarrow} \mathbf{v} + \mathbf{k}$

Alice		Bob
seed $\stackrel{\state{\state{\$}}}{\leftarrow} \{0,1\}^{256}$		
a←Parse(XOF(seed))		
$\mathbf{s}, \mathbf{e} \xleftarrow{\$} \chi$		$\mathbf{s}', \mathbf{e}', \mathbf{e}'' \xleftarrow{\$} \chi$
$\mathbf{b} \leftarrow \mathbf{as} + \mathbf{e}$	$\xrightarrow{(\mathbf{b}, \textit{seed})}$	$\mathbf{a} \leftarrow Parse(XOF(\mathit{seed}))$
		$\mathbf{u} \leftarrow \mathbf{as'} + \mathbf{e'}$
		$\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$
		$k \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \{0,1\}^n$
		$\mathbf{k} \leftarrow Encode(k)$
v′←us	$\stackrel{(\mathbf{u},\mathbf{c})}{\longleftarrow}$	$\mathbf{c} \leftarrow \mathbf{v} + \mathbf{k}$
$\mathbf{k}' {\leftarrow} \mathbf{c} - \mathbf{v}'$		

Alice		Bob
seed $\stackrel{\star}{\leftarrow} \{0,1\}^{256}$		
a←Parse(XOF(seed))		
$\mathbf{s}, \mathbf{e} \xleftarrow{\hspace{0.1cm}\$} \chi$		$\mathbf{s}', \mathbf{e}', \mathbf{e}'' \xleftarrow{\$} \chi$
$\mathbf{b} \leftarrow \mathbf{as} + \mathbf{e}$	$\xrightarrow{(\mathbf{b}, \textit{seed})}$	$\mathbf{a} \leftarrow Parse(XOF(\mathit{seed}))$
		$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
		$\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$
		$k \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \{0,1\}^n$
		$\mathbf{k} \leftarrow Encode(k)$
$\mathbf{v'} \leftarrow \mathbf{us}$	$\xleftarrow{(\mathbf{u},\mathbf{c})}$	$\mathbf{c} \leftarrow \mathbf{v} + \mathbf{k}$
$\mathbf{k'} \leftarrow \mathbf{c} - \mathbf{v'}$		$\mu \leftarrow Extract(\mathbf{k})$
$\mu \leftarrow Extract(\mathbf{k}')$		

Alice		Bob
seed $\stackrel{\star{\leftarrow}}{\leftarrow} \{0,1\}^{256}$		
a←Parse(XOF(seed))		
$\mathbf{s}, \mathbf{e} \xleftarrow{\hspace{0.1cm}\$} \chi$		$\mathbf{s}', \mathbf{e}', \mathbf{e}'' \xleftarrow{\$} \chi$
$\mathbf{b} \leftarrow \mathbf{as} + \mathbf{e}$	$\xrightarrow{(\mathbf{b}, \text{seed})}$	$\mathbf{a} {\leftarrow} Parse(XOF(\textit{seed}))$
		$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
		$\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$
		$k \stackrel{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \{0,1\}^n$
		$\mathbf{k} \leftarrow Encode(k)$
v'←us	$\xleftarrow{(\mathbf{u},\mathbf{c})}$	$\mathbf{c} \leftarrow \mathbf{v} + \mathbf{k}$
$\mathbf{k'} \leftarrow \mathbf{c} - \mathbf{v'}$		$\mu \leftarrow Extract(\mathbf{k})$
$\mu \leftarrow Extract(\mathbf{k}')$		

This is LPR encryption, written as KEM (except for generation of \mathbf{a})

- Encoding in LPR encryption: map *n* bits to *n* coefficients:
 - A zero bit maps to 0
 - A one bit maps to q/2
- · Idea: Noise affects low bits of coefficients, put data into high bits

- Encoding in LPR encryption: map *n* bits to *n* coefficients:
 - A zero bit maps to 0
 - A one bit maps to q/2
- · Idea: Noise affects low bits of coefficients, put data into high bits
- Decode: map coefficient into $\left[-q/2, q/2\right]$
 - Closer to 0 (i.e., in $\left[-q/4, q/4\right]$): set bit to zero
 - Closer to $\pm q/2$: set bit to one

