

An Introduction to Lattice-based KEMs

Peter Schwabe December 17, 2020

The NIST competition

Count of Problem Category	Column Labels		
Row Labels	Key Exchange	Signature	Grand Total
?	1		1
Braids	1	1	2
Chebychev	1		1
Codes	19	5	24
Finite Automata	1	1	2
Hash		4	4
Hypercomplex Numbers	1		1
Isogeny	1		1
Lattice	24	4	28
Mult. Var	6	7	13
Rand. walk	1		1
RSA	1	1	2
Grand Total	57	23	80
	1 ♥ 27	M	

Overview tweeted by Jacob Alperin-Sheriff on Dec 4, 2017.

Announcement planned at Real-World Crypto 2019

- Announcement planned at Real-World Crypto 2019
- Due to US government lockdown slightly later

- Announcement planned at Real-World Crypto 2019
- Due to US government lockdown slightly later

Encryption / Key agreement

- · 9 lattice-based
- 7 code-based
- 1 isogeny-based

- Announcement planned at Real-World Crypto 2019
- · Due to US government lockdown slightly later

Encryption / Key agreement

- · 9 lattice-based
- 7 code-based
- 1 isogeny-based

Signature schemes

- · 3 lattice-based
- 2 symmetric-crypto based
- 4 MQ-based

Announcement planned for June 2020

- Announcement planned for June 2020
- Due to pandemic (?) slightly later

- Announcement planned for June 2020
- Due to pandemic (?) slightly later

Finalists

- 4 key-agreement schemes
 - · 3 lattice-based
 - 1 code-based
- · 3 signature schemes
 - · 2 lattice-based
 - · 1 MQ-based

- Announcement planned for June 2020
- Due to pandemic (?) slightly later

Finalists

- 4 key-agreement schemes
 - · 3 lattice-based
 - · 1 code-based
- · 3 signature schemes
 - · 2 lattice-based
 - · 1 MQ-based

Alternate schemes

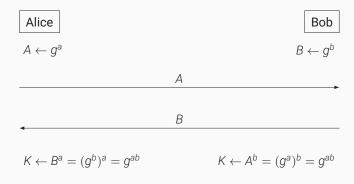
- 5 key-agreement schemes
 - · 2 lattice-based
 - 2 code-based
 - 1 isogeny-based
- 3 signature schemes
 - · 2 symmetric-crypto based
 - 1 MQ-based

What NIST means by "Key exchange"

Key encapsulation mechanisms (KEMs)

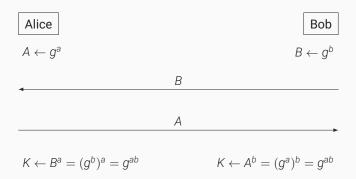
- (pk, sk)←KeyGen()
- $(c,k)\leftarrow \text{Encaps}(pk)$
- k←Decaps(c, sk)

A reminder of Diffie-Hellman

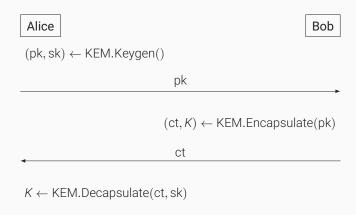


5

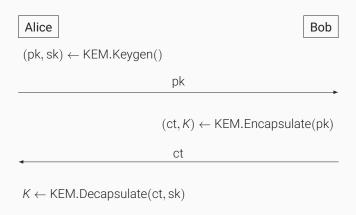
A reminder of Diffie-Hellman



KEMs: as close as you'll get to DH



KEMs: as close as you'll get to DH*



^{*}Except with CSIDH (Castryck, Lange, Martindale, Renes, Panny, 2018)

Lattice-based KEMs

"We're indebted to Erdem Alkim, Léo Ducas, Thomas Pöppelmann and Peter Schwabe, the researchers who developed "New Hope", the post-quantum algorithm that we selected for this experiment."

https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

"Key Agreement using the 'NewHope' lattice-based algorithm detailed in the New Hope paper, and LUKE (Lattice-based Unique Key Exchange), an ISARA speed-optimized version of the NewHope algorithm."

https://www.isara.com/isara-radiate/

"The deployed algorithm is a variant of "New Hope", a quantum-resistant cryptosystem"

https://www.infineon.com/cms/en/about-infineon/press/press-releases/2017/INFCCS201705-056.html

