
Optimizing crypto on embedded microcontrollers

Peter Schwabe
October 4, 2020



Outline

1. embedded microcontrollers
2. optimizing
3. crypto

1



Embedded microcontrollers

“A microcontroller (or MCU for microcontroller unit) is a small computer
on a single integrated circuit. In modern terminology, it is a system on a
chip or SoC.” —Wikipedia

2



Embedded microcontrollers

“A microcontroller (or MCU for microcontroller unit) is a small computer
on a single integrated circuit. In modern terminology, it is a system on a
chip or SoC.” —Wikipedia

2



. . . so many to choose from!

• AVR ATmega and ATtiny 8-bit microcontrollers (e.g., Arduino)

• MSP430 16-bit microcontrollers
• ARM Cortex-M 32-bit MCUs (e.g., in NXP, ST, Infineon chips)

• Low-end M0 and M0+
• Mid-range Cortex-M3
• High-end Cortex-M4 and M7

• RISC-V 32-bit MCUs (e.g., SiFive boards)

3



. . . so many to choose from!

• AVR ATmega and ATtiny 8-bit microcontrollers (e.g., Arduino)
• MSP430 16-bit microcontrollers

• ARM Cortex-M 32-bit MCUs (e.g., in NXP, ST, Infineon chips)
• Low-end M0 and M0+
• Mid-range Cortex-M3
• High-end Cortex-M4 and M7

• RISC-V 32-bit MCUs (e.g., SiFive boards)

3



. . . so many to choose from!

• AVR ATmega and ATtiny 8-bit microcontrollers (e.g., Arduino)
• MSP430 16-bit microcontrollers
• ARM Cortex-M 32-bit MCUs (e.g., in NXP, ST, Infineon chips)

• Low-end M0 and M0+
• Mid-range Cortex-M3
• High-end Cortex-M4 and M7

• RISC-V 32-bit MCUs (e.g., SiFive boards)

3



. . . so many to choose from!

• AVR ATmega and ATtiny 8-bit microcontrollers (e.g., Arduino)
• MSP430 16-bit microcontrollers
• ARM Cortex-M 32-bit MCUs (e.g., in NXP, ST, Infineon chips)

• Low-end M0 and M0+
• Mid-range Cortex-M3
• High-end Cortex-M4 and M7

• RISC-V 32-bit MCUs (e.g., SiFive boards)

3



Our Target platform

• ARM Cortex-M4 on STM32F4-Discovery board
• 192KB RAM, 1MB Flash (ROM)
• Available for <30 EUR from various vendors (e.g., ebay, Mouser,

myMCU):
https://shop.mymcu.de/index.php?sp=article.sp.php&
artID=200167

• Additionally need USB-TTL converter and mini-USB cable 4

https://shop.mymcu.de/index.php?sp=article.sp.php&artID=200167
https://shop.mymcu.de/index.php?sp=article.sp.php&artID=200167


Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

5



Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

5



Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

5



Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

5



Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

5



Getting started: Hello world!

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

• gcc hello.c is going to
produce an x86 ELF file

• Given an ARM ELF file, how do
we get it to the board?

• How would the ELF file get
run?

• What is printf supposed to
do?

• Should we even expect printf
to work?

5



Fixing all of those issues: the idea

1. Install a cross compiler: apt install gcc-arm-none-eabi

2. Install stlink:
apt install build-essential libusb-1.0-0-dev cmake
git clone https://github.com/texane/stlink.git
cd stlink && make release
cd build/Release && sudo make install

3. Extend hello.c with some setup boilerplate code
• Initialize CPU and set clock frequency
• Set up serial port (USART) using USB-TTL

4. Replace printf with send_USART_str
5. Compile to ARM binary (not ELF) file, say usart.bin
6. Connect USB-TTL converter with board
7. Set up listener on serial port hostside
8. st-flash write usart.bin 0x8000000 (flash over mini-USB)
9. Push “Reset” button to re-run the program

6



Fixing all of those issues: the idea

1. Install a cross compiler: apt install gcc-arm-none-eabi
2. Install stlink:

apt install build-essential libusb-1.0-0-dev cmake
git clone https://github.com/texane/stlink.git
cd stlink && make release
cd build/Release && sudo make install

3. Extend hello.c with some setup boilerplate code
• Initialize CPU and set clock frequency
• Set up serial port (USART) using USB-TTL

4. Replace printf with send_USART_str
5. Compile to ARM binary (not ELF) file, say usart.bin
6. Connect USB-TTL converter with board
7. Set up listener on serial port hostside
8. st-flash write usart.bin 0x8000000 (flash over mini-USB)
9. Push “Reset” button to re-run the program

6



Fixing all of those issues: the idea

1. Install a cross compiler: apt install gcc-arm-none-eabi
2. Install stlink:

apt install build-essential libusb-1.0-0-dev cmake
git clone https://github.com/texane/stlink.git
cd stlink && make release
cd build/Release && sudo make install

