
Formosa Crypto: high-assurance, high-security crypto software

Peter Schwabe

December 5, 2024



The setting for this talk

Cryptographic software
• Primitives, no protocols

• “Secure-channel” primitives

• Post-quantum primitives

• Only software-visible side channels

• Big CPUs

1



The setting for this talk

Cryptographic software
• Primitives, no protocols

• “Secure-channel” primitives

• Post-quantum primitives

• Only software-visible side channels

• Big CPUs

1



The setting for this talk

Cryptographic software
• Primitives, no protocols

• “Secure-channel” primitives

• Post-quantum primitives

• Only software-visible side channels

• Big CPUs

1



Running example: ML-KEM-768

“The public-key encryption and key-establishment algorithm that will be standardized is
CRYSTALS-KYBER.”

—NIST IR 8413-upd1

• Lattice-based KEM, joint work with Avanzi, Bos, Ding, Ducas, Kiltz, Lepoint,
Lyubashevsky, Schanck, Schwabe, Seiler, and Stehlé.

• Standardized in August 2024 as ML-KEM in FIPS 203

• Three parameter sets; “recommended” is ML-KEM-768
https://csrc.nist.gov/pubs/fips/203/final

• Already deployed in TLS by Google and Cloudflare

• Also already used in, e.g., Signal and iMessage

2

https://csrc.nist.gov/pubs/fips/203/final


The one-slide summary of ML-KEM

Lattice-based encryption K-PKE
• Arithmetic in Rq = Zq[X ]/(X n + 1) with q = 3329, n = 256

• Computations of the form As + e with A ∈ R3×3
q and s, e ∈ R3

q

• Security reduction from variant of Module-Learning-with-Errors (MLWE)

Fujisaki-Okamoto Transform
• Required to achieve active (IND-CCA) security

• Enforce honestly generated ciphertexts

• Encapsulation generates all randomness as PRF(H(m))

• Decapsulation re-encrypts and compares ciphertexts

3



The one-slide summary of ML-KEM

Lattice-based encryption K-PKE
• Arithmetic in Rq = Zq[X ]/(X n + 1) with q = 3329, n = 256

• Computations of the form As + e with A ∈ R3×3
q and s, e ∈ R3

q

• Security reduction from variant of Module-Learning-with-Errors (MLWE)

Fujisaki-Okamoto Transform
• Required to achieve active (IND-CCA) security

• Enforce honestly generated ciphertexts

• Encapsulation generates all randomness as PRF(H(m))

• Decapsulation re-encrypts and compares ciphertexts

3



How do we implement primitives such as ML-KEM?

“ . . . implementations shall consist of source code written in ANSI C.”

—NIST PQC Call for Proposals, 2017

• No memory safety

• Finicky semantics
• Undefined behavior
• Implementation-specific behavior
• Context-specific behavior

• No mandatory initialization

• No (optional) runtime checks

4



How do we implement primitives such as ML-KEM?

“ . . . implementations shall consist of source code written in ANSI C.”

—NIST PQC Call for Proposals, 2017

• No memory safety

• Finicky semantics
• Undefined behavior
• Implementation-specific behavior
• Context-specific behavior

• No mandatory initialization

• No (optional) runtime checks

but. . . Rust!
• Memory safe

• More clear semantics (?)

• Mandatory variable initialization

• (Optional) runtime checks for, e.g.,
overflows

4



How do we implement primitives such as ML-KEM?

Lack of security features
• No concept of secret vs. public data

• No preservation of “constant-time”

• Limited protection against microarchitectural attacks

• Limited support for erasure of sensitive data

4



Let’s fix those tools!

“We argue that we must stop fighting the compiler, and instead make it our ally.”

—Simon, Chisnall, Anderson, 2018

5



Let’s fix those tools!

Secure erasure in LLVM
• Simon, Chisnall, Anderson implement secure erasure in LLVM

• Code available at https://github.com/lmrs2/zerostack

• Not adopted in mainline LLVM

5

https://github.com/lmrs2/zerostack


Let’s fix those tools!

Secret types in Rust + LLVM
• Initiative at HACS 2020: secret integer types in Rust, C++, and LLVM

• Rust draft RFC online at https://github.com/rust-lang/rfcs/pull/2859

• Implementation in LLVM is massive effort, no real progress, yet

5

https://github.com/rust-lang/rfcs/pull/2859


Let’s fix those tools!