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- Given "noise distribution" χ
- Given samples $\mathbf{A}\mathbf{s} + \mathbf{e}$, with $\mathbf{e} \leftarrow \chi$

Learning with errors (LWE)

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- Given "noise distribution" χ
- Given samples $\mathbf{A}\mathbf{s} + \mathbf{e}$, with $\mathbf{e} \leftarrow \chi$
- Search version: find s
- Decision version: distinguish from uniform random

Learning with rounding (LWR)

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- Given samples $[\mathbf{A}\mathbf{s}]_p$, with p < q

Learning with rounding (LWR)

- Given uniform $\mathbf{A} \in \mathbb{Z}_q^{k \times \ell}$
- Given samples $[\mathbf{A}\mathbf{s}]_p$, with p < q
- Search version: find s
- · Decision version: distinguish from uniform random

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- Idea to solve this: allow structured matrix $\boldsymbol{\mathrm{A}}\text{, e.g.,}$

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- · Idea to solve this: allow structured matrix A, e.g.,
 - NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; n a power of 2, q prime

- · Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- Idea to solve this: allow structured matrix A, e.g.,
 - NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; n a power of 2, q prime
 - NTRU: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n-1)$; n prime, q a power of 2

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- Idea to solve this: allow structured matrix \mathbf{A} , e.g.,
 - NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; n a power of 2, q prime
 - NTRU: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n-1)$; n prime, q a power of 2
 - NTRU Prime: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n X 1)$; q prime, n prime

- · Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- Idea to solve this: allow structured matrix A, e.g.,
 - NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; n a power of 2, q prime
 - NTRU: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n-1)$; n prime, q a power of 2
 - NTRU Prime: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n X 1)$; q prime, n prime
 - Kyber/Saber: use small-dimension matrices and vectors over $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^{256}+1)$

- Problem with LWE-based cryptosystems: public-key size
- Only NIST candidate exclusively using standard LWE: FrodoKEM
- Idea to solve this: allow structured matrix A, e.g.,
 - NewHope: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$; n a power of 2, q prime
 - NTRU: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n-1)$; n prime, q a power of 2
 - NTRU Prime: work in $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n X 1)$; q prime, n prime
 - Kyber/Saber: use small-dimension matrices and vectors over $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^{256}+1)$
- Perform arithmetic on (vectors of) polynomials instead of vectors/matrices over \mathbb{Z}_{q}

How to build a KEM?

Alice (server)		Bob (client)
$\mathbf{s}, \mathbf{e} \stackrel{\$}{\leftarrow} \chi$		$\mathbf{s}', \mathbf{e}' \stackrel{\$}{\leftarrow} \chi$
b←as+e	$\overset{\mathbf{b}}{-\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-}$	$\mathbf{u} \leftarrow \mathbf{a}\mathbf{s}' + \mathbf{e}'$
	$\longleftarrow^{\mathbf{u}}$	

Alice has
$$\mathbf{v} = \mathbf{u}\mathbf{s} = \mathbf{a}\mathbf{s}\mathbf{s}' + \mathbf{e}'\mathbf{s}$$

Bob has $\mathbf{v}' = \mathbf{b}\mathbf{s}' = \mathbf{a}\mathbf{s}\mathbf{s}' + \mathbf{e}\mathbf{s}'$

- Secret and noise polynomials $\mathbf{s},\mathbf{s}',\mathbf{e},\mathbf{e}'$ are small
- \mathbf{v} and \mathbf{v}' are approximately the same

Alice		Bob
$\mathbf{s}, \mathbf{e} \overset{\$}{\leftarrow} \chi$ $\mathbf{b} \leftarrow \mathbf{a} \mathbf{s} + \mathbf{e}$	<u>(b</u>)	$\mathbf{s}', \mathbf{e}' \qquad \stackrel{\$}{\leftarrow} \chi$ $\mathbf{u} \leftarrow \mathbf{a} \mathbf{s}' + \mathbf{e}'$ $\mathbf{v} \leftarrow \mathbf{b} \mathbf{s}'$
v'←us	<u>⟨(u)</u>	

