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Cryptography – the very basics

Alice

I Alice encrypts a message M
using a key K obtains
ciphertext C

I Sends C to Bob

Bob

I Bob decrypts C using K and
obtains M
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Let me introduce Eve

I Eve does not know the key K, tries to obtain the message M

I What can Eve do?
I Listen on the transmission channel

I Modify messages going over the channel
I Send messages herself
I Obtain message-ciphertext pairs encrypted under K
I Massive computations (for example to compute K)
I More later . . .
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More cryptography

I How does Bob know that the message comes form Alice?
Answer: authentication (of users) using a key Ka

I How does Bob know that the message hasn’t been modified?
Answer: authentication (of the message) using a key Ka

I How do Alice and Bob get K in the first place?
Answer: Key-exchange protocols

I How can Alice send a message such that everybody can be sure that
she sent that message?
Answer: Cryptographic signatures

Eve’s goals
I In short: Everything forbidden

I Impersonate Alice or Bob, forge messages, obtain keys (most
powerful attack!)
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You (Alice and Bob)

I Average computer user
I Your computing and communication equipment:

I Laptop (2–3GHz)
I Smartphone (1–2GHz)

I No expert knowledge about cryptography
I Use readily available software
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The NSA (Eve)

National Security Agency
I US American secret service
I Largest employer for mathematicians in

the world

I Estimated 40000− 75000 employees
I “Black budget” of US$52.6 billion / year
I Power-bill for Utah data center (estimated): US$40 million / year
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How secure is cryptography?

Kerckhoffs’ principle
An encryption algorithm takes as input a message and a key. The
security of the system must rely only on the secrecy of the key, not on
the secrecy of the algorithm.

I Strongest attack: find the key
I Security of the system (simplified): Hardness to find the key
I If the best known algorithm takes 2n “operations” to find the key, we

say that a system is assumed to have n bits of security
I Generic attack against n-bit key: try all possibilities. Cost: 2n

I If a system is believed to have n bits of security, an attacker can
break it

I if he can carry out 2n operations, or
I if he knows a better algorithm
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How many bits of security has X?

keylength.com
I Various institutions give recommendations based on best known

attacks
I NIST (every year)
I ECRYPT (until 2012)
I BSI, ANSSI

Some examples of popular schemes (NIST, 2012)

I AES-128: 128 bits
I RSA-1024: 80 bits
I RSA-2048: 112 bits
I 256-bit elliptic curve: 128 bits
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Can NSA break 128-bit-secure schemes?

I Analysis by Bernstein (slightly modified):
I How much energy does it take to break AES-128?
I How much energy do we get?

I Second question first:
I Sun is radiating ≈ 258 watts onto the earth
I Geothermal energy: ≈ 246 watts
I Gravitation of moon and sun: ≈ 243 watts

I First question:
I Best mass-market chips: ≈ 268 bit ops / watt / year
I Perfect power usage: 2126 bit ops / year
I AES key guess takes 213 bit ops
I Break key with probability 1: > 30000 years
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How about better attacks?

I Many crypto algorithms survived years of intensive study by
academic community

I No guarantee that NSA does not know better attacks

I My guess (for the most important algorithms):
I NSA does know better attacks
I NSA does not know much better attacks

I Conservative design: Use large “security gap”
I Usually also early “warning signs” (experts expressing concerns)
I Example: MD5 was fully broken in 2004, Dobbertin, Bosselaers, and

Preneel warned in 1996
I Problem: Warnings are often ignored

You vs. the NSA 10



How about better attacks?

I Many crypto algorithms survived years of intensive study by
academic community

I No guarantee that NSA does not know better attacks
I My guess (for the most important algorithms):

I NSA does know better attacks
I NSA does not know much better attacks

I Conservative design: Use large “security gap”
I Usually also early “warning signs” (experts expressing concerns)
I Example: MD5 was fully broken in 2004, Dobbertin, Bosselaers, and

Preneel warned in 1996
I Problem: Warnings are often ignored

You vs. the NSA 10



How about better attacks?

I Many crypto algorithms survived years of intensive study by
academic community

I No guarantee that NSA does not know better attacks
I My guess (for the most important algorithms):

I NSA does know better attacks
I NSA does not know much better attacks

I Conservative design: Use large “security gap”

I Usually also early “warning signs” (experts expressing concerns)
I Example: MD5 was fully broken in 2004, Dobbertin, Bosselaers, and

Preneel warned in 1996
I Problem: Warnings are often ignored

You vs. the NSA 10



How about better attacks?