3. Extend hello.c with some setup boilerplate code
• Initialize CPU and set clock frequency
• Set up serial port (USART) using USB-TTL

4. Replace printf with send_USART_str
5. Compile to ARM binary (not ELF) file, say usart.bin
6. Connect USB-TTL converter with board
7. Set up listener on serial port hostside
8. st-flash write usart.bin 0x8000000 (flash over mini-USB)
9. Push “Reset” button to re-run the program

6



Fixing all of those issues: the idea

1. Install a cross compiler: apt install gcc-arm-none-eabi
2. Install stlink:

apt install build-essential libusb-1.0-0-dev cmake
git clone https://github.com/texane/stlink.git
cd stlink && make release
cd build/Release && sudo make install

3. Extend hello.c with some setup boilerplate code
• Initialize CPU and set clock frequency
• Set up serial port (USART) using USB-TTL

4. Replace printf with send_USART_str

5. Compile to ARM binary (not ELF) file, say usart.bin
6. Connect USB-TTL converter with board
7. Set up listener on serial port hostside
8. st-flash write usart.bin 0x8000000 (flash over mini-USB)
9. Push “Reset” button to re-run the program

6



Fixing all of those issues: the idea

1. Install a cross compiler: apt install gcc-arm-none-eabi
2. Install stlink:

apt install build-essential libusb-1.0-0-dev cmake
git clone https://github.com/texane/stlink.git
cd stlink && make release
cd build/Release && sudo make install

3. Extend hello.c with some setup boilerplate code
• Initialize CPU and set clock frequency
• Set up serial port (USART) using USB-TTL

4. Replace printf with send_USART_str
5. Compile to ARM binary (not ELF) file, say usart.bin

6. Connect USB-TTL converter with board
7. Set up listener on serial port hostside
8. st-flash write usart.bin 0x8000000 (flash over mini-USB)
9. Push “Reset” button to re-run the program

6



Fixing all of those issues: the idea

1. Install a cross compiler: apt install gcc-arm-none-eabi
2. Install stlink:

apt install build-essential libusb-1.0-0-dev cmake
git clone https://github.com/texane/stlink.git
cd stlink && make release
cd build/Release && sudo make install

3. Extend hello.c with some setup boilerplate code
• Initialize CPU and set clock frequency
• Set up serial port (USART) using USB-TTL

4. Replace printf with send_USART_str
5. Compile to ARM binary (not ELF) file, say usart.bin
6. Connect USB-TTL converter with board
7. Set up listener on serial port hostside

8. st-flash write usart.bin 0x8000000 (flash over mini-USB)
9. Push “Reset” button to re-run the program

6



Fixing all of those issues: the idea

1. Install a cross compiler: apt install gcc-arm-none-eabi
2. Install stlink:

apt install build-essential libusb-1.0-0-dev cmake
git clone https://github.com/texane/stlink.git
cd stlink && make release
cd build/Release && sudo make install

3. Extend hello.c with some setup boilerplate code
• Initialize CPU and set clock frequency
• Set up serial port (USART) using USB-TTL

4. Replace printf with send_USART_str
5. Compile to ARM binary (not ELF) file, say usart.bin
6. Connect USB-TTL converter with board
7. Set up listener on serial port hostside
8. st-flash write usart.bin 0x8000000 (flash over mini-USB)

9. Push “Reset” button to re-run the program

6



Fixing all of those issues: the idea

1. Install a cross compiler: apt install gcc-arm-none-eabi
2. Install stlink:

apt install build-essential libusb-1.0-0-dev cmake
git clone https://github.com/texane/stlink.git
cd stlink && make release
cd build/Release && sudo make install

3. Extend hello.c with some setup boilerplate code
• Initialize CPU and set clock frequency
• Set up serial port (USART) using USB-TTL

4. Replace printf with send_USART_str
5. Compile to ARM binary (not ELF) file, say usart.bin
6. Connect USB-TTL converter with board
7. Set up listener on serial port hostside
8. st-flash write usart.bin 0x8000000 (flash over mini-USB)
9. Push “Reset” button to re-run the program

6



STM32-getting-started

Good news! Most of that work is already done.

https://github.com/joostrijneveld/STM32-getting-started

• Includes examples for
• Unidirectional communication (“Hello World!”)
• Bidirectional communication (echo)
• Direct Memory Access
• performance benchmarking
• calling a function written in assembly

• Requires python and python-serial packages

7

https://github.com/joostrijneveld/STM32-getting-started


STM32-getting-started

Good news! Most of that work is already done.

https://github.com/joostrijneveld/STM32-getting-started

• Includes examples for
• Unidirectional communication (“Hello World!”)
• Bidirectional communication (echo)
• Direct Memory Access
• performance benchmarking
• calling a function written in assembly

• Requires python and python-serial packages

7

https://github.com/joostrijneveld/STM32-getting-started


STM32-getting-started

Good news! Most of that work is already done.

https://github.com/joostrijneveld/STM32-getting-started

• Includes examples for
• Unidirectional communication (“Hello World!”)
• Bidirectional communication (echo)
• Direct Memory Access
• performance benchmarking
• calling a function written in assembly

• Requires python and python-serial packages

7

https://github.com/joostrijneveld/STM32-getting-started


Before we optimize: how do we benchmark?