From passive to CCA security

- The base scheme does not have active security
- Attacker can choose arbitrary noise, learns ${\bf s}$ from failures

From passive to CCA security

- · The base scheme does not have active security
- Attacker can choose arbitrary noise, learns ${\bf s}$ from failures
- Fujisaki-Okamoto transform (sketched):

Alice (Server)		Bob (Client)
Gen(): pk,sk←KeyGen() seed,b←pk	$\stackrel{\text{seed},\mathbf{b}}{\rightarrow}$	Enc(seed, b): $x \leftarrow \{0, \dots, 255\}^{32}$ k , coins \leftarrow SHA3-512(x)
$\begin{array}{l} \underbrace{Dec(\mathbf{s},(\mathbf{u},v)):}_{X'\leftarrow Decrypt(\mathbf{s},(\mathbf{u},v))\\ k', \mathit{coins'}\leftarrow SHA3-512(x')\\ \mathbf{u}', v'\leftarrow Encrypt((seed,\mathbf{b}),x', coins')\\ \textit{verify if }(\mathbf{u}',v') = (\mathbf{u},v) \end{array}$,	u , <i>v</i> ←Encrypt((seed, b), <i>x</i> , coins)

- Historically first: NTRU
- Use parameters q and p = 3

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = \rho \mathbf{f}_q \mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = \rho \mathbf{f}_q \mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$
- Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - + Compute ciphertext $\mathbf{e}=\mathbf{r}\cdot\mathbf{h}+\mathbf{m}$

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = \rho \mathbf{f}_q \mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$
- Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - + Compute ciphertext $\mathbf{e}=\mathbf{r}\cdot\mathbf{h}+\mathbf{m}$
- Decrypt:
 - + Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e}$

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = \rho \mathbf{f}_q \mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$
- Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - + Compute ciphertext $\mathbf{e}=\mathbf{r}\cdot\mathbf{h}+\mathbf{m}$
- Decrypt:
 - Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m})$

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = \rho \mathbf{f}_q \mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$
- Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - + Compute ciphertext $\mathbf{e}=\mathbf{r}\cdot\mathbf{h}+\mathbf{m}$
- Decrypt:
 - + Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m})$

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = \rho \mathbf{f}_q \mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$
- Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - + Compute ciphertext $\mathbf{e}=\mathbf{r}\cdot\mathbf{h}+\mathbf{m}$
- Decrypt:
 - + Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m}) = \rho \mathbf{r} \mathbf{g} + \mathbf{f} \cdot \mathbf{m}$

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = \rho \mathbf{f}_q \mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$
- Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - + Compute ciphertext $\mathbf{e}=\mathbf{r}\cdot\mathbf{h}+\mathbf{m}$
- Decrypt:
 - + Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m}) = \rho \mathbf{r} \mathbf{g} + \mathbf{f} \cdot \mathbf{m}$
 - Compute $\mathbf{m} = \mathbf{v} \cdot \mathbf{f}_{\rho} \mod \rho$

Design space 0: The NTRU approach

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = \rho \mathbf{f}_q \mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$
- Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1, 0, 1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - + Compute ciphertext $\mathbf{e}=\mathbf{r}\cdot\mathbf{h}+\mathbf{m}$
- Decrypt:
 - + Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m}) = \rho \mathbf{r} \mathbf{g} + \mathbf{f} \cdot \mathbf{m}$
 - Compute $\mathbf{m} = \mathbf{v} \cdot \mathbf{f}_{\rho} \mod \rho$
- · Advantages/Disadvantages compared to LPR:
 - · Asymptotically weaker than Ring-LWE approach
 - Slower keygen, but faster encryption/decryption

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, *n* prime (NTRU)

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, *n* prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, *n* prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n + 1 prime (Round5)

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, *n* prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n + 1 prime (Round5)
- Fourth option: q prime, $f = (X^n + 1) = \Phi_{2n}$, $n = 2^m$ (NewHope, Kyber, LAC)

