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Crypto in TLS
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Lots of choices to make. . .

I Some primitives are intentionally cryptographically weak (EXPORT)

I Some primitives are unintentionally cryptographically weak (RC4,
MD5)

I Some primitives are prone to implementation attacks (AES-CBC)
I Some primitives need very high-quality randomness ((EC-)DSA)
I What parameters are “secure enough”? 1024-bit RSA? 1024-bit

DSA?

Very hard choices, easy to screw up!
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Crypto in TLS that survives a “quantum attack”

[this slide intentionally left empty]
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Quantum attacks

Definition
A quantum attack is an attack that is (partially) running on a quantum
computer.

Should we be scared?
Largely accepted: A sufficiently large quantum computer does not exist
(no, not even with the NSA, also not with DWAVE).

Should we be scared (part II)?
“In the past, people have said, maybe it’s 50 years away, it’s a dream,
maybe it’ll happen sometime. I used to think it was 50. Now I’m
thinking like it’s 15 or a little more. It’s within reach. It’s within our
lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers
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NSA’s data center in Bluffdale
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NSA’s data center in Bluffdale

Estimated numbers
I Electricity consumption: 65MW
I Energy bill: US$40, 000, 000/year
I Storage: 3–12EB
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What will really be broken?

I RSA (encryption and signatures): dead (Shor)
I DSA, ElGamal, Schnorr etc.: dead (Shor)
I ECC (DH, ElGamal, signatures): dead (Shor)

I Symmetric encryption: √ -time for single-target key search
(Grover)

I Hashes: √ -time for single-target (second) preimages (Grover)
I Hashes: √ -time for collision search (same as classical!)
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PQCRYPTO

I Project funded by EU in Horizon 2020.
I Starting date 1 March 2015, runs for 3 years.
I 11 partners from academia and industry, TU/e is coordinator:
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PQCRYPTO – aims and workpackages

Aims of PQCRYPTO
I Design a portfolio of high-security post-quantum public-key systems
I Provide efficient implementations of high-security post-quantum

cryptography for a broad spectrum of real-world applications.

Technical work packages
I WP1: Post-quantum cryptography for small devices

Leader: Tim Güneysu, co-leader: Peter Schwabe
I WP2: Post-quantum cryptography for the Internet

Leader: Daniel J. Bernstein, co-leader: Bart Preneel
I WP3: Post-quantum cryptography for the cloud

Leader: Nicolas Sendrier, co-leader: Lars Knudsen
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PQCRYPTO – aims and workpackages

Aims of PQCRYPTO
I Design a portfolio of high-security post-quantum public-key systems
I Provide efficient implementations of high-security post-quantum

cryptography for a broad spectrum of real-world applications.

Non-technical work packages
I WP4: Management and dissemination

Leader: Tanja Lange
I WP5: Standardization

Leader: Walter Fumy
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Ring-Learning-with-errors (RLWE)

I Let Rq = Zq[X]/(Xn + 1)

I Let χ be an error distribution on Rq

I Let s ∈ Rq be secret
I Attacker is given pairs (a,as + e) with

I a uniformly random from Rq
I e sampled from χ

I Task for the attacker: find s

I Common choice for χ: discrete Gaussian
I Common “optimization” for protocols: fix a (more later)
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Peikert’s RLWE-based KEM

Parameters: q, n, χ

KEM.Setup() :

a
$← Rq

Alice (server) Bob (client)

KEM.Gen(a) : KEM.Encaps(a,b) :

s, e
$← χ s′, e′, e′′

$← χ

b←as + e
b−→ u←as′ + e′

v←bs′ + e′′

v̄
$← dbl(v)

KEM.Decaps(s, (u,v′)) :
u,v′←−−− v′ = 〈v̄〉2

µ←rec(2us,v′) µ←bv̄e2

Idea: us = ass′ + e′s ≈ ass′ + es′ + e′′ = v
Use v′ to resolve the problems from “≈” (at least most of the time)
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BCNS key exchange

I Bos, Costello, Naehrig, Stebila, IEEE S&P 2015:
I Phrase the KEM as key exchange
I Instantiate with concrete parameters
I Integrate with OpenSSL → post-quantum TLS key exchange
I Also: combined ECDH+RLWE key exchange

I Parameters chosen by BCNS:
I Rq = Zq[X]/(Xn + 1)
I n = 1024
I q = 232 − 1
I χ = DZ,σ
I σ = 8

√
2π ≈ 3.192

I Claimed security level: 128 bits pre-quantum
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A new hope

I Improve failure analysis and error reconciliation
(smartly use the fact that we have 4 bits to encode one key bit)

I Drastically reduce q to 12289 < 214

I Analysis of post-quantum security
I Use centered binomial noise ψk (

∑10
i=1 bi − b′i for bi, b′i ∈ {0, 1})