SCS_DEMCR |= SCS_DEMCR_TRCENA;
DWT_CYCCNT = 0;
DWT_CTRL |= DWT_CTRL_CYCCNTENA;

int i;
unsigned int oldcount = DWT_CYCCNT;

/* Your code goes here */

unsigned int newcount = DWT_CYCCNT;

unsigned int cycles = newcount - oldcount;

• See cyclecount.c example in STM32-Getting-Started

• Caveats:

• At >24 MHz wait cycles introduced by memory controller
• Cycle counter overflows after ≈3 min (20 MHz)

8



Before we optimize: how do we benchmark?

SCS_DEMCR |= SCS_DEMCR_TRCENA;
DWT_CYCCNT = 0;
DWT_CTRL |= DWT_CTRL_CYCCNTENA;

int i;
unsigned int oldcount = DWT_CYCCNT;

/* Your code goes here */

unsigned int newcount = DWT_CYCCNT;

unsigned int cycles = newcount - oldcount;

• See cyclecount.c example in STM32-Getting-Started
• Caveats:

• At >24 MHz wait cycles introduced by memory controller

• Cycle counter overflows after ≈3 min (20 MHz)

8



Before we optimize: how do we benchmark?

SCS_DEMCR |= SCS_DEMCR_TRCENA;
DWT_CYCCNT = 0;
DWT_CTRL |= DWT_CTRL_CYCCNTENA;

int i;
unsigned int oldcount = DWT_CYCCNT;

/* Your code goes here */

unsigned int newcount = DWT_CYCCNT;

unsigned int cycles = newcount - oldcount;

• See cyclecount.c example in STM32-Getting-Started
• Caveats:

• At >24 MHz wait cycles introduced by memory controller
• Cycle counter overflows after ≈3 min (20 MHz) 8



Optimizing

• Optimize software on the assembly level
• Crypto is worth the effort for better performance
• Also, no compiler to introduce, e.g. side-channel leaks
• It’s fun

• Different from optimizing on “large” processors:
• Size matters! (RAM and ROM)
• Less parallelism (no vector units, not superscalar)
• Often critical: reduce number of loads/stores

9



Optimizing

• Optimize software on the assembly level
• Crypto is worth the effort for better performance
• Also, no compiler to introduce, e.g. side-channel leaks
• It’s fun

• Different from optimizing on “large” processors:
• Size matters! (RAM and ROM)
• Less parallelism (no vector units, not superscalar)
• Often critical: reduce number of loads/stores

9



Cortex-M4 assembly basics

• 16 registers, r0 to r15
• 32 bits wide
• Not all can be used freely

• r13 is sp, stack pointer (don’t misuse!)
• r14 is lr, link register (can be used)
• r15 is pc, program counter

• Some status registers for, e.g., flags (carry, zero, . . . )

• Instr Rd, Rn, Rn, e.g.:
• add r2, r0, r1 (three operands)
• mov r1, r0 (two operands)

Details on instructions: ARMv7-M Architecture Reference Manual
https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/
readings/ARMv7-M_ARM.pdf
Instruction summary and timings: Cortex-M4 Technical Reference
Manual http://foobt.net/spring2020/csci10_7446/files/arm_
cortexm4_processor_trm_100166_0001_00_en.pdf

10

https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/ARMv7-M_ARM.pdf
https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/ARMv7-M_ARM.pdf
http://foobt.net/spring2020/csci10_7446/files/arm_cortexm4_processor_trm_100166_0001_00_en.pdf
http://foobt.net/spring2020/csci10_7446/files/arm_cortexm4_processor_trm_100166_0001_00_en.pdf


Cortex-M4 assembly basics

• 16 registers, r0 to r15
• 32 bits wide
• Not all can be used freely

• r13 is sp, stack pointer (don’t misuse!)
• r14 is lr, link register (can be used)
• r15 is pc, program counter

• Some status registers for, e.g., flags (carry, zero, . . . )
• Instr Rd, Rn, Rn, e.g.:

• add r2, r0, r1 (three operands)
• mov r1, r0 (two operands)

Details on instructions: ARMv7-M Architecture Reference Manual
https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/
readings/ARMv7-M_ARM.pdf
Instruction summary and timings: Cortex-M4 Technical Reference
Manual http://foobt.net/spring2020/csci10_7446/files/arm_
cortexm4_processor_trm_100166_0001_00_en.pdf

10

https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/ARMv7-M_ARM.pdf
https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/ARMv7-M_ARM.pdf
http://foobt.net/spring2020/csci10_7446/files/arm_cortexm4_processor_trm_100166_0001_00_en.pdf
http://foobt.net/spring2020/csci10_7446/files/arm_cortexm4_processor_trm_100166_0001_00_en.pdf