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, *n* prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n + 1 prime (Round5)
- Fourth option: q prime, $f = (X^n + 1) = \Phi_{2n}$, $n = 2^m$ (NewHope, Kyber, LAC)
- Fifth option: q prime, $f = (X^n X 1)$ irreducible, n prime (NTRU Prime)

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, *n* prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n + 1 prime (Round5)
- Fourth option: q prime, $f = (X^n + 1) = \Phi_{2n}$, $n = 2^m$ (NewHope, Kyber, LAC)
- Fifth option: q prime, $f = (X^n X 1)$ irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, *n* prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n + 1 prime (Round5)
- Fourth option: q prime, $f = (X^n + 1) = \Phi_{2n}$, $n = 2^m$ (NewHope, Kyber, LAC)
- Fifth option: q prime, $f = (X^n X 1)$ irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, *n* prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n + 1 prime (Round5)
- Fourth option: q prime, $f = (X^n + 1) = \Phi_{2n}$, $n = 2^m$ (NewHope, Kyber, LAC)
- Fifth option: q prime, $f = (X^n X 1)$ irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure
- NTRU Prime advertises "less structure" in their \mathcal{R}_q

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - q typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, *n* prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n + 1 prime (Round5)
- Fourth option: q prime, $f = (X^n + 1) = \Phi_{2n}$, $n = 2^m$ (NewHope, Kyber, LAC)
- Fifth option: q prime, $f = (X^n X 1)$ irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure
- NTRU Prime advertises "less structure" in their \mathcal{R}_q
- NewHope and Kyber have fastest (NTT-based) arithmetic

- "Traditionally", work directly with elements of \mathcal{R}_q ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
 - Choose smaller *n*, e.g., n = 256 (Kyber, Saber, ThreeBears)
 - Work with small-dimension matrices and vectors over \mathcal{R}_q

- "Traditionally", work directly with elements of \mathcal{R}_q ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
 - Choose smaller *n*, e.g., n = 256 (Kyber, Saber, ThreeBears)
 - Work with small-dimension matrices and vectors over \mathcal{R}_q
- MLWE encrypts shorter messages than Ring-LWE

- "Traditionally", work directly with elements of \mathcal{R}_q ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
 - Choose smaller *n*, e.g., n = 256 (Kyber, Saber, ThreeBears)
 - Work with small-dimension matrices and vectors over \mathcal{R}_{q}
- MLWE encrypts shorter messages than Ring-LWE
- MLWE eliminates some of the structure of Ring-LWE

- "Traditionally", work directly with elements of \mathcal{R}_q ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
 - Choose smaller *n*, e.g., n = 256 (Kyber, Saber, ThreeBears)
 - Work with small-dimension matrices and vectors over \mathcal{R}_{q}
- MLWE encrypts shorter messages than Ring-LWE
- MLWE eliminates some of the structure of Ring-LWE
- MLWE can very easily scale security (change dimension of matrix):
 - Optimize arithmetic in \mathcal{R}_q once
 - Use same optimized \mathcal{R}_q arithmetic for all security levels

- Need to sample noise (for LWE schemes) and small secrets
- More noise means
 - more security from the underlying hard problem
 - higher failure probability of decryption

- Need to sample noise (for LWE schemes) and small secrets
- More noise means
 - · more security from the underlying hard problem
 - higher failure probability of decryption
- Three main choices to make:
 - Narrow or wide noise
 - Narrow noise (e.g., in $\{-1, 0, 1\}$) not conservative
 - Wide noise requires larger q (or more failures)
 - Larger q means larger public key and ciphertext

- Need to sample noise (for LWE schemes) and small secrets
- More noise means
 - · more security from the underlying hard problem
 - higher failure probability of decryption
- Three main choices to make:
 - Narrow or wide noise
 - + Narrow noise (e.g., in $\{-1,0,1\})$ not conservative
 - Wide noise requires larger q (or more failures)
 - Larger q means larger public key and ciphertext
 - LWE or LWR
 - · LWE considered more conservative (independent noise)
 - · LWR easier to implement (no noise sampling)
 - · LWR allows more compact public key and ciphertext