Alice		Bob
$seed \overset{\$}{\leftarrow} \{0,1\}^{256}$		
a ←Parse(XOF(seed))		
$\mathbf{s}, \mathbf{e} \xleftarrow{\$} \chi$		$\mathbf{s}', \mathbf{e}' \stackrel{\$}{\leftarrow} \chi$
$b\leftarrow as + e$	$\xrightarrow{(\mathbf{b}, seed)}$	$\mathbf{a} \leftarrow Parse(XOF(\mathit{seed}))$
		$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
		$\mathbf{v}{\leftarrow}\mathbf{b}\mathbf{s}'$
v'←us	\leftarrow $\stackrel{\mathbf{(u})}{\leftarrow}$	

Alice		Bob
seed $\stackrel{\$}{\leftarrow} \{0,1\}^{256}$		
a ←Parse(XOF(seed))		
$\mathbf{s}, \mathbf{e} \xleftarrow{\$} \chi$		$\mathbf{s}', \mathbf{e}' \qquad \stackrel{\$}{\leftarrow} \chi$
$\mathbf{b} \leftarrow \mathbf{a}\mathbf{s} + \mathbf{e}$	$\xrightarrow{(\mathbf{b}, seed)}$	$\mathbf{a} \leftarrow Parse(XOF(seed))$
		$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
		$\mathbf{v}{\leftarrow}\mathbf{b}\mathbf{s}'$
		$k \stackrel{\$}{\leftarrow} \{0,1\}^n$
		$\mathbf{k}\leftarrow Encode(k)$
v′←us	\leftarrow (\mathbf{u},\mathbf{c})	$\mathbf{c} \leftarrow \mathbf{v} + \mathbf{k}$

Alice		Bob
seed $\stackrel{\$}{\leftarrow} \{0,1\}^{256}$		
a ←Parse(XOF(seed))		
$\mathbf{s}, \mathbf{e} \overset{\$}{\leftarrow} \chi$		$\mathbf{s}', \mathbf{e}', \mathbf{e}'' \stackrel{\$}{\leftarrow} \chi$
$\mathbf{b} \leftarrow \mathbf{a}\mathbf{s} + \mathbf{e}$	$\xrightarrow{(\mathbf{b}, seed)}$	$\mathbf{a} \leftarrow Parse(XOF(seed))$
		$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
		$\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$
		$k \stackrel{\$}{\leftarrow} \{0,1\}^n$
		$\mathbf{k}\leftarrow Encode(k)$
$\mathbf{v}' \leftarrow \mathbf{u}\mathbf{s}$	\leftarrow (\mathbf{u},\mathbf{c})	$\mathbf{c} \leftarrow \mathbf{v} + \mathbf{k}$

Alice		Bob
seed $\stackrel{\$}{\leftarrow} \{0,1\}^{256}$		
a ←Parse(XOF(seed))		
$\mathbf{s}, \mathbf{e} \xleftarrow{\$} \chi$		$\mathbf{s}', \mathbf{e}', \mathbf{e}'' \stackrel{\$}{\leftarrow} \chi$
b←as + e	$\xrightarrow{(\mathbf{b},seed)}$	$\mathbf{a} \leftarrow Parse(XOF(\mathit{seed}))$
		$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
		$\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$
		$k \stackrel{\$}{\leftarrow} \{0,1\}^n$
		$\mathbf{k}\leftarrow Encode(k)$
v′←us	\leftarrow (\mathbf{u},\mathbf{c})	$\mathbf{c} {\leftarrow} \mathbf{v} + \mathbf{k}$
$\mathbf{k}' {\leftarrow} \mathbf{c} - \mathbf{v}'$		

How to build a KEM, part 2

Alice		Bob
seed $\stackrel{\$}{\leftarrow} \{0,1\}^{256}$		
a ←Parse(XOF(seed))		
$\mathbf{s}, \mathbf{e} \xleftarrow{\$} \chi$		$\mathbf{s}', \mathbf{e}', \mathbf{e}'' \stackrel{\$}{\leftarrow} \chi$
$\mathbf{b} \leftarrow \mathbf{as} + \mathbf{e}$	$\xrightarrow{(\mathbf{b},seed)}$	$\mathbf{a} \leftarrow Parse(XOF(seed))$
		$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
		$\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$
		$k \stackrel{\$}{\leftarrow} \{0,1\}^n$
		$\mathbf{k}\leftarrow Encode(k)$
v′←us	\leftarrow (\mathbf{u},\mathbf{c})	$\mathbf{c} {\leftarrow} \mathbf{v} + \mathbf{k}$
$\mathbf{k'} {\leftarrow} \mathbf{c} - \mathbf{v'}$		$\mu \leftarrow Extract(\mathbf{k})$
$\mu \leftarrow Extract(\mathbf{k}')$		