Spectre protections in LLVM

• Carruth, 2019: Spectre v1 countermeasure in LLVM1 (see later in the talk)

• “does not defend against secret data already loaded from memory and residing in registers”

• Zhang, Barthe, Chuengsatiansup, Schwabe, Yarom, 2023: More principled approach2

• Report and proposed patches to LLVM in March 2022

• September 2022: Status: WontFix (was: New)

1https://llvm.org/docs/SpeculativeLoadHardening.html
2Ultimate SLH: Taking Speculative Load Hardening to the Next Level. USENIX Security, 2023

5

https://llvm.org/docs/SpeculativeLoadHardening.html
https://eprint.iacr.org/2022/715


Let’s fix those tools!

Spectre protections in LLVM

• Carruth, 2019: Spectre v1 countermeasure in LLVM1 (see later in the talk)

• “does not defend against secret data already loaded from memory and residing in registers”

• Zhang, Barthe, Chuengsatiansup, Schwabe, Yarom, 2023: More principled approach2

• Report and proposed patches to LLVM in March 2022

• September 2022: Status: WontFix (was: New)

1https://llvm.org/docs/SpeculativeLoadHardening.html
2Ultimate SLH: Taking Speculative Load Hardening to the Next Level. USENIX Security, 2023

5

https://llvm.org/docs/SpeculativeLoadHardening.html
https://eprint.iacr.org/2022/715


High-assurance crypto

• Effort to formally verify crypto

• Goal: verified PQC ready for deployment
• Three main projects:

• EasyCrypt proof assistant
• Jasmin programming language
• Libjade (PQ-)crypto library

• Core community of ≈ 30–40 people

• Discussion forum with >280 people

6



High-assurance crypto

https://en.wikipedia.org/wiki/Formosan_black_bear
6

https://en.wikipedia.org/wiki/Formosan_black_bear


High-assurance crypto

• Effort to formally verify crypto

• Goal: verified PQC ready for deployment
• Three main projects:

• EasyCrypt proof assistant
• Jasmin programming language
• Libjade (PQ-)crypto library

• Core community of ≈ 30–40 people

• Discussion forum with >280 people

6



Joint work with. . .

Aaron Kaiser, Adrien Koutsos, Alley Stoughton, Amber Sprenkels, Andreas Hülsing,
Antoine Séré, Basavesh Ammanaghatta Shivakumar, Benjamin Grégoire, Benjamin Lipp,
Bo-Yin Yang, Bow-Yaw Wang, Chitchanok Chuengsatiansup, Christian Doczkal, Daniel Genkin,
Denis Firsov, Fabio Campos, François Dupressoir, Gilles Barthe, Hugo Pacheco, Jack Barnes,
Jean-Christophe Léchenet, José Bacelar Almeida, Kai-Chun Ning, Lionel Blatter,
Lucas Tabary-Maujean, Manuel Barbosa, Matthias Meijers, Miguel Quaresma,
Ming-Hsien Tsai, Cameron Low, Pierre Boutry, Pierre-Yves Strub, Ruben Gonzalez, Rui Qi Sim,
Sabrina Manickam, Santiago Arranz Olmos, Sioli O’Connell, Sunjay Cauligi, Swarn Priya,
Tiago Oliveira, Vincent Hwang, Vincent Laporte, William Wang, Yi Lee, Yuval Yarom,
Zhiyuan Zhang

7



The toolchain and workflow

8



The toolchain and workflow

8



The toolchain and workflow

8



Functional correctness of ML-KEM implementations

Almeida, Barbosa, Barthe, Grégoire, Laporte, Léchenet, Oliveira, Pacheco, Quaresma, Schwabe, Séré, and
Strub. Formally verifying Kyber – Episode IV: Implementation Correctness. TCHES 2023-3.

9

https://eprint.iacr.org/2023/215


Functional correctness of ML-KEM implementations

Almeida, Barbosa, Barthe, Grégoire, Laporte, Léchenet, Oliveira, Pacheco, Quaresma, Schwabe, Séré, and
Strub. Formally verifying Kyber – Episode IV: Implementation Correctness. TCHES 2023-3.

9

https://eprint.iacr.org/2023/215


Functional correctness of ML-KEM implementations

9



Functional correctness of ML-KEM implementations

From Kyber to ML-KEM

Almeida, Arranz Olmos, Barbosa, Barthe, Dupressoir, Grégoire, Laporte, Léchenet, Low, Oliveira, Pacheco,
Quaresma, Schwabe, Strub. Formally verifying Kyber – Episode V: Machine-checked IND-CCA security and
correctness of ML-KEM in EasyCrypt CRYPTO 2024.