Cortex-M4 assembly basics

• 16 registers, r0 to r15
• 32 bits wide
• Not all can be used freely

• r13 is sp, stack pointer (don’t misuse!)
• r14 is lr, link register (can be used)
• r15 is pc, program counter

• Some status registers for, e.g., flags (carry, zero, . . . )
• Instr Rd, Rn, Rn, e.g.:

• add r2, r0, r1 (three operands)
• mov r1, r0 (two operands)

Details on instructions: ARMv7-M Architecture Reference Manual
https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/
readings/ARMv7-M_ARM.pdf
Instruction summary and timings: Cortex-M4 Technical Reference
Manual http://foobt.net/spring2020/csci10_7446/files/arm_
cortexm4_processor_trm_100166_0001_00_en.pdf

10

https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/ARMv7-M_ARM.pdf
https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/ARMv7-M_ARM.pdf
http://foobt.net/spring2020/csci10_7446/files/arm_cortexm4_processor_trm_100166_0001_00_en.pdf
http://foobt.net/spring2020/csci10_7446/files/arm_cortexm4_processor_trm_100166_0001_00_en.pdf


A simple example

uint32_t accumulate(uint32_t *array, size_t arraylen) {
size_t i;
uint32_t r=0;
for(i=0;i<arraylen;i++) {

r += array[i];
}
return r;

}

int main(void)
{

uint32_t array[1000], sum;

init(array, 1000);
sum = accumulate(array, 1000);

printf("sum: %d\n", sum);
return sum;

}

11



accumulate in assembly

.syntax unified

.cpu cortex-m4

.global accumulate

.type accumulate, %function
accumulate:

mov r2, #0

loop:
cmp r1, #0
beq done
ldr r3,[r0]
add r2,r3
add r0,#4
sub r1,#1
b loop

done:

mov r0,r2
bx lr

12



How fast is it?

• Arithmetic instructions cost 1 cycle
• (Single) loads cost 2 cycles
• Branches cost 1 instruction if branch is not taken
• Branches cost at least 2 cycles if branch is taken

• The loop body should cost at least 9 cycles

13



How fast is it?

• Arithmetic instructions cost 1 cycle
• (Single) loads cost 2 cycles
• Branches cost 1 instruction if branch is not taken
• Branches cost at least 2 cycles if branch is taken
• The loop body should cost at least 9 cycles

13



Speeding it up, part I

.syntax unified

.cpu cortex-m4

.global accumulate

.type accumulate, %function
accumulate:

mov r2, #0

loop:
subs r1,#1
bmi done
ldr r3,[r0],#4
add r2,r3
b loop

done:

mov r0,r2
bx lr

14



What did we do?

• Merge cmp and sub

• Need subs to set flags
• Have ldr auto-increase r0

• Total saving should be 2 cycles
• Also, code is (marginally) smaller

15



Speeding it up, part II

accumulate:
push {r4-r12}

mov r2, #0

loop1:
subs r1,#8
bmi done1
ldm r0!,{r3-r10}

add r2,r3
...
add r2,r10

b loop1

done1:
add r1,#8

loop2:
subs r1,#1
bmi done2
ldr r3,[r0],#4
add r2,r3
b loop2

done2:

pop {r4-r12}
mov r0,r2
bx lr

16



What did we do?

• Use ldm (“load multiple”) instruction
• Loading N items costs only N + 1 cycles
• Need more registers; need to push “caller registers” to the stack

(push)
• Restore caller registers at the end of the function (pop)

• Partially unroll to reduce loop-control overhead
• Makes code somewhat larger, various tradeoffs possible
• Lower limit is slightly above 2000 cycles
• Ideas for further speedups?

17



What did we do?

• Use ldm (“load multiple”) instruction
• Loading N items costs only N + 1 cycles
• Need more registers; need to push “caller registers” to the stack

(push)
• Restore caller registers at the end of the function (pop)
• Partially unroll to reduce loop-control overhead
• Makes code somewhat larger, various tradeoffs possible
• Lower limit is slightly above 2000 cycles

• Ideas for further speedups?

17



What did we do?

• Use ldm (“load multiple”) instruction
• Loading N items costs only N + 1 cycles
• Need more registers; need to push “caller registers” to the stack

(push)
• Restore caller registers at the end of the function (pop)
• Partially unroll to reduce loop-control overhead
• Makes code somewhat larger, various tradeoffs possible
• Lower limit is slightly above 2000 cycles
• Ideas for further speedups?

17



Optimizing “something” vs. optimizing crypto

• So far there was nothing crypto-specific in this tutorial
• Is optimizing crypto the same as optimizing any other software?

• No.

Cryptographic software deals with secret data (e.g., keys)

• Information about secret data must not leak through side channels
• For today, only consider timing side-channel:

• Can be exploited remotely
• Can eliminate systematically through “constant-time” code

• Generic techniques to write constant-time code
• Performance penalty highly algorithm-dependent

18



Optimizing “something” vs. optimizing crypto

• So far there was nothing crypto-specific in this tutorial
• Is optimizing crypto the same as optimizing any other software?
• No.