I Choose a fresh parameter a for every protocol run
I Encode polynomials in NTT domain
I Provide C reference and fast AVX2 implementation
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A new hope – protocol

Parameters: q = 12289 < 214, n = 1024

Error distribution: ψ12

Alice (server) Bob (client)

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e
$← ψn8 s′, e′, e′′

$← ψn8

b←as+ e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as′ + e′

v←bs′ + e′′

v′←us
(u,r)←−−− r

$← HelpRec(v)

k←Rec(v′, r) k←Rec(v, r)

µ←SHA3-256(k) µ←SHA3-256(k)
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Security analysis

I Consider RLWE instance as LWE instance
I Attack using BKZ
I BKZ uses SVP oracle in smaller dimension
I Consider only the cost of one call to that oracle (“core-SVP

hardness”)

I Consider quantum sieve as SVP oracle
I Best-known quantum cost (BKC): 20.268n
I Best-plausible quantum cost (BPC): 20.2075n

I Primal attack: unique-SVP from LWE; solve using BKZ
I Dual attack: find short vector in dual lattice
I Length determines complexity and attacker’s advantage ε
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Post-quantum security

BCNS proposal
Attack BKZ block dim. b log2(BKC) log2(BPC)

Primal 294 78 61

Dual (ε = 2−128) 230 62 48

Dual (ε = 1/2) 331 89 69

A new hope
Attack BKZ block dim. b log2(BKC) log2(BPC)

Primal 886 237 183

Dual (ε = 2−128) 658 176 136

Dual (ε = 1/2) 1380 370 286
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Against all authority

I Remember the optimization of fixed a?
I What if a is backdoored?
I Parameter-generating authority can break key exchange
I “Solution”: Nothing-up-my-sleeves (involves endless dicussion!)

I Even without backdoor:
I Perform massive precomputation based on a
I Use precomputation to break all key exchanges
I Infeasible today, but who knows. . .
I Attack in the spirit of Logjam

I Solution in Newhope: Choose a fresh a every time
I Use SHAKE-128 to expand a 32-byte seed
I Server can cache a for some time (e.g., 1h)
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Implementation

I Very fast multiplication in Rq: use NTT
I Define message format:

I Send polynomials in NTT domain
I Eliminate half of the required NTTs

I C reference implementation:
I Arithmetic on 16-bit and 32-bit integers
I No division (/) or modulo (%) operator
I Use Montgomery reductions inside NTT
I Use ChaCha20 for noise sampling

I AVX2 implementation:
I Speed up NTT using vectorized double arithmetic
I Use AES-256 for noise sampling
I Use AVX2 for centered binomial
I Use AVX2 for error reconciliation

I Microcontroller implementation (ongoing):
I Cortex-M0
I Cortex-M4
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The protocol revisited
Parameters: q = 12289 < 214, n = 1024

Error distribution: ψ8

Alice (server) Bob (client)

seed
$← {0, . . . , 255}32

Parse(SHAKE-128(seed))

s, e
$← ψn8 s′, e′, e′′

$← ψn8

b←a ◦ NTT(s) + NTT(e)
ma=encodeA(b,seed)−−−−−−−−−−−−−→

2048Bytes
(b, seed)←decodeA(ma)

a←Parse(SHAKE-128(seed))

t←NTT(s′)

u←a ◦ t+ NTT(e′)

v←NTT−1(b ◦ t+ NTT(e′′))

(u, r)←decodeB(mb)
mb=encodeB(u,r)←−−−−−−−−−−−

2048 Bytes
r

$← HelpRec(v)

v′←NTT−1(u ◦ s) k←Rec(v, r)

k←Rec(v′, r) µ←SHA3-256(k)

µ←SHA3-256(k)
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Performance

BCNS Ours (C ref) Ours (AVX2)

Key generation (server) ≈ 2 477 958 265 968 107 534

(265 933) (107 385)

Key gen ≈ 3 995 977 380 676 126 236

+ shared key (client) (380 936) (126 336)

Shared key (server) ≈ 481 937 82 312 22 104

I Benchmarks on one core of an Intel i7-4770K (Haswell)
I BCNS benchmarks are derived from openssl speed
I Numbers in parantheses are average; all other numbers are median.
I Includes around 57 000 cycles for generation of a on each side
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SPHINCS – stateless,
practical, hash-based,
incredibly nice,
collision-resilient
signatures

Daniel J. Bernstein
Daira Hopwood
Andreas Hülsing
Tanja Lange
Ruben Niederhagen
Louiza Papachristodoulou
Michael Schneider
Peter Schwabe
Zooko Wilcox-O’Hearn
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Hash-based signatures

I Security relies only on secure hash function
I Post-quantum
I Reliable security estimates

I Fast (e.g., XMSS by Buchmann, Dahmen, Hülsing, 2011)
I Reasonably small keys, small signatures
I Stateful
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Merkle Trees

PK

H

H

H
Y000

X000

H
Y001

X001

H

H
Y010

X010

H
Y011

X011

H

H

H
Y100

X100

H
Y101

X101

H

H
Y110

X110

H
Y111

X111

Auth for i = 001

I Merkle, 1979: Leverage one-time signatures to multiple messages
I Binary hash tree on top of OTS public keys
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Auth for i = 001

I Use OTS keys sequentially
I SIG = (i, sign(M,Xi), Yi,Auth)
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About the state

I Used for security:
Stores index i ⇒ Prevents using one-time keys twice.

