
Kyber

Roberto Avanzi, Joppe Bos, Jintai Ding, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, Damien Stehlé

authors@pq-crystals.org
https://pq-crystals.org/kyber

March 26, 2023

mailto:authors@pq-crystals.org
https://pq-crystals.org/kyber


Kyber summary

• MLWE-based IND-CCA2-secure KEM
• IND-CPA secure LPR public-key encryption
• Tweaked FO transform

• Only KEM selected by NIST for standardization after round 3

• Very fast across different platforms

• Will be even faster with HW Keccak acceleration

• Same optimized routines across all parameter sets

• Designed for efficient constant-time implementation

• Designed for efficient vectorization

• Designed for low memory consumption on embedded platforms

1



Kyber summary

• MLWE-based IND-CCA2-secure KEM
• IND-CPA secure LPR public-key encryption
• Tweaked FO transform

• Only KEM selected by NIST for standardization after round 3

• Very fast across different platforms

• Will be even faster with HW Keccak acceleration

• Same optimized routines across all parameter sets

• Designed for efficient constant-time implementation

• Designed for efficient vectorization

• Designed for low memory consumption on embedded platforms

1



Kyber summary

• MLWE-based IND-CCA2-secure KEM
• IND-CPA secure LPR public-key encryption
• Tweaked FO transform

• Only KEM selected by NIST for standardization after round 3

• Very fast across different platforms

• Will be even faster with HW Keccak acceleration

• Same optimized routines across all parameter sets

• Designed for efficient constant-time implementation

• Designed for efficient vectorization

• Designed for low memory consumption on embedded platforms

1



Decisions I: symmetric crypto (closed)

NIST decisions
• No change in domain separation

• No TurboShake for matrix generation

• Keccak-based only (no “90s version”)

2



Decisions II: FO transform (still open?)

Hashing prefix(pk)

• H(pk) into coins and shared key

• Cheaper and sufficient: Use prefix(pk) instead

• Little community feedback so far

• Probably stick to H(pk)?

Ciphertext hash

• Kyber hashes H(c) into shared key, also “double-hashing” of message

• Complicates QROM proofs

• Reductions less tight (additional collision bounds)

• Also: dropping this hash would speed up Encaps

• Worth more discussion on pqc-forum!

3



Decisions II: FO transform (still open?)

Hashing prefix(pk)

• H(pk) into coins and shared key

• Cheaper and sufficient: Use prefix(pk) instead

• Little community feedback so far

• Probably stick to H(pk)?

Ciphertext hash

• Kyber hashes H(c) into shared key, also “double-hashing” of message

• Complicates QROM proofs

• Reductions less tight (additional collision bounds)

• Also: dropping this hash would speed up Encaps

• Worth more discussion on pqc-forum!

3



Decisions II: FO transform (still open?)

Hashing prefix(pk)

• H(pk) into coins and shared key

• Cheaper and sufficient: Use prefix(pk) instead

• Little community feedback so far

• Probably stick to H(pk)?

Ciphertext hash

• Kyber hashes H(c) into shared key, also “double-hashing” of message

• Complicates QROM proofs

• Reductions less tight (additional collision bounds)

• Also: dropping this hash would speed up Encaps

• Worth more discussion on pqc-forum!

3



High-assurance implementation

Joint work with José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire,
Vincent Laporte, Jean-Christophe Léchenet, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma,
Antoine Séré, and Pierre-Yves Strub. 4



High-assurance implementation

Joint work with José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire,
Vincent Laporte, Jean-Christophe Léchenet, Tiago Oliveira, Hugo Pacheco, Miguel Quaresma,
Antoine Séré, and Pierre-Yves Strub. 4



High-assurance implementation

4



Performance

Implementation operation Skylake Haswell Comet Lake

C/asm AVX2 keygen 49572 47280 41682
encaps 60018 62900 55956
decaps 45854 47784 43906

Jasmin AVX2 keygen 106578 96296 93244
(fully verified) encaps 119308 111536 107474

decaps 105336 98328 96564

Jasmin AVX2 keygen 50004 48800 45046
(fully optimized) encaps 65132 63988 59496

decaps 50340 51444 48172

5



Spectre v1 protection

Joint work with Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe, and Lucas Tabary-Maujean.

• Security type system in jasmin

• Enforce no branching on secrets, no memory access at secret position

• Also enforce this in speculative execution after misspeculated conditional branch

• Guide programmer to protect code

• Selective speculative load hardening (selSLH):
• Misspeculation flag in register
• Mask “transient” values with flag before leaking them

• Overhead for Kyber768 (on Intel Comet Lake):
• 0.28% for Keypair
• 0.55% for Encaps
• 0.75% for Decaps

6



Spectre v1 protection

Joint work with Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe, and Lucas Tabary-Maujean.

• Security type system in jasmin

• Enforce no branching on secrets, no memory access at secret position

• Also enforce this in speculative execution after misspeculated conditional branch

• Guide programmer to protect code

• Selective speculative load hardening (selSLH):
• Misspeculation flag in register
• Mask “transient” values with flag before leaking them

• Overhead for Kyber768 (on Intel Comet Lake):
• 0.28% for Keypair
• 0.55% for Encaps
• 0.75% for Decaps

6



Spectre v1 protection

Joint work with Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Grégoire,
Vincent Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe, and Lucas Tabary-Maujean.

• Security type system in jasmin

• Enforce no branching on secrets, no memory access at secret position

• Also enforce this in speculative execution after misspeculated conditional branch

• Guide programmer to protect code

• Selective speculative load hardening (selSLH):
• Misspeculation flag in register
• Mask “transient” values with flag before leaking them

• Overhead for Kyber768 (on Intel Comet Lake):
• 0.28% for Keypair
• 0.55% for Encaps
• 0.75% for Decaps

6



More online

https://pq-crystals.org/kyber

• High-assurance Kyber: https://eprint.iacr.org/2023/215

• Spectre v1 protection: https://eprint.iacr.org/2022/1270

• Libjade: https://github.com/formosa-crypto/libjade

7

https://pq-crystals.org/kyber
https://eprint.iacr.org/2023/215
https://eprint.iacr.org/2022/1270
https://github.com/formosa-crypto/libjade