Cryptographic software deals with secret data (e.g., keys)
• Information about secret data must not leak through side channels
• For today, only consider timing side-channel:

• Can be exploited remotely
• Can eliminate systematically through “constant-time” code

• Generic techniques to write constant-time code
• Performance penalty highly algorithm-dependent

18



Optimizing “something” vs. optimizing crypto

• So far there was nothing crypto-specific in this tutorial
• Is optimizing crypto the same as optimizing any other software?
• No. Cryptographic software deals with secret data (e.g., keys)
• Information about secret data must not leak through side channels

• For today, only consider timing side-channel:
• Can be exploited remotely
• Can eliminate systematically through “constant-time” code

• Generic techniques to write constant-time code
• Performance penalty highly algorithm-dependent

18



Optimizing “something” vs. optimizing crypto

• So far there was nothing crypto-specific in this tutorial
• Is optimizing crypto the same as optimizing any other software?
• No. Cryptographic software deals with secret data (e.g., keys)
• Information about secret data must not leak through side channels
• For today, only consider timing side-channel:

• Can be exploited remotely
• Can eliminate systematically through “constant-time” code

• Generic techniques to write constant-time code
• Performance penalty highly algorithm-dependent

18



Optimizing “something” vs. optimizing crypto

• So far there was nothing crypto-specific in this tutorial
• Is optimizing crypto the same as optimizing any other software?
• No. Cryptographic software deals with secret data (e.g., keys)
• Information about secret data must not leak through side channels
• For today, only consider timing side-channel:

• Can be exploited remotely
• Can eliminate systematically through “constant-time” code
• Generic techniques to write constant-time code
• Performance penalty highly algorithm-dependent

18



Timing leakage part I

• Consider the following piece of code:
if s then

r←A
else

r←B
end if

• General structure of any conditional branch
• A and B can be large computations, r can be a large state
• This code takes different amount of time, depending on s
• Obvious timing leak if s is secret
• Even if A and B take the same amount of cycles this is generally not

constant time!
• Reasons: Branch prediction, instruction-caches
• Never use secret-data-dependent branch conditions

19



Timing leakage part I

• Consider the following piece of code:
if s then

r←A
else

r←B
end if

• General structure of any conditional branch
• A and B can be large computations, r can be a large state

• This code takes different amount of time, depending on s
• Obvious timing leak if s is secret
• Even if A and B take the same amount of cycles this is generally not

constant time!
• Reasons: Branch prediction, instruction-caches
• Never use secret-data-dependent branch conditions

19



Timing leakage part I

• Consider the following piece of code:
if s then

r←A
else

r←B
end if

• General structure of any conditional branch
• A and B can be large computations, r can be a large state
• This code takes different amount of time, depending on s
• Obvious timing leak if s is secret

• Even if A and B take the same amount of cycles this is generally not
constant time!

• Reasons: Branch prediction, instruction-caches
• Never use secret-data-dependent branch conditions

19



Timing leakage part I

• Consider the following piece of code:
if s then

r←A
else

r←B
end if

• General structure of any conditional branch
• A and B can be large computations, r can be a large state
• This code takes different amount of time, depending on s
• Obvious timing leak if s is secret
• Even if A and B take the same amount of cycles this is generally not

constant time!
• Reasons: Branch prediction, instruction-caches
• Never use secret-data-dependent branch conditions

19



Eliminating branches

• So, what do we do with this piece of code?
if s then

r←A
else

r←B
end if

• Replace by
r←sA + (1− s)B

• Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

• For very fast A and B this can even be faster

20



Eliminating branches

• So, what do we do with this piece of code?
if s then

r←A
else

r←B
end if

• Replace by
r←sA + (1− s)B

• Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

• For very fast A and B this can even be faster

20



Eliminating branches

• So, what do we do with this piece of code?
if s then

r←A
else

r←B
end if

• Replace by
r←sA + (1− s)B

• Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

• For very fast A and B this can even be faster

20



Eliminating branches

• So, what do we do with this piece of code?
if s then

r←A
else

r←B
end if

• Replace by
r←sA + (1− s)B

• Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

• For very fast A and B this can even be faster

20



How about caches?

“Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, and Cortex-M4
processors do not have any internal cache memory.

However, it is
possible for a SoC design to integrate a system level cache.”

—ARM Cortex-M Programming Guide to Memory Barrier Instructions

21



How about caches?

“Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, and Cortex-M4
processors do not have any internal cache memory. However, it is
possible for a SoC design to integrate a system level cache.”

—ARM Cortex-M Programming Guide to Memory Barrier Instructions

21



How about caches?

“The memory system is configured during implementation and can
include instruction and data caches of varying sizes.”