I Many crypto algorithms survived years of intensive study by
academic community

I No guarantee that NSA does not know better attacks
I My guess (for the most important algorithms):

I NSA does know better attacks
I NSA does not know much better attacks

I Conservative design: Use large “security gap”
I Usually also early “warning signs” (experts expressing concerns)
I Example: MD5 was fully broken in 2004, Dobbertin, Bosselaers, and

Preneel warned in 1996

I Problem: Warnings are often ignored

You vs. the NSA 10



How about better attacks?

I Many crypto algorithms survived years of intensive study by
academic community

I No guarantee that NSA does not know better attacks
I My guess (for the most important algorithms):

I NSA does know better attacks
I NSA does not know much better attacks

I Conservative design: Use large “security gap”
I Usually also early “warning signs” (experts expressing concerns)
I Example: MD5 was fully broken in 2004, Dobbertin, Bosselaers, and

Preneel warned in 1996
I Problem: Warnings are often ignored

You vs. the NSA 10



Broken algorithms I: Dual_EC_DRBG

I Random-number generator (RNG) based on elliptic curves
I Standardized by NIST in NIST SP 800-90A

I Snowden leak: Dual_EC_DRBG contains an NSA backdoor
I Brown 2006: potential for a backdoor
I NIST 2013: Don’t use Dual_EC_DRBG
I Not a very popular RNG, because it’s slow
I Used in RSA Security products until 2013
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Broken algorithms II: SHA-1

I “Cryptographic hash function”, designed for 80 bits of security
against “collisions”

I Standard component in secure Internet communication
I 80 bits is bleeding-edge security

I Wang, Yin, and Yu in 2005: only 69 bits of security
I Wang, Yao, and Yao later in 2005: 63 bits of security
I Mendel, Rechberger, Rijmen in 2007: ≈ 61 bits of security
I Stevens 2013: Strategies to go below 61-bit barrier
I I would be surprised if NSA did not have SHA-1 collisions
I I would not be surprised if NSA had broken SHA-1 even more
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Broken algorithms III: RC4

I “Stream cipher”, can use 128-bit key for (targeted) 128-bit security
I Used for about 1/2 of all SSL/TLS connections

I Fluhrer, Mantin, and Shamir in 2001: first output bytes leak
information about key

I Klein 2005: More output-key correlations
I This attack was used to crack WEP in < 1 minute
I AlFardan, Bernstein, Paterson, Poettering, Schuldt in 2013:

TLS plaintext recovery in < 234

I Attack is based on statistical analysis of a lot of RC4 output
I I would be surprised if NSA did not have good RC4 attacks
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Attacking implementations

I What if the math is right, but the implementation of the math is
not?

I Programmers make mistakes, some crypto is hard to get right

I About 40% of SSL/TLS servers uses Microsoft CryptoAPI
I Another big target: OpenSSL library
I A practical attack against one of these implementations breaks a lot!

You vs. the NSA 14



Attacking implementations

I What if the math is right, but the implementation of the math is
not?

I Programmers make mistakes, some crypto is hard to get right
I About 40% of SSL/TLS servers uses Microsoft CryptoAPI
I Another big target: OpenSSL library

I A practical attack against one of these implementations breaks a lot!

You vs. the NSA 14



Attacking implementations

I What if the math is right, but the implementation of the math is
not?

I Programmers make mistakes, some crypto is hard to get right
I About 40% of SSL/TLS servers uses Microsoft CryptoAPI
I Another big target: OpenSSL library
I A practical attack against one of these implementations breaks a lot!

You vs. the NSA 14



Side channels

I So far: attacker could see
inputs and outputs

I Attackers can see more:

I power consumption,
I electromagnetic radiation
I timing (even remotely!)

I Side-channel attacks: Use this
data to break cryptographic
protection

I Side-channel attacks also target
specific implementations
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Timing attacks

I Most scary for Internet communication: (remote) timing attacks
I Two main sources for timing-attack vulnerabilities

I if statement with secret condition
I load from or store to secret address

I We can remove such vulnerabilities (“constant-time software”)
I Performance penalty:

I Can be huge (e.g., AES on 32-bit platforms)
I Can be close to zero (e.g., Salsa20)

I For many algorithms it is hard to write (efficient) constant-time
software

I Most cryptographic software in use today leaks secret data through
timing information
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Practical timing attacks

Linux hard-disk encryption
I Osvik, Shamir, and Tromer in 2006: timing attack against dmcrypt
I Attack took 65ms to recover the AES-256 key
I Needs attacker process on the same machine

OpenSSL ECDSA
I Brumley and Tuveri in 2011: Remote timing attack against

OpenSSL ECDSA
I A few minutes to steal the key over the network

AES-CBC in TLS
I AlFardan and Kenneth G. Paterson in 2013:

Plaintext recovery attack against TLS with AES-CBC

I Many implementations have been fixed by now, see, e.g.
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
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I Brumley and Tuveri in 2011: Remote timing attack against

OpenSSL ECDSA
I A few minutes to steal the key over the network

AES-CBC in TLS
I AlFardan and Kenneth G. Paterson in 2013:

Plaintext recovery attack against TLS with AES-CBC
“we expect all implementations – whether open or closed –
to be vulnerable to our attacks to some extent.”