9



Implementing in Jasmin

Almeida, Barbosa, Barthe, Blot, Grégoire, Laporte, Oliveira, Pacheco, Schmidt, Strub. Jasmin: High-

Assurance and High-Speed Cryptography. ACM CCS 2017

• Language with “C-like” syntax

• Programming in Jasmin is much closer to assembly:
• Generally: 1 line in Jasmin → 1 line in assembly
• A few exceptions, but highly predictable
• Compiler does not schedule code
• Compiler does not spill registers

• Compiler is formally proven to preserve semantics

• Static (trusted) safety checker

• Compiler is formally proven to preserve constant-time property3

3Barthe, Grégoire, Laporte, and Priya. Structured Leakage and Applications to Cryptographic Constant-Time
and Cost. ACM CCS 2022

10

https://dl.acm.org/doi/10.1145/3133956.3134078
https://dl.acm.org/doi/10.1145/3133956.3134078
https://eprint.iacr.org/2021/650
https://eprint.iacr.org/2021/650


Implementing in Jasmin

Almeida, Barbosa, Barthe, Blot, Grégoire, Laporte, Oliveira, Pacheco, Schmidt, Strub. Jasmin: High-

Assurance and High-Speed Cryptography. ACM CCS 2017

• Language with “C-like” syntax

• Programming in Jasmin is much closer to assembly:
• Generally: 1 line in Jasmin → 1 line in assembly
• A few exceptions, but highly predictable
• Compiler does not schedule code
• Compiler does not spill registers

• Compiler is formally proven to preserve semantics

• Static (trusted) safety checker

• Compiler is formally proven to preserve constant-time property3

3Barthe, Grégoire, Laporte, and Priya. Structured Leakage and Applications to Cryptographic Constant-Time
and Cost. ACM CCS 2022

10

https://dl.acm.org/doi/10.1145/3133956.3134078
https://dl.acm.org/doi/10.1145/3133956.3134078
https://eprint.iacr.org/2021/650
https://eprint.iacr.org/2021/650


Efficiency of Jasmin code

• Can do (almost) everything you can do in assembly

• Architecture-specific implementations

• Small limitations to enable static safety checking (no raw pointers)

• Easier to write and maintain than assembly
• Loops, conditionals
• Function calls (optional: inline)
• Function-local variables
• Register and stack arrays
• Register and stack allocation

11



Efficiency of Jasmin code

• Can do (almost) everything you can do in assembly

• Architecture-specific implementations

• Small limitations to enable static safety checking (no raw pointers)

• Easier to write and maintain than assembly
• Loops, conditionals
• Function calls (optional: inline)
• Function-local variables
• Register and stack arrays
• Register and stack allocation

11



Efficiency of Jasmin code

Performance of verified ML-KEM-768 code

Implementation operation 8700K 11700K 13900K

C/asm AVX2 keygen 39722 36958 31448
encaps 39761 38082 32090
decaps 46161 42566 36064

Jasmin AVX2 keygen 40134 37458 34732
encaps 40599 37798 35212
decaps 43437 39970 43784

11



Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

12



Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

12



Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

12



Security – “constant time”

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Remember: Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

12



Security – Spectre v1 (“Speculative bounds-check bypass”)

stack u8[10] public;
stack u8[32] secret;
reg u8 t;
reg u64 r, i;

i = 0;
while(i < 10) {

t = public[(int) i] ;
r = leak(t);
...

}

13



Countermeasures

Fencing
• Can prevent speculation through barriers (LFENCE)

• Protecting all branches is possible but costly

Speculative Load Hardening
• Idea: maintain misprediction predicate ms (in a register)

• At every branch use arithmetic to update predicate

• Option 1: Mask every loaded value with ms

• Option 2: Mask every address with ms

• Effect: during misspeculation “leak” constant value

• Implemented in LLVM since version 8
• Still large performance overhead
• No formal guarantees of security

14



Countermeasures

Fencing
• Can prevent speculation through barriers (LFENCE)

• Protecting all branches is possible but costly

Speculative Load Hardening
• Idea: maintain misprediction predicate ms (in a register)

• At every branch use arithmetic to update predicate

• Option 1: Mask every loaded value with ms

• Option 2: Mask every address with ms

• Effect: during misspeculation “leak” constant value

• Implemented in LLVM since version 8
• Still large performance overhead
• No formal guarantees of security

14



Countermeasures

Fencing
• Can prevent speculation through barriers (LFENCE)

• Protecting all branches is possible but costly

Speculative Load Hardening
• Idea: maintain misprediction predicate ms (in a register)

• At every branch use arithmetic to update predicate

• Option 1: Mask every loaded value with ms

• Option 2: Mask every address with ms

• Effect: during misspeculation “leak” constant value

• Implemented in LLVM since version 8
• Still large performance overhead
• No formal guarantees of security

14



Selective SLH

Do we need to mask/protect all loads?