—ARM Cortex-M7 TRM

21



Timing leakage part II

T [0] . . .T [15]
T [16] . . .T [31]
T [32] . . .T [47]
T [48] . . .T [63]
T [64] . . .T [79]
T [80] . . .T [95]
T [96] . . .T [111]
T [112] . . .T [127]
T [128] . . .T [143]
T [144] . . .T [159]
T [160] . . .T [175]
T [176] . . .T [191]
T [192] . . .T [207]
T [208] . . .T [223]
T [224] . . .T [239]
T [240] . . .T [255]

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run

on the same CPU
• Tables are in cache

• The attacker’s program replaces some
cache lines

• Crypto continues, loads from table
again

• Attacker loads data:

• Fast: cache hit (crypto did not just
load from this line)

• Slow: cache miss (crypto just loaded
from this line)

22



Timing leakage part II

T [0] . . .T [15]
T [16] . . .T [31]
attacker’s data
attacker’s data
T [64] . . .T [79]
T [80] . . .T [95]
attacker’s data
attacker’s data
attacker’s data
attacker’s data

T [160] . . .T [175]
T [176] . . .T [191]
T [192] . . .T [207]
T [208] . . .T [223]
attacker’s data
attacker’s data

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run

on the same CPU
• Tables are in cache
• The attacker’s program replaces some

cache lines

• Crypto continues, loads from table
again

• Attacker loads data:

• Fast: cache hit (crypto did not just
load from this line)

• Slow: cache miss (crypto just loaded
from this line)

22



Timing leakage part II

T [0] . . .T [15]
T [16] . . .T [31]

???
???

T [64] . . .T [79]
T [80] . . .T [95]

???
???
???
???

T [160] . . .T [175]
T [176] . . .T [191]
T [192] . . .T [207]
T [208] . . .T223]

???
???

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run

on the same CPU
• Tables are in cache
• The attacker’s program replaces some

cache lines
• Crypto continues, loads from table

again

• Attacker loads data:

• Fast: cache hit (crypto did not just
load from this line)

• Slow: cache miss (crypto just loaded
from this line)

22



Timing leakage part II

T [0] . . .T [15]
T [16] . . .T [31]

???
???

T [64] . . .T [79]
T [80] . . .T [95]

???
???
???
???

T [160] . . .T [175]
T [176] . . .T [191]
T [192] . . .T [207]
T [208] . . .T223]

???
???

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run

on the same CPU
• Tables are in cache
• The attacker’s program replaces some

cache lines
• Crypto continues, loads from table

again
• Attacker loads data:

• Fast: cache hit (crypto did not just
load from this line)

• Slow: cache miss (crypto just loaded
from this line)

22



Timing leakage part II

T [0] . . .T [15]
T [16] . . .T [31]

???
???

T [64] . . .T [79]
T [80] . . .T [95]

???
attacker’s data

???
???

T [160] . . .T [175]
T [176] . . .T [191]
T [192] . . .T [207]
T [208] . . .T223]

???
???

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run

on the same CPU
• Tables are in cache
• The attacker’s program replaces some

cache lines
• Crypto continues, loads from table

again
• Attacker loads data:

• Fast: cache hit (crypto did not just
load from this line)

• Slow: cache miss (crypto just loaded
from this line)

22



Timing leakage part II

T [0] . . .T [15]
T [16] . . .T [31]

???
???

T [64] . . .T [79]
T [80] . . .T [95]

???
T [112] . . .T [127]

???
???

T [160] . . .T [175]
T [176] . . .T [191]
T [192] . . .T [207]
T [208] . . .T223]

???
???

• Consider lookup table of 32-bit integers
• Cache lines have 64 bytes
• Crypto and the attacker’s program run

on the same CPU
• Tables are in cache
• The attacker’s program replaces some

cache lines
• Crypto continues, loads from table

again
• Attacker loads data:

• Fast: cache hit (crypto did not just
load from this line)

• Slow: cache miss (crypto just loaded
from this line)

22



Some comments on cache-timing

• This is only the most basic cache-timing attack

• Non-secret cache lines are not enough for security
• In general, load/store addresses influence timing in many ways
• Do not access memory at secret-data-dependent addresses

(maybe with the exception of very low-end MCUs?)
• Timing attacks are practical:

Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used
for Linux hard-disk encryption

• Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key
from OpenSSL implementation

23



Some comments on cache-timing

• This is only the most basic cache-timing attack
• Non-secret cache lines are not enough for security
• In general, load/store addresses influence timing in many ways
• Do not access memory at secret-data-dependent addresses

(maybe with the exception of very low-end MCUs?)