How to build a KEM, part 2

Alice		Bob
seed $\stackrel{\$}{\leftarrow} \{0,1\}^{256}$		
a ←Parse(XOF(seed))		
$\mathbf{s}, \mathbf{e} \overset{\hspace{0.1em}\scriptscriptstyle\$}{\leftarrow} \chi$		$\mathbf{s}', \mathbf{e}', \mathbf{e}'' \stackrel{\$}{\leftarrow} \chi$
$\mathbf{b} \leftarrow \mathbf{a}\mathbf{s} + \mathbf{e}$	$\xrightarrow{(\mathbf{b}, seed)}$	$\mathbf{a} \leftarrow Parse(XOF(seed))$
		$\mathbf{u} {\leftarrow} \mathbf{a} \mathbf{s}' + \mathbf{e}'$
		$\mathbf{v} {\leftarrow} \mathbf{b} \mathbf{s}' + \mathbf{e}''$
		$k \stackrel{\$}{\leftarrow} \{0,1\}^n$
		$\mathbf{k}\leftarrow Encode(k)$
$\mathbf{v}'{\leftarrow}\mathbf{u}\mathbf{s}$	\leftarrow (\mathbf{u},\mathbf{c})	$\mathbf{c} {\leftarrow} \mathbf{v} + \mathbf{k}$
$\mathbf{k'} {\leftarrow} \mathbf{c} - \mathbf{v'}$		$\mu \leftarrow Extract(\mathbf{k})$
$\mu \leftarrow Extract(\mathbf{k}')$		

This is LPR encryption, written as KEM (except for generation of ${\bf a}$)

Encode and Extract

- Encoding in LPR encryption: map *n* bits to *n* coefficients:
 - A zero bit maps to 0
 - A one bit maps to q/2
- · Idea: Noise affects low bits of coefficients, put data into high bits

Encode and Extract

- Encoding in LPR encryption: map *n* bits to *n* coefficients:
 - A zero bit maps to 0
 - A one bit maps to q/2
- Idea: Noise affects low bits of coefficients, put data into high bits
- Decode: map coefficient into [-q/2, q/2]
 - Closer to 0 (i.e., in [-q/4, q/4]): set bit to zero
 - Closer to $\pm q/2$: set bit to one

From passive to CCA security

- The base scheme does not have active security
- Attacker can choose arbitrary noise, learns ${f s}$ from failures

From passive to CCA security

- · The base scheme does not have active security
- Attacker can choose arbitrary noise, learns s from failures
- Fujisaki-Okamoto transform (sketched):

```
Alice (Server)
                                                                                             Bob (Client)
Gen():
pk, sk←KeyGen()
                                                                                            Enc(seed, \mathbf{b}):
                                                                                            X \leftarrow \{0, \dots, 255\}^{32}
seed, b←pk
                                                                                            k, coins \leftarrow SHA3-512(x)
                                                                              \overset{\mathbf{u}, \vee}{\leftarrow}
                                                                                            \mathbf{u}, v \leftarrow \text{Encrypt}((\text{seed}, \mathbf{b}), x, \text{coins})
Dec(\mathbf{s}, (\mathbf{u}, v)):
\overline{x'} \leftarrow \overline{\text{Decrypt}}(\mathbf{s}, (\mathbf{u}, v))
k', coins' \leftarrow SHA3-512(x')
\mathbf{u}', \mathbf{v}' \leftarrow \text{Encrypt}((\text{seed}, \mathbf{b}), \mathbf{x}', \text{coins}')
verify if (\mathbf{u}', \mathbf{v}') = (\mathbf{u}, \mathbf{v})
```

- Historically first: NTRU
- Use parameters q and p=3

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q, \mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = \rho \mathbf{f}_q \mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q$, $\mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = p\mathbf{f}_0\mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_0)$
- Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1,0,1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - Compute ciphertext $\mathbf{e} = \mathbf{r} \cdot \mathbf{h} + \mathbf{m}$

- Historically first: NTRU
- Use parameters q and p = 3
- · Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q$, $\mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = p\mathbf{f}_{\sigma}\mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$
- · Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1,0,1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - Compute ciphertext $e = r \cdot h + m$
- · Decrypt:
 - Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e}$