I Used for efficiency:
Stores intermediate results for fast Auth computation.

I Problems:
I Load-balancing
I Multi-threading
I Backups
I Virtual-machine images
I . . .

I This is not even compatible with the definition of cryptographic
signatures

I “Huge foot-cannon” (Adam Langley, Google)
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Stateless hash-based signatures

Goldreich’s approach: Security parameter λ = 128
Use binary tree as in Merkle, but...

I For security
I pick index i at random;
I requires huge tree to avoid index collisions

(e.g., height h = 2λ = 256).
I For efficiency:

I use binary certification tree of OTS;
I all OTS secret keys are generated

pseudorandomly.

PK = Y

X

Y0

X0

Y00 Y01

X01

Y010 Y011

X011

Yi�1

Xi�1

Yi

Xi

M

Yi+1

Y1
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Use binary tree as in Merkle, but...

I For security
I pick index i at random;
I requires huge tree to avoid index collisions

(e.g., height h = 2λ = 256).
I For efficiency:

I use binary certification tree of OTS;
I all OTS secret keys are generated

pseudorandomly.
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It works, but signatures are painfully long

I 0.6 MB for Goldreich signature using short-public-key Winternitz-16
one-time signatures.

I Would dominate traffic in typical applications, and add user-visible
latency on typical network connections.

I Example:
I Debian operating system is designed for frequent upgrades.
I At least one new signature for each upgrade.
I Typical upgrade: one package or just a few packages.
I 1.2 MB average package size.
I 0.08 MB median package size.

I Example:
I HTTPS typically sends multiple signatures per page.
I 1.8 MB average web page in Alexa Top 1000000.
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The SPHINCS approach

I Use a “hyper-tree” of total height h
I Parameter d ≥ 1, such that d | h
I Each (Merkle) tree has height h/d
I (h/d)-ary certification tree
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The SPHINCS approach

I Pick index (pseudo-)randomly
I Messages signed with few-time signature

scheme
I Significantly reduce total tree height
I Require

Pr[r-times Coll] · Pr[Forgery after r
signatures] = negl(n)
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The SPHINCS approach

I Designed to be collision-resilient
I Trees: MSS-SPR trees
I OTS: WOTS+

I FTS: HORST (HORS with tree)
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SPHINCS-256

I Designed for 128 bits of post-quantum security
(yes, we did the analysis!)

I 12 trees of height 5 each

I n = 256 bit hashes in WOTS and HORST
I Winternitz paramter w = 16

I HORST with 216 expanded-secret-key chunks (total: 2 MB)
I m = 512 bit message hash (BLAKE-512)
I ChaCha12 as PRG
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Cost of SPHINCS-256 signing

I Three main componenents:
I PRG for HORST secret-key expansion to 2 MB
I Hashing in WOTS and HORS public-key generation:
F : {0, 1}256 → {0, 1}256

I Hashing in trees (mainly HORST public-key):
H : {0, 1}512 → {0, 1}256

I Overall: 451 456 invocations of F , 91 251 invocations of H

I Full hash function would be overkill for F and H
I Construction in SPHINCS-256:

I F (M1) = Chop256(π(M1||C))
I H(M1||M2) = Chop256(π(π(M1||C)⊕ (M2||0256)))

I Use fast ChaCha12 permutation for π
I All building blocks (PRG, message hash, H, F ) built from very

similar permutations
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SPHINCS-256 speed and sizes

SPHINCS-256 sizes
I 0.041 MB signature (≈ 15× smaller than Goldreich!)
I 0.001 MB public key
I 0.001 MB private key

High-speed implementation
I Target Intel Haswell with 256-bit AVX2 vector instructions
I Use 8× parallel hashing, vectorize on high level
I ≈ 1.6 cycles/byte for H and F

SPHINCS-256 speed
I Signing: < 52 Mio. Haswell cycles (> 200 sigs/sec, 4 Core, 3GHz)
I Verification: < 1.5 Mio. Haswell cycles
I Keygen: < 3.3 Mio. Haswell cycles
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Resources online

PQCRYPTO project: https://pqcrypto.eu.org

Newhope Paper: https://cryptojedi.org/papers/#newhope

Newhope Code: https://cryptojedi.org/crypto/#newhope

SPHINCS: https://sphincs.cr.yp.to/
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