• Timing attacks are practical:
Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used
for Linux hard-disk encryption

• Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key
from OpenSSL implementation

23



Some comments on cache-timing

• This is only the most basic cache-timing attack
• Non-secret cache lines are not enough for security
• In general, load/store addresses influence timing in many ways
• Do not access memory at secret-data-dependent addresses

(maybe with the exception of very low-end MCUs?)
• Timing attacks are practical:

Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used
for Linux hard-disk encryption

• Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key
from OpenSSL implementation

23



Some comments on cache-timing

• This is only the most basic cache-timing attack
• Non-secret cache lines are not enough for security
• In general, load/store addresses influence timing in many ways
• Do not access memory at secret-data-dependent addresses

(maybe with the exception of very low-end MCUs?)
• Timing attacks are practical:

Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used
for Linux hard-disk encryption

• Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key
from OpenSSL implementation

23



Eliminating lookups
• Want to load item at (secret) position p from table of size n

• Load all items, use arithmetic to pick the right one:
for i from 0 to n − 1 do

d←T [i ]
if p = i then

r←d
end if

end for
• Problem 1: if-statements are not constant time (see before)
• Problem 2: Comparisons in C may be variable time, replace by, e.g.:

static unsigned long long eq(uint32_t a, uint32_t b)
{

unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

• Of course much easier: do it in assembly ;-)

24



Eliminating lookups
• Want to load item at (secret) position p from table of size n
• Load all items, use arithmetic to pick the right one:

for i from 0 to n − 1 do
d←T [i ]
if p = i then

r←d
end if

end for

• Problem 1: if-statements are not constant time (see before)
• Problem 2: Comparisons in C may be variable time, replace by, e.g.:

static unsigned long long eq(uint32_t a, uint32_t b)
{

unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

• Of course much easier: do it in assembly ;-)

24



Eliminating lookups
• Want to load item at (secret) position p from table of size n
• Load all items, use arithmetic to pick the right one:

for i from 0 to n − 1 do
d←T [i ]
if p = i then

r←d
end if

end for
• Problem 1: if-statements are not constant time (see before)

• Problem 2: Comparisons in C may be variable time, replace by, e.g.:
static unsigned long long eq(uint32_t a, uint32_t b)
{

unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

• Of course much easier: do it in assembly ;-)

24



Eliminating lookups
• Want to load item at (secret) position p from table of size n
• Load all items, use arithmetic to pick the right one:

for i from 0 to n − 1 do
d←T [i ]
if p = i then

r←d
end if

end for
• Problem 1: if-statements are not constant time (see before)
• Problem 2: Comparisons in C may be variable time, replace by, e.g.:

static unsigned long long eq(uint32_t a, uint32_t b)
{

unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

• Of course much easier: do it in assembly ;-)

24



Eliminating lookups
• Want to load item at (secret) position p from table of size n
• Load all items, use arithmetic to pick the right one:

for i from 0 to n − 1 do
d←T [i ]
if p = i then

r←d
end if

end for
• Problem 1: if-statements are not constant time (see before)
• Problem 2: Comparisons in C may be variable time, replace by, e.g.:

static unsigned long long eq(uint32_t a, uint32_t b)
{

unsigned long long t = a ^ b;
t = (-t) >> 63;
return 1-t;

}

• Of course much easier: do it in assembly ;-)
24



Is that all? (Timing leakage part III)
Lesson so far

• Avoid all data flow from secrets to branch conditions and memory
addresses

• This can always be done; cost highly depends on the algorithm

• On supported platforms, test this with
https://www.post-apocalyptic-crypto.org/timecop/

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel,
takes a variable amount of time depending on its arguments!”

—Langley, Feb. 2013

25

https://www.post-apocalyptic-crypto.org/timecop/


Is that all? (Timing leakage part III)
Lesson so far

• Avoid all data flow from secrets to branch conditions and memory
addresses

• This can always be done; cost highly depends on the algorithm
• On supported platforms, test this with

https://www.post-apocalyptic-crypto.org/timecop/

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel,
takes a variable amount of time depending on its arguments!”

—Langley, Feb. 2013

25

https://www.post-apocalyptic-crypto.org/timecop/


Is that all? (Timing leakage part III)
Lesson so far

• Avoid all data flow from secrets to branch conditions and memory
addresses

• This can always be done; cost highly depends on the algorithm
• On supported platforms, test this with

https://www.post-apocalyptic-crypto.org/timecop/

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel,
takes a variable amount of time depending on its arguments!”

—Langley, Feb. 2013

25

https://www.post-apocalyptic-crypto.org/timecop/


Is that all? (Timing leakage part III)
Lesson so far

• Avoid all data flow from secrets to branch conditions and memory
addresses

• This can always be done; cost highly depends on the algorithm
• On supported platforms, test this with

https://www.post-apocalyptic-crypto.org/timecop/

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel,
takes a variable amount of time depending on its arguments!”

—Langley, Feb. 2013 25

https://www.post-apocalyptic-crypto.org/timecop/


Dangerous arithmetic (examples)

• DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs
• Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . . )

• MUL, MULHW, MULHWU on many PowerPC CPUs
• UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3.

Solution
• Avoid these instructions
• Make sure that inputs to the instructions don’t leak timing

information (very tricky!)

26



Dangerous arithmetic (examples)

• DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs
• Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . . )
• MUL, MULHW, MULHWU on many PowerPC CPUs
• UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3.

Solution
• Avoid these instructions
• Make sure that inputs to the instructions don’t leak timing

information (very tricky!)

26



Dangerous arithmetic (examples)

• DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs
• Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . . )
• MUL, MULHW, MULHWU on many PowerPC CPUs
• UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3.