- Historically first: NTRU
- Use parameters q and p = 3
- · Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q$, $\mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = p\mathbf{f}_{\sigma}\mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$
- · Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1,0,1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - Compute ciphertext $e = r \cdot h + m$
- · Decrypt:
 - Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m})$

- Historically first: NTRU
- Use parameters q and p = 3
- · Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q$, $\mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = p\mathbf{f}_{a}\mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{p})$
- · Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1,0,1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - Compute ciphertext $e = r \cdot h + m$
- · Decrypt:
 - Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m})$

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q$, $\mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = p\mathbf{f}_{\sigma}\mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\rho})$
- · Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1,0,1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - Compute ciphertext $e = r \cdot h + m$
- · Decrypt:
 - Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m}) = \rho \mathbf{r} \mathbf{g} + \mathbf{f} \cdot \mathbf{m}$

- Historically first: NTRU
- Use parameters q and p = 3
- Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q$, $\mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = p\mathbf{f}_{\alpha}\mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_{\alpha})$
- · Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1,0,1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - Compute ciphertext $e = r \cdot h + m$
- · Decrypt:
 - Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m}) = \rho \mathbf{r} \mathbf{g} + \mathbf{f} \cdot \mathbf{m}$
 - Compute $\mathbf{m} = \mathbf{v} \cdot \mathbf{f}_p \mod p$

- Historically first: NTRU
- Use parameters q and p = 3
- · Keygen:
 - Find $\mathbf{f}, \mathbf{g} \in \mathcal{R}_q$ and $\mathbf{f}_q = \mathbf{f}^{-1} \mod q$, $\mathbf{f}_p = \mathbf{f}^{-1} \mod p$
 - public key: $\mathbf{h} = p\mathbf{f}_q\mathbf{g}$, secret key: $(\mathbf{f}, \mathbf{f}_p)$
- · Encrypt:
 - Map message m to $\mathbf{m} \in \mathcal{R}_q$ with coefficients in $\{-1,0,1\}$
 - Sample random small-coefficient polynomial $\mathbf{r} \in \mathcal{R}_q$
 - Compute ciphertext $\mathbf{e} = \mathbf{r} \cdot \mathbf{h} + \mathbf{m}$
- · Decrypt:
 - Compute $\mathbf{v} = \mathbf{f} \cdot \mathbf{e} = \mathbf{f} \cdot (\mathbf{r} \cdot \mathbf{h} + \mathbf{m}) = \mathbf{f}(\mathbf{r} \cdot (\rho \mathbf{f}_q \mathbf{g}) + \mathbf{m}) = \rho \mathbf{r} \mathbf{g} + \mathbf{f} \cdot \mathbf{m}$
 - Compute $\mathbf{m} = \mathbf{v} \cdot \mathbf{f}_p \mod p$
- Advantages/Disadvantages compared to LPR:
 - Asymptotically weaker than Ring-LWE approach
 - Slower keygen, but faster encryption/decryption

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - $\cdot \, q$ typically either prime or a power of two
 - $\it f$ typically of degree between 512 and 1024

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - $\cdot \, q$ typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, n prime (NTRU)

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - $\cdot \, q$ typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, n prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - $\cdot \, q$ typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, n prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n+1 prime (Round5)

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - $\cdot \, q$ typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, n prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n+1 prime (Round5)
- Fourth option: q prime, $f=(X^n+1)=\Phi_{2n},$ $n=2^m$ (NewHope, Kyber, LAC)

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - $\cdot \, q$ typically either prime or a power of two
 - $\it f$ typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, n prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n+1 prime (Round5)
- Fourth option: q prime, $f=(X^n+1)=\Phi_{2n}, n=2^m$ (NewHope, Kyber, LAC)
- Fifth option: q prime, $f = (X^n X 1)$ irreducible, n prime (NTRU Prime)

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - $\cdot \, q$ typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, n prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n+1 prime (Round5)
- Fourth option: q prime, $f=(X^n+1)=\Phi_{2n}, n=2^m$ (NewHope, Kyber, LAC)
- Fifth option: q prime, $f = (X^n X 1)$ irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - $\cdot \, q$ typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, n prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n+1 prime (Round5)
- Fourth option: q prime, $f=(X^n+1)=\Phi_{2n}$, $n=2^m$ (NewHope, Kyber, LAC)
- Fifth option: q prime, $f = (X^n X 1)$ irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - $\cdot \, q$ typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, n prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n+1 prime (Round5)
- Fourth option: q prime, $f=(X^n+1)=\Phi_{2n}, n=2^m$ (NewHope, Kyber, LAC)
- Fifth option: q prime, $f = (X^n X 1)$ irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure
- NTRU Prime advertises "less structure" in their \mathcal{R}_q