I Many implementations have been fixed by now, see, e.g.
https://www.imperialviolet.org/2013/02/04/luckythirteen.html
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Randomness

I Most cryptographic algorithms need randomness
I Some algorithms only have to generate random keys
I Some algorithms need randomness for every message

I Bad-randomness attack: guess the right value
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Bad randomness I

Debian randomness disaster
I Bello in 2008: Debian/Ubuntu OpenSSL keys have only 15 bits of

entropy
I Only 32768 possible keys, can be guessed in < 1 second
I Debian developer had removed on line of randomness-generating

code in 2006

Sony randomness disaster
I “Bushing”, Cantero, Boessenkool, Peter in 2010: Sony ignored

ECDSA requirement of new randomness for each signature
I Signatures leaked PlayStation 3 code-signing key

You vs. the NSA 19



Bad randomness I

Debian randomness disaster
I Bello in 2008: Debian/Ubuntu OpenSSL keys have only 15 bits of

entropy
I Only 32768 possible keys, can be guessed in < 1 second
I Debian developer had removed on line of randomness-generating

code in 2006

Sony randomness disaster
I “Bushing”, Cantero, Boessenkool, Peter in 2010: Sony ignored

ECDSA requirement of new randomness for each signature
I Signatures leaked PlayStation 3 code-signing key

You vs. the NSA 19



Bad randomness II

Internet host randomness
I Heninger, Durumeric, Wustrow, Halderman in 2012: Obtain millions

of TLS and SSH public keys
I Compute private keys for 0.5% of TLS and 1.06% of SSH public keys
I Reason: lack of randomness during key generation

Taiwanese citizen cards
I Bernstein, Chang, Cheng, Chou, Heninger, Lange, and van Someren

in 2013: Obtain public keys from Taiwanese “Citizen Digital
Certificate” database

I Compute private keys of 184 Taiwanese citizens
I Reason: lack of randomness during key generation
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High-security crypto

Required for secure internet communication
I At least 128 bits of security against all known attacks

I Full protection against timing attacks
I Sensible handling of randomness
I Fast on a broad variety of platforms
I Open source

You vs. the NSA 21



High-security crypto

Required for secure internet communication
I At least 128 bits of security against all known attacks
I Full protection against timing attacks

I Sensible handling of randomness
I Fast on a broad variety of platforms
I Open source

You vs. the NSA 21



High-security crypto

Required for secure internet communication
I At least 128 bits of security against all known attacks
I Full protection against timing attacks
I Sensible handling of randomness

I Fast on a broad variety of platforms
I Open source

You vs. the NSA 21



High-security crypto

Required for secure internet communication
I At least 128 bits of security against all known attacks
I Full protection against timing attacks
I Sensible handling of randomness
I Fast on a broad variety of platforms

I Open source

You vs. the NSA 21



High-security crypto

Required for secure internet communication
I At least 128 bits of security against all known attacks
I Full protection against timing attacks
I Sensible handling of randomness
I Fast on a broad variety of platforms
I Open source

You vs. the NSA 21



NaCl (advertisement)

I Networking and Cryptography library (NaCl, pronounced “salt”)
I Offers all security features from previous slide
I Focus on protecting Internet communication
I Core development team: Daniel J. Bernstein, Tanja Lange, Peter

Schwabe
I Acknowledgment: Contributions by

I Matthew Dempsky (Mochi Media)
I Niels Duif (TU Eindhoven)
I Emilia Käsper (KU Leuven, now Google)
I Adam Langley (Google)
I Bo-Yin Yang (Academia Sinica)

I User’s perspective: Bundle of functionalities rather than bundle of
algorithms

I Available (public domain) at

http://nacl.cr.yp.to
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Man in the middle

An https session (highly simplified)

I Browser connects to Server
I Server sends its public key
I Browser uses this public key to transmit session key
I Secure communication happens

I Question: How do I know that the public key belongs to the right
server?
Answer: It is certified by a Certificate Authority (CA)

I Browsers automatically verify whether the certificate is OK
I “OK” means: You trust the CA
I So, who exactly do you trust? Let’s take a look. . .
I Compromise just one CA and you can do anything
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Traffic data

I Why break your crypto, just record “meta data”
I Who communicated with whom, when, from where, and how long

I This may tell you more than the content does
I Nice example by Cindy Cohn (EFF) at Crypto 2013:

“We see that you’re standing on the Golden Gate Bridge
calling the suicide hotline, but we don’t know what you’re
talking.”