- Need to sample noise (for LWE schemes) and small secrets
- More noise means
 - more security from the underlying hard problem
 - higher failure probability of decryption
- Three main choices to make:
 - Narrow or wide noise
 - Narrow noise (e.g., in $\{-1, 0, 1\}$) not conservative
 - Wide noise requires larger q (or more failures)
 - Larger q means larger public key and ciphertext
 - LWE or LWR
 - LWE considered more conservative (independent noise)
 - · LWR easier to implement (no noise sampling)
 - · LWR allows more compact public key and ciphertext
 - Fixed-weight noise or not?
 - Fixed-weight noise needs random permutation (sorting)
 - · Naive implementations leak secrets through timing
 - Advantage of fixed-weight: easier to bound (or eliminate) decryption failures

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- Advantage:
 - Easier CCA security transform and analysis
- Disadvantage:
 - Need to limit noise (or have larger q)

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- Advantage:
 - Easier CCA security transform and analysis
- Disadvantage:
 - Need to limit noise (or have larger q)
- For passive-security-only can go the other way:
 - Allow failure probability of, e.g., 2^{-30}
 - Reduce size of public key and ciphertext

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- Advantage:
 - Easier CCA security transform and analysis
- Disadvantage:
 - Need to limit noise (or have larger q)
- For passive-security-only can go the other way:
 - Allow failure probability of, e.g., 2^{-30}
 - Reduce size of public key and ciphertext
- · Active (CCA) security needs negligible failure probability

• "Traditional" approach to choosing **a** in LWE/LWR schemes: *"Let* **a** *be a uniformly random..."*

- "Traditional" approach to choosing a in LWE/LWR schemes:
 "Let a be a uniformly random..."
- Before NewHope: real-world approach: generate fixed ${\bf a}$ once

- "Traditional" approach to choosing a in LWE/LWR schemes:
 "Let a be a uniformly random..."
- Before NewHope: real-world approach: generate fixed \mathbf{a} once
- What if \mathbf{a} is backdoored?
- Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)

- "Traditional" approach to choosing a in LWE/LWR schemes:
 "Let a be a uniformly random..."
- Before NewHope: real-world approach: generate fixed \mathbf{a} once
- What if \mathbf{a} is backdoored?
- · Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)
- Even without backdoor:
 - Perform massive precomputation based on ${\bf a}$
 - Use precomputation to break all key exchanges
 - Infeasible today, but who knows...
 - Attack in the spirit of Logjam

- "Traditional" approach to choosing a in LWE/LWR schemes:
 "Let a be a uniformly random..."
- Before NewHope: real-world approach: generate fixed \mathbf{a} once
- What if \mathbf{a} is backdoored?
- · Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)
- Even without backdoor:
 - Perform massive precomputation based on ${\bf a}$
 - Use precomputation to break all key exchanges
 - Infeasible today, but who knows...
 - Attack in the spirit of Logjam
- Solution in NewHope: Choose a fresh ${\bf a}$ every time
- Server can cache ${\bf a}$ for some time (e.g., 1h)
- All NIST PQC candidates now use this approach

Design space 6: error-correcting codes?

- Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- "Encrypt" messages of > 256 bits
- Need to encrypt only 256-bit key
- Question: How do we put those additional bits to use?
- Answer: Use error-correcting code (ECC) to reduce failure probability

Design space 6: error-correcting codes?

- Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- "Encrypt" messages of > 256 bits
- Need to encrypt only 256-bit key
- Question: How do we put those additional bits to use?
- Answer: Use error-correcting code (ECC) to reduce failure probability
- NewHope: very simple threshold decoding

Design space 6: error-correcting codes?

- Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- "Encrypt" messages of > 256 bits
- Need to encrypt only 256-bit key
- Question: How do we put those additional bits to use?
- Answer: Use error-correcting code (ECC) to reduce failure probability
- NewHope: very simple threshold decoding
- LAC, Round5: more advanced ECC
 - Correct more errors, obtain smaller public key and ciphertext
 - More complex to implement, in particular without leaking through timing

- Ephemeral key exchange does not need CCA security
- Can offer passively secure version
- · Protocols will combine this with signatures for authentication

- Ephemeral key exchange does not need CCA security
- Can offer passively secure version
- Protocols will combine this with signatures for authentication
- Advantages:
 - Higher failure probability \rightarrow more compact
 - Simpler to implement, no CCA transform
 - More flexibility for secret/noise generation

- Ephemeral key exchange does not need CCA security
- Can offer passively secure version
- · Protocols will combine this with signatures for authentication
- Advantages:
 - Higher failure probability \rightarrow more compact
 - Simpler to implement, no CCA transform
 - More flexibility for secret/noise generation
- Disadvantages:
 - Less robust (will somebody reuse keys?)
 - More options (CCA vs. CPA): easier to make mistakes

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)
 - Hash public-key into shared key: KEM becomes contributory

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)
 - Hash public-key into shared key: KEM becomes contributory
 - Hash ciphertext into shared key: more robust (?)

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)
 - Hash public-key into shared key: KEM becomes contributory
 - Hash ciphertext into shared key: more robust (?)
- How to handle rejection?
 - Return special symbol (return -1): explicit
 - Return H(s, C) for secret s: implicit

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)
 - Hash public-key into shared key: KEM becomes contributory
 - Hash ciphertext into shared key: more robust (?)
- How to handle rejection?
 - Return special symbol (return -1): explicit
 - Return H(s, C) for secret s: implicit
- As of round 2, no proposal uses explicit rejection
 - Would break some security reduction
 - More robust in practice (return value alwas 0)

- Lattice-based KEMs offer best overall performance in the PQ world
- Many tradeoffs between
 - Security (including passive vs. active)
 - Failure rate
 - Size
 - Speed
- More information about NIST PQC:
 - https://csrc.nist.gov/projects/post-quantum-cryptography
 - https://pqc-wiki.fau.edu/

Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz Slides at https://cryptojedi.org/latticekems.pdf

- CPA-secure "LPR KEM", see slide 7
- Work in polynomial ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$
- Parameters q = 4096, n = 1024
- Centered binomial noise with k = 8
- "Messages" have *n* bits \Rightarrow trivial encoding (see slide 8)

Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz Slides at https://cryptojedi.org/latticekems.pdf

- CPA-secure "LPR KEM", see slide 7
- Work in polynomial ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$
- Parameters q = 4096, n = 1024
- Centered binomial noise with k = 8
- "Messages" have *n* bits \Rightarrow trivial encoding (see slide 8)
- 1. Implement arithmetic in \mathcal{R}_q (file poly.c)
- 2. Implement the Wookie KEM (file kem.c)

Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz Slides at https://cryptojedi.org/latticekems.pdf

- CPA-secure "LPR KEM", see slide 7
- Work in polynomial ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$
- Parameters q = 4096, n = 1024
- Centered binomial noise with k = 8
- "Messages" have *n* bits \Rightarrow trivial encoding (see slide 8)
- 1. Implement arithmetic in \mathcal{R}_q (file poly.c)
- 2. Implement the Wookie KEM (file kem.c)
 - make builds various unit tests in test/ subdirectory
 - Running test.sh in test/ subdirectory runs all tests

Centered binomial noise with k = 8

• Let HW(b) be the Hamming weight of a byte b

Centered binomial noise with k = 8

- Let HW(b) be the Hamming weight of a byte b
- To sample one coefficient p[i] of a polynomial in \mathcal{R}_q :
 - Sample two uniformly random bytes a and b
 - Set p[i] = HW(a) HW(b)

- Let HW(b) be the Hamming weight of a byte b
- To sample one coefficient p[i] of a polynomial in \mathcal{R}_q :
 - Sample two uniformly random bytes a and b
 - Set p[i] = HW(a) HW(b)
- Resulting coefficient will be in $\{-8,...,8\}$
- Sampling a polynomial needs 2n = 2048 uniformly random bytes

- Software skeleton assumes Linux system
- Need basic build tools (make, gcc, ...) installed:

apt install build-essential

• Some unit tests and test.sh script assume Sage to be installed

apt install sagemath

 Can also download pre-compiled binaries of Sage: https://doc.sagemath.org/html/en/installation/binary.html