• No need to mask loads into registers that never enter leaking instructions

• secret registers never enter leaking instructions!

• Obvious idea: mask only loads into public registers

15



Selective SLH

Do we need to mask/protect all loads?

• No need to mask loads into registers that never enter leaking instructions

• secret registers never enter leaking instructions!

• Obvious idea: mask only loads into public registers

15



Selective SLH

Do we need to mask/protect all loads?

• No need to mask loads into registers that never enter leaking instructions

• secret registers never enter leaking instructions!

• Obvious idea: mask only loads into public registers

15



Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms

• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public

16



Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms

• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public

16



Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms

• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public

16



Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms
• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public

16



Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms
• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public

16



The special case of crypto

• We know what inputs are secret and what inputs are public
• Most of the state is actually secret
• Most loads do not need protect!

• Even better: mark additional inputs as secret
• No cost if those inputs don’t flow into leaking instructions
• Even better: Spills don’t need protect if there is no branch between store and load
• Even better: “Spill” public data to MMX registers instead of stack
• Overhead for ML-KEM-768 (on Intel 11700K):

• 1.73% for Keypair
• 1.60% for Encaps
• 1.50% for Decaps

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typ-
ing High-Speed Cryptography against Spectre v1. IEEE S&P 2023.

17

https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2022/1270


The special case of crypto

• We know what inputs are secret and what inputs are public
• Most of the state is actually secret
• Most loads do not need protect!
• Even better: mark additional inputs as secret
• No cost if those inputs don’t flow into leaking instructions

• Even better: Spills don’t need protect if there is no branch between store and load
• Even better: “Spill” public data to MMX registers instead of stack
• Overhead for ML-KEM-768 (on Intel 11700K):

• 1.73% for Keypair
• 1.60% for Encaps
• 1.50% for Decaps

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typ-
ing High-Speed Cryptography against Spectre v1. IEEE S&P 2023.

17

https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2022/1270


The special case of crypto

• We know what inputs are secret and what inputs are public
• Most of the state is actually secret
• Most loads do not need protect!
• Even better: mark additional inputs as secret
• No cost if those inputs don’t flow into leaking instructions
• Even better: Spills don’t need protect if there is no branch between store and load

• Even better: “Spill” public data to MMX registers instead of stack
• Overhead for ML-KEM-768 (on Intel 11700K):

• 1.73% for Keypair
• 1.60% for Encaps
• 1.50% for Decaps

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typ-
ing High-Speed Cryptography against Spectre v1. IEEE S&P 2023.

17

https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2022/1270


The special case of crypto

• We know what inputs are secret and what inputs are public
• Most of the state is actually secret
• Most loads do not need protect!
• Even better: mark additional inputs as secret
• No cost if those inputs don’t flow into leaking instructions
• Even better: Spills don’t need protect if there is no branch between store and load
• Even better: “Spill” public data to MMX registers instead of stack
• Overhead for ML-KEM-768 (on Intel 11700K):

• 1.73% for Keypair
• 1.60% for Encaps
• 1.50% for Decaps

Ammanaghatta Shivakumar, Barthe, Grégoire, Laporte, Oliveira, Priya, Schwabe, and Tabary-Maujean. Typ-
ing High-Speed Cryptography against Spectre v1. IEEE S&P 2023.

17

https://eprint.iacr.org/2022/1270
https://eprint.iacr.org/2022/1270


How about other Spectre variants?

Spectre v2
• Exploits speculation of indirect branches

• Jasmin does not support indirect branches

Spectre v3
• Better known as Meltdown

• Hardware bug, fixed in Hardware/Firmware

Spectre v4
• “Speculative store bypass”

• Loads may speculatively retrieve stale data

• Disable with SSBD CPU flag

• Overhead of around 5% for Kyber-768

18



How about other Spectre variants?