I The term “meta data” makes this information sound harmless, it’s
not!

I You don’t need the NSA for that, consider the EU

You vs. the NSA 24
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More on traffic data

EU’s Data Retention Directive
“Member States shall ensure that the categories of data
specified in Article 5 are retained for periods of not less than six
months and not more than two years from the date of the
communication.”

From Article 5:

I data necessary to trace and identify the source of a communication
I data necessary to identify the destination of a communication
I data necessary to identify the date, time and duration of a

communication
I data necessary to identify the type of communication
I data necessary to identify users’ communication equipment or what

purports to be their equipment
I data necessary to identify the location of mobile communication

equipment
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Anonymization with TOR

How can we hide traffic data?
I Most popular: TOR (“The Onion Router”)
I Route data through (at least) three TOR nodes
I Use multiple layers of encryption:

I Open-source software available at http://torproject.org
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“TOR stinks”

I Snowden leaked NSA slides about TOR (“TOR stinks”)
I Statement by NSA:

“ We will never be able to de-anonymize all Tor users all
the time. ”

I Sounds good, but slides are from 2012, based on 2007 data
I How about today?
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Attacks against TOR part I

Looking at the exit node
I Data that comes out of the exit node unencrypted

I What if you access a website through TOR and type there
“Hi, I’m Peter Schwabe, I’m sitting in Flórianopolis, Brazil.
My IP address is 187.65.227.71.”

I It can be more subtle: look for TOR users when they are not using
TOR

I NSA on such attacks: “Dumb Users (EPICFAIL)”
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Attacks against TOR part II

Controlling TOR nodes
I Attacker tries to control all nodes of a route
I NSA is known to run TOR nodes, unclear how many
I If NSA controls just 1% of the nodes, each route has a 1/1000000

chance of being NSA controlled

I TOR changes routes every 15 minutes
I A matter of time until you’re de-anonymized
I TOR has some ways to address these attacks
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Attacks against TOR part III

“Tor ist tot. Tor basiert auf der Annahme, dass der Gegner
nicht in der Lage ist, das gesamte Internet zu überwachen.”
– Felix “Fefe” von Leitner (Aug 5, 2013)

Timing analysis of traffic
I Observe large amounts of Internet communication
I In particular: Traffic entering TOR network and exiting TOR network

I Use timing correlation to de-anonymize users
I In 2007 apparently infeasible for NSA
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Attacks against TOR part IV

Breaking the crypto
I Main crypto components in TOR:

I AES-128
I RSA-1024

I Estimates by Shamir and Tromer in 2003: Breaking RSA-1024 in
one year costs US$10, 000, 000

I RSA-Labs und U.S. government: RSA-1024 only until 2010
I RSA-768 was broken in 2010, estimate: RSA-1024 is 1000 times

harder
I Summary:

I It is believed that NSA can break RSA-1024
I It is still hard to do on big scale

I Good news: TOR is updating to 128-bit secure Curve25519
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Wild speculation part I

Hardware trojans
I Your laptop is running on an Intel or AMD CPU
I Your smartphone has a Freescale, Qualcomm, Apple, TI, . . . CPU
I Do you trust these US American companies to not have a trojan in

the hardware?

I Intel CPUs now come with hardware RNG rdrand
I Intel “User Manual for the Rdrand Library”: Use rdrand directly,

don’t rely on operating system
I Becker, Regazzoni, Paar, and Burleson in 2013: Describe almost

undetectable hardware trojan that can be used to create a backdoor
in rdrand
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Wild speculation part II

Quantum Computers
I Can’t quantum computers break all crypto?

I No.
I Currently used asymmetric crypto (RSA, ECC, DSA,. . . ) will be

broken
I Symmetric crypto (AES, Salsa20,. . . ) needs to double key sizes
I There is no quantum computer, yet (also not for NSA)
I Mark B. Ketchen (IBM) in 2012:

“Now I’m thinking like it’s 15 [years] or a little more. It’s
within reach. It’s within our lifetime. It’s going to happen.”

I What then?

Post-Quantum Cryptography to the rescue

:

I Asymmetric cryptography that survives quantum attacks
I Ongoing research effort to make it practical
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Summary

Biggest challenges (increasing hardness (?)):

I Make post-quantum cryptography practical
I Eliminate side-channel leakages
I Better anonymity (at acceptable performance) than TOR
I Obtain good randomness wherever and whenever it’s needed
I Find a way to get rid of bad algorithms fast
I Make high-security crypto easy to use for everybody
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