Solution
• Avoid these instructions
• Make sure that inputs to the instructions don’t leak timing

information (very tricky!)

26



“Homework”: Optimize ChaCha20

• Stream cipher proposed by Bernstein in 2008
• Variant of Salsa20 from the eSTREAM software portfolio
• Has a state of 64 bytes, 4× 4 matrix of 32-bit words
• Generates random stream in 64-byte blocks, works on 32-bit integers
• Per block: 20 rounds; each round doing 16 add-xor-rotate

sequences, such as
a += b;
d = (d ^ a) <<< 16;

• Strategy for optimizing on the M4
• Write quarterround function in assembly
• Merge 4 quarterround functions into a full round
• Implement loop over 20 rounds in assembly
• (Implement loop over message length in assembly)

27



“Homework”: Optimize ChaCha20

• Stream cipher proposed by Bernstein in 2008
• Variant of Salsa20 from the eSTREAM software portfolio
• Has a state of 64 bytes, 4× 4 matrix of 32-bit words
• Generates random stream in 64-byte blocks, works on 32-bit integers
• Per block: 20 rounds; each round doing 16 add-xor-rotate

sequences, such as
a += b;
d = (d ^ a) <<< 16;

• Strategy for optimizing on the M4
• Write quarterround function in assembly
• Merge 4 quarterround functions into a full round
• Implement loop over 20 rounds in assembly
• (Implement loop over message length in assembly)

27



Useful features of the M4

• 16 state words won’t fit into registers, you need the stack
• Use push and pop
• Can also use ldr and str, ldm, stm
• For example: push {r0,r1} is the same as stmdb sp!, {r0,r1}

• Second input of arithmetic instructions goes through barrel shifter
• Can shift/rotate one input for free
• Examples:

• eor r0, r1, r2, lsl #2: left-shift r2 by 2, xor to r1, store result
in r0

• add r2, r0, r1, ror #5: right-rotate r1 by 5, add to r0, store
result in r2

28



Useful features of the M4

• 16 state words won’t fit into registers, you need the stack
• Use push and pop
• Can also use ldr and str, ldm, stm
• For example: push {r0,r1} is the same as stmdb sp!, {r0,r1}

• Second input of arithmetic instructions goes through barrel shifter
• Can shift/rotate one input for free
• Examples:

• eor r0, r1, r2, lsl #2: left-shift r2 by 2, xor to r1, store result
in r0

• add r2, r0, r1, ror #5: right-rotate r1 by 5, add to r0, store
result in r2

28



Getting started

• Download
https://cryptojedi.org/peter/data/stm32f4examples.tar.bz2

• Unpack: tar xjvf stm32f4examples.tar.bz2

• Connect STM32F4 Discovery board with Mini-USB cable
• Connect USB-TTL: RX to PA2, TX to PA3
• Open terminal, run host_unidirectional.py

• Build some project, e.g., accumulate using make
• Flash accumulate1.bin to the board:

st-flash write accumulate1.bin 0x8000000

• Push “reset” button to start/restart program
• Now go for ChaCha20

29

https://cryptojedi.org/peter/data/stm32f4examples.tar.bz2


pqm4: post-quantum crypto on the M4
• Joint work with

Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.
• Library and testing/benchmarking framework
• Easy to add schemes using NIST API
• Optimized SHA3 shared across primitives

• Run functional tests of all primitives and implementations:
python3 test.py

• Generate testvectors, compare for consistency (also with host):
python3 testvectors.py

• Run speed and stack benchmarks:
python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:
python3 test.py newhope1024cca sphincs-shake256-128s

30



pqm4: post-quantum crypto on the M4
• Joint work with

Matthias Kannwischer, Joost Rijneveld, and Ko Stoffelen.
• Library and testing/benchmarking framework
• Easy to add schemes using NIST API
• Optimized SHA3 shared across primitives
• Run functional tests of all primitives and implementations:

python3 test.py

• Generate testvectors, compare for consistency (also with host):
python3 testvectors.py

• Run speed and stack benchmarks:
python3 benchmarks.py

• Easy to evaluate only subset of schemes, e.g.:
python3 test.py newhope1024cca sphincs-shake256-128s

30



pqm4 status for KEMs

NIST PQC finalist
reference optimized

Classic McEliece 7Key —
CRYSTALS-Kyber 3 3

NTRU 3 3

SABER 3 3

NIST PQC alternate candidates
reference optimized

BIKE 7Lib —
Frodo-KEM 3 3

HQC WIP (?) —
NTRU Prime 3 3

SIKE 3 3

31



pqm4 status for signatures

NIST PQC finalist
reference optimized

CRYSTALS-Dilithium 3 (3)
FALCON 3 3

Rainbow WIP WIP

NIST PQC alternate candidates
reference optimized

GeMSS 7Key —
Picnic 7RAM —
SPHINCS+ 3 —

32



https://github.com/mupq/pqm4

33

https://github.com/mupq/pqm4