- Structured lattice-based schemes use ring $\mathcal{R}_q = \mathbb{Z}_q[X]/f$
 - $\cdot \, q$ typically either prime or a power of two
 - f typically of degree between 512 and 1024
- First option: $q = 2^k$, $f = (X^n 1)$, n prime (NTRU)
- Second option: $q = 2^k$, $f = (X^n + 1)$, $n = 2^m$ (Saber)
- Third option: $q = 2^k$, $f = \Phi_{n+1}$, n+1 prime (Round5)
- Fourth option: q prime, $f = (X^n + 1) = \Phi_{2n}$, $n = 2^m$ (NewHope, Kyber, LAC)
- Fifth option: q prime, $f = (X^n X 1)$ irreducible, n prime (NTRU Prime)
- Sixth option: ThreeBears works on large integers instead of polynomials
- No proof that any option is more or less secure
- NTRU Prime advertises "less structure" in their \mathcal{R}_q
- NewHope and Kyber have fastest (NTT-based) arithmetic

- "Traditionally", work directly with elements of \mathcal{R}_q ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
 - Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
 - Work with small-dimension matrices and vectors over \mathcal{R}_{q}

- "Traditionally", work directly with elements of \mathcal{R}_q ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
 - Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
 - Work with small-dimension matrices and vectors over \mathcal{R}_q
- MLWE encrypts shorter messages than Ring-LWE

- "Traditionally", work directly with elements of \mathcal{R}_q ("Ring-LWE")
- · Alternative: Module-LWE (MLWE):
 - Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
 - Work with small-dimension matrices and vectors over \mathcal{R}_q
- MLWE encrypts shorter messages than Ring-LWE
- MLWE eliminates some of the structure of Ring-LWE

- "Traditionally", work directly with elements of \mathcal{R}_q ("Ring-LWE")
- Alternative: Module-LWE (MLWE):
 - Choose smaller n, e.g., n = 256 (Kyber, Saber, ThreeBears)
 - Work with small-dimension matrices and vectors over \mathcal{R}_q
- MLWE encrypts shorter messages than Ring-LWE
- MLWE eliminates some of the structure of Ring-LWE
- MLWE can very easily scale security (change dimension of matrix):
 - Optimize arithmetic in \mathcal{R}_q once
 - Use same optimized \mathcal{R}_q arithmetic for all security levels

- Need to sample noise (for LWE schemes) and small secrets
- · More noise means
 - more security from the underlying hard problem
 - higher failure probability of decryption

- Need to sample noise (for LWE schemes) and small secrets
- · More noise means
 - · more security from the underlying hard problem
 - higher failure probability of decryption
- · Three main choices to make:
 - · Narrow or wide noise
 - Narrow noise (e.g., in $\{-1,0,1\}$) not conservative
 - Wide noise requires larger q (or more failures)
 - ullet Larger q means larger public key and ciphertext

- Need to sample noise (for LWE schemes) and small secrets
- · More noise means
 - more security from the underlying hard problem
 - higher failure probability of decryption
- · Three main choices to make:
 - · Narrow or wide noise
 - Narrow noise (e.g., in $\{-1,0,1\}$) not conservative
 - Wide noise requires larger q (or more failures)
 - ullet Larger q means larger public key and ciphertext
 - · LWE or LWR
 - · LWE considered more conservative (independent noise)
 - · LWR easier to implement (no noise sampling)
 - LWR allows more compact public key and ciphertext

- Need to sample noise (for LWE schemes) and small secrets
- More noise means
 - · more security from the underlying hard problem
 - higher failure probability of decryption
- Three main choices to make:
 - Narrow or wide noise
 - Narrow noise (e.g., in $\{-1,0,1\}$) not conservative
 - Wide noise requires larger q (or more failures)
 - ullet Larger q means larger public key and ciphertext
 - · LWE or LWR
 - · LWE considered more conservative (independent noise)
 - LWR easier to implement (no noise sampling)
 - · LWR allows more compact public key and ciphertext
 - · Fixed-weight noise or not?
 - · Fixed-weight noise needs random permutation (sorting)
 - · Naive implementations leak secrets through timing
 - Advantage of fixed-weight: easier to bound (or eliminate) decryption failures