Spectre v2
• Exploits speculation of indirect branches

• Jasmin does not support indirect branches

Spectre v3
• Better known as Meltdown

• Hardware bug, fixed in Hardware/Firmware

Spectre v4
• “Speculative store bypass”

• Loads may speculatively retrieve stale data

• Disable with SSBD CPU flag

• Overhead of around 5% for Kyber-768

18



How about other Spectre variants?

Spectre v2
• Exploits speculation of indirect branches

• Jasmin does not support indirect branches

Spectre v3
• Better known as Meltdown

• Hardware bug, fixed in Hardware/Firmware

Spectre v4
• “Speculative store bypass”

• Loads may speculatively retrieve stale data

• Disable with SSBD CPU flag

• Overhead of around 5% for Kyber-768

18



But wait, there’s more: Spectre-RSB

The attack
• Function returns use return-stack buffer (RSB) for speculative execution

• “Speculatively return to address on top of RSB”

• RSB is shared between processes running on the same core

• By default, RSB is not “wiped” on context switch

• Attacker can make returns jump anywhere (speculatively)

High-level countermeasure idea
• Limit attacker capabilities

• Speculative return only to well-defined restricted set of locations

• Use LFENCE or selective SLH to protect at those locations

19



But wait, there’s more: Spectre-RSB

The attack
• Function returns use return-stack buffer (RSB) for speculative execution

• “Speculatively return to address on top of RSB”

• RSB is shared between processes running on the same core

• By default, RSB is not “wiped” on context switch

• Attacker can make returns jump anywhere (speculatively)

High-level countermeasure idea
• Limit attacker capabilities

• Speculative return only to well-defined restricted set of locations

• Use LFENCE or selective SLH to protect at those locations

19



But wait, there’s more: Spectre-RSB

The attack
• Function returns use return-stack buffer (RSB) for speculative execution

• “Speculatively return to address on top of RSB”

• RSB is shared between processes running on the same core

• By default, RSB is not “wiped” on context switch

• Attacker can make returns jump anywhere (speculatively)

High-level countermeasure idea
• Limit attacker capabilities

• Speculative return only to well-defined restricted set of locations

• Use LFENCE or selective SLH to protect at those locations

19



But wait, there’s more: Spectre-RSB

The attack
• Function returns use return-stack buffer (RSB) for speculative execution

• “Speculatively return to address on top of RSB”

• RSB is shared between processes running on the same core

• By default, RSB is not “wiped” on context switch

• Attacker can make returns jump anywhere (speculatively)

High-level countermeasure idea
• Limit attacker capabilities

• Speculative return only to well-defined restricted set of locations

• Use LFENCE or selective SLH to protect at those locations

19



Return tables and more security typing

• Jasmin compiler has global view
• For each function, compiler knows all call sites into this function

• Replace return instructions with return tables:

• Sequence of conditional branches to select return location
• Number of branch instructions is logarithmic in number of call sites

• Effect: we speculatively “return” only to some call site of the respective function
• Speculation is now “Spectre v1” style (conditional branch)
• Except, not quite:

• Speculation of conditionals and loops is within control-flow graph
• Misspeculation of function “return” is outside control-flow graph

• Need modifications to security type system:
• public registers become transient after function call
• In some situations, we can preserve public type

Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, Zhang. Protecting
cryptographic code against Spectre-RSB ePrint 2024/1070.

20

https://eprint.iacr.org/2024/1070
https://eprint.iacr.org/2024/1070


Return tables and more security typing

• Jasmin compiler has global view
• For each function, compiler knows all call sites into this function
• Replace return instructions with return tables:

• Sequence of conditional branches to select return location
• Number of branch instructions is logarithmic in number of call sites

• Effect: we speculatively “return” only to some call site of the respective function
• Speculation is now “Spectre v1” style (conditional branch)
• Except, not quite:

• Speculation of conditionals and loops is within control-flow graph
• Misspeculation of function “return” is outside control-flow graph

• Need modifications to security type system:
• public registers become transient after function call
• In some situations, we can preserve public type

Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, Zhang. Protecting
cryptographic code against Spectre-RSB ePrint 2024/1070.

20

https://eprint.iacr.org/2024/1070
https://eprint.iacr.org/2024/1070


Return tables and more security typing

• Jasmin compiler has global view
• For each function, compiler knows all call sites into this function
• Replace return instructions with return tables:

• Sequence of conditional branches to select return location
• Number of branch instructions is logarithmic in number of call sites

• Effect: we speculatively “return” only to some call site of the respective function
• Speculation is now “Spectre v1” style (conditional branch)

• Except, not quite:
• Speculation of conditionals and loops is within control-flow graph
• Misspeculation of function “return” is outside control-flow graph

• Need modifications to security type system:
• public registers become transient after function call
• In some situations, we can preserve public type

Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, Zhang. Protecting
cryptographic code against Spectre-RSB ePrint 2024/1070.