Design space 4: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- · Advantage:
 - · Easier CCA security transform and analysis
- · Disadvantage:
 - Need to limit noise (or have larger q)

Design space 4: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- · Advantage:
 - · Easier CCA security transform and analysis
- · Disadvantage:
 - Need to limit noise (or have larger q)
- · For passive-security-only can go the other way:
 - Allow failure probability of, e.g., 2^{-30}
 - Reduce size of public key and ciphertext

Design space 4: allow failures?

- Can avoid decryption failures entirely (NTRU, NTRU Prime)
- · Advantage:
 - · Easier CCA security transform and analysis
- · Disadvantage:
 - Need to limit noise (or have larger q)
- · For passive-security-only can go the other way:
 - Allow failure probability of, e.g., 2^{-30}
 - Reduce size of public key and ciphertext
- · Active (CCA) security needs negligible failure probability

- "Traditional" approach to choosing ${\bf a}$ in LWE/LWR schemes: "Let ${\bf a}$ be a uniformly random. . . "

- "Traditional" approach to choosing ${\bf a}$ in LWE/LWR schemes: "Let ${\bf a}$ be a uniformly random..."
- Before NewHope: real-world approach: generate fixed ${f a}$ once

- "Traditional" approach to choosing ${\bf a}$ in LWE/LWR schemes: "Let ${\bf a}$ be a uniformly random..."
- Before NewHope: real-world approach: generate fixed $\mathbf a$ once
- What if a is backdoored?
- Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)

- "Traditional" approach to choosing ${\bf a}$ in LWE/LWR schemes: "Let ${\bf a}$ be a uniformly random..."
- Before NewHope: real-world approach: generate fixed a once
- What if a is backdoored?
- Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)
- · Even without backdoor:
 - · Perform massive precomputation based on a
 - Use precomputation to break all key exchanges
 - · Infeasible today, but who knows...
 - · Attack in the spirit of Logjam

- "Traditional" approach to choosing ${\bf a}$ in LWE/LWR schemes: "Let ${\bf a}$ be a uniformly random..."
- Before NewHope: real-world approach: generate fixed a once
- What if a is backdoored?
- Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)
- · Even without backdoor:
 - Perform massive precomputation based on a
 - Use precomputation to break all key exchanges
 - Infeasible today, but who knows...
 - · Attack in the spirit of Logjam
- Solution in NewHope: Choose a fresh ${f a}$ every time
- Server can cache a for some time (e.g., 1h)
- · All NIST PQC candidates now use this approach

Design space 6: error-correcting codes?

- Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- "Encrypt" messages of $> 256 \ \mathrm{bits}$
- Need to encrypt only 256-bit key
- Question: How do we put those additional bits to use?
- Answer: Use error-correcting code (ECC) to reduce failure probability

Design space 6: error-correcting codes?

- Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- "Encrypt" messages of $> 256 \ \mathrm{bits}$
- Need to encrypt only 256-bit key
- Question: How do we put those additional bits to use?
- Answer: Use error-correcting code (ECC) to reduce failure probability
- · NewHope: very simple threshold decoding

Design space 6: error-correcting codes?

- Ring-LWE/LWR schemes work with polynomials of > 256 coefficients
- "Encrypt" messages of $> 256 \ \mathrm{bits}$
- Need to encrypt only 256-bit key
- · Question: How do we put those additional bits to use?
- Answer: Use error-correcting code (ECC) to reduce failure probability
- · NewHope: very simple threshold decoding
- LAC, Round5: more advanced ECC
 - Correct more errors, obtain smaller public key and ciphertext
 - More complex to implement, in particular without leaking through timing

Design space 7: CCA security?

- Ephemeral key exchange does not need CCA security
- · Can offer passively secure version
- Protocols will combine this with signatures for authentication

Design space 7: CCA security?

- · Ephemeral key exchange does not need CCA security
- · Can offer passively secure version
- · Protocols will combine this with signatures for authentication
- · Advantages:
 - Higher failure probability → more compact
 - · Simpler to implement, no CCA transform
 - · More flexibility for secret/noise generation

Design space 7: CCA security?

- · Ephemeral key exchange does not need CCA security
- · Can offer passively secure version
- Protocols will combine this with signatures for authentication
- Advantages:
 - Higher failure probability → more compact
 - Simpler to implement, no CCA transform
 - · More flexibility for secret/noise generation
- Disadvantages:
 - Less robust (will somebody reuse keys?)
 - More options (CCA vs. CPA): easier to make mistakes

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- · Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)
 - Hash public-key into shared key: KEM becomes contributory

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)
 - Hash public-key into shared key: KEM becomes contributory
 - · Hash ciphertext into shared key: more robust (?)

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)
 - Hash public-key into shared key: KEM becomes contributory
 - · Hash ciphertext into shared key: more robust (?)
- · How to handle rejection?
 - Return special symbol (return -1): explicit
 - Return H(s, C) for secret s: implicit

- General Fujisaki-Okamoto principle is the same for most KEMs (exception: NTRU)
- Tweaks to FO transform:
 - Hash public-key into coins: multitarget protection (for non-zero failure probability)
 - Hash public-key into shared key: KEM becomes contributory
 - · Hash ciphertext into shared key: more robust (?)
- · How to handle rejection?
 - Return special symbol (return -1): explicit
 - Return H(s, C) for secret s: implicit
- As of round 2, no proposal uses explicit rejection
 - · Would break some security reduction
 - · More robust in practice (return value alwas 0)

Summary

- Lattice-based KEMs offer best overall performance in the PQ world
- · Many tradeoffs between
 - · Security (including passive vs. active)
 - · Failure rate
 - Size
 - Speed
- · More information about NIST PQC:
 - https://csrc.nist.gov/projects/post-quantum-cryptography
 - https://pqc-wiki.fau.edu/

Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz Slides at https://cryptojedi.org/latticekems.pdf

- CPA-secure "LPR KEM", see slide 13
- Work in polynomial ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$
- Parameters q = 4096, n = 1024
- Centered binomial noise with k = 8
- "Messages" have n bits \Rightarrow trivial encoding (see slide 14)

Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz Slides at https://cryptojedi.org/latticekems.pdf

- CPA-secure "LPR KEM", see slide 13
- Work in polynomial ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$
- Parameters q = 4096, n = 1024
- Centered binomial noise with k = 8
- "Messages" have n bits \Rightarrow trivial encoding (see slide 14)
- 1. Implement arithmetic in \mathcal{R}_q (file poly.c)
- 2. Implement the Wookie KEM (file kem.c)

Exercise: the Wookie encapsulation mechanism

Download https://cryptojedi.org/wookie.tar.gz Slides at https://cryptojedi.org/latticekems.pdf

- CPA-secure "LPR KEM", see slide 13
- Work in polynomial ring $\mathcal{R}_q = \mathbb{Z}_q[X]/(X^n + 1)$
- Parameters q = 4096, n = 1024
- Centered binomial noise with k = 8
- "Messages" have n bits \Rightarrow trivial encoding (see slide 14)
- 1. Implement arithmetic in \mathcal{R}_q (file poly.c)
- 2. Implement the Wookie KEM (file kem.c)
 - make builds various unit tests in test/ subdirectory
 - Running test.sh in test/ subdirectory runs all tests

Centered binomial noise with k = 8

• Let HW(b) be the Hamming weight of a byte b

Centered binomial noise with k = 8

- Let HW(b) be the Hamming weight of a byte b
- To sample one coefficient p[i] of a polynomial in \mathcal{R}_q :
 - Sample two uniformly random bytes a and b
 - Set p[i] = HW(a) HW(b)

Centered binomial noise with k = 8

- Let HW(b) be the Hamming weight of a byte b
- To sample one coefficient p[i] of a polynomial in \mathcal{R}_q :
 - Sample two uniformly random bytes a and b
 - Set p[i] = HW(a) HW(b)
- Resulting coefficient will be in $\{-8, ..., 8\}$
- Sampling a polynomial needs 2n = 2048 uniformly random bytes

Some remarks

- · Software skeleton assumes Linux system
- Need basic build tools (make, gcc, ...) installed:
 - apt install build-essential
- Some unit tests and test.sh script assume Sage to be installed
 - apt install sagemath
- Can also download pre-compiled binaries of Sage:
 - https://doc.sagemath.org/html/en/installation/binary.html