20

https://eprint.iacr.org/2024/1070
https://eprint.iacr.org/2024/1070


Return tables and more security typing

• Jasmin compiler has global view
• For each function, compiler knows all call sites into this function
• Replace return instructions with return tables:

• Sequence of conditional branches to select return location
• Number of branch instructions is logarithmic in number of call sites

• Effect: we speculatively “return” only to some call site of the respective function
• Speculation is now “Spectre v1” style (conditional branch)
• Except, not quite:

• Speculation of conditionals and loops is within control-flow graph
• Misspeculation of function “return” is outside control-flow graph

• Need modifications to security type system:
• public registers become transient after function call
• In some situations, we can preserve public type

Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, Zhang. Protecting
cryptographic code against Spectre-RSB ePrint 2024/1070.

20

https://eprint.iacr.org/2024/1070
https://eprint.iacr.org/2024/1070


Return tables and more security typing

• Jasmin compiler has global view
• For each function, compiler knows all call sites into this function
• Replace return instructions with return tables:

• Sequence of conditional branches to select return location
• Number of branch instructions is logarithmic in number of call sites

• Effect: we speculatively “return” only to some call site of the respective function
• Speculation is now “Spectre v1” style (conditional branch)
• Except, not quite:

• Speculation of conditionals and loops is within control-flow graph
• Misspeculation of function “return” is outside control-flow graph

• Need modifications to security type system:
• public registers become transient after function call
• In some situations, we can preserve public type

Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, Zhang. Protecting
cryptographic code against Spectre-RSB ePrint 2024/1070.

20

https://eprint.iacr.org/2024/1070
https://eprint.iacr.org/2024/1070


Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

21



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

21



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

21



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

21



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

21



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

21



Security – zeroization

“ . . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller

21



Security – zeroization (ctd.)

Solution in Jasmin compiler

Zeroize used stack space and registers when returning from export function

• Make use of multiple features of Jasmin:
• Compiler has global view
• All stack usage is known at compile time
• Entry/return point is clearly defined

• Performance overhead for Kyber768:
• 0.59% for Keypair
• 0.24% for Encaps
• 1.04% for Decaps

Arranz Olmos, Barthe, Gonzalez, Grégoire, Laporte, Léchenet, Oliveira, Schwabe: High-assurance zeroization.
TCHES 2024-1.

22

https://eprint.iacr.org/2023/1713


Security – zeroization (ctd.)

Solution in Jasmin compiler

Zeroize used stack space and registers when returning from export function

• Make use of multiple features of Jasmin:
• Compiler has global view
• All stack usage is known at compile time
• Entry/return point is clearly defined

• Performance overhead for Kyber768:
• 0.59% for Keypair
• 0.24% for Encaps
• 1.04% for Decaps

Arranz Olmos, Barthe, Gonzalez, Grégoire, Laporte, Léchenet, Oliveira, Schwabe: High-assurance zeroization.
TCHES 2024-1.

22

https://eprint.iacr.org/2023/1713


Security – zeroization (ctd.)

Solution in Jasmin compiler

Zeroize used stack space and registers when returning from export function

• Make use of multiple features of Jasmin:
• Compiler has global view
• All stack usage is known at compile time
• Entry/return point is clearly defined

• Performance overhead for Kyber768:
• 0.59% for Keypair
• 0.24% for Encaps
• 1.04% for Decaps

Arranz Olmos, Barthe, Gonzalez, Grégoire, Laporte, Léchenet, Oliveira, Schwabe: High-assurance zeroization.
TCHES 2024-1.

22

https://eprint.iacr.org/2023/1713


Upcoming

Crypto Agent
• Spectre protections need to be global

• Move crypto primitives to separate process

• Implement (almost) this whole program in Jasmin

23



Upcoming

More efficient correctness proofs
• Kyber/ML-KEM proof was massive effort

• Scalability issue when considering multiple architectures

• Solution: better automation in EasyCrypt

23



Upcoming

Better constant-time support
• Currently: avoid secret branches and memory access

• Need to avoid also variable-time arithmetic (e.g., DIV)

• Principled solution also for future microarchitectures

23



Formosa online

https://formosa-crypto.org

24

https://formosa-crypto.org

