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Part I: How to make software secure
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Timing Attacks

General idea of those attacks

◮ Secret data has influence on timing of software

◮ Attacker measures timing

◮ Attacker computes influence−1 to obtain secret data
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Timing Attacks

General idea of those attacks

◮ Secret data has influence on timing of software

◮ Attacker measures timing

◮ Attacker computes influence−1 to obtain secret data

Two kinds of remote. . .

◮ Timing attacks are a type of side-channel attacks

◮ Unlike other side-channel attacks, they work remotely:
◮ Some need to run attack code in parallel to the target software
◮ Attacker can log in remotely (ssh)
◮ Some attacks work by measuring network delays
◮ Attacker does not even need an account on the target machine

◮ Can’t protect against timing attacks by locking a room

◮ This talk: don’t consider “local” side-channel attacks
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Problem No. 1

if(secret)

{

do_A();

}

else

{

do_B();

}
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Examples

◮ Square-and-multiply (or double-and-add):

“if s is one: multiply”
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Examples

◮ Square-and-multiply (or double-and-add):

“if s is one: multiply”

◮ Modular reduction:

“if a > q: subtract q from a”

◮ Rejection sampling:

“if a < q: accept a”

◮ Byte-array (tag) comparison:

“if a[i] 6= b[i]: return”

◮ Sorting and permuting:

“if a < b: branch into subroutine”
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Eliminating branches

◮ So, what do we do with code like this?

if s then

r ← A
else

r ← B
end if
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if s then
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◮ Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication
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Eliminating branches

◮ So, what do we do with code like this?

if s then

r ← A
else

r ← B
end if

◮ Replace by
r ← sA+ (1− s)B

◮ Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

◮ For very fast A and B this can even be faster
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Problem No. 2

table[secret]
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Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

T [32] . . . T [47]

T [48] . . . T [63]

T [64] . . . T [79]

T [80] . . . T [95]

T [96] . . . T [111]

T [112] . . . T [127]

T [128] . . . T [143]

T [144] . . . T [159]

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T [223]

T [224] . . . T [239]

T [240] . . . T [255]

◮ Consider lookup table of 32-bit integers

◮ Cache lines have 64 bytes

◮ Crypto and the attacker’s program run
on the same CPU

◮ Tables are in cache
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T [0] . . . T [15]

T [16] . . . T [31]

attacker’s data

attacker’s data

T [64] . . . T [79]

T [80] . . . T [95]

attacker’s data

attacker’s data

attacker’s data

attacker’s data

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T [223]

attacker’s data

attacker’s data

◮ Consider lookup table of 32-bit integers

◮ Cache lines have 64 bytes

◮ Crypto and the attacker’s program run
on the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines
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◮ Crypto and the attacker’s program run
on the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

◮ Crypto continues, loads from table
again
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Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

???

???

T [64] . . . T [79]
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???

T [112] . . . T [127]

???

???

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T 223]

???

???

◮ Consider lookup table of 32-bit integers

◮ Cache lines have 64 bytes

◮ Crypto and the attacker’s program run
on the same CPU

◮ Tables are in cache

◮ The attacker’s program replaces some
cache lines

◮ Crypto continues, loads from table
again

◮ Attacker loads his data:
◮ Fast: cache hit (crypto did not just

load from this line)
◮ Slow: cache miss (crypto just loaded

from this line)
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The general case

Loads from and stores to addresses that depend on secret data

leak secret data.
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“Countermeasure”
◮ Observation: This simple cache-timing attack does not reveal the

secret address, only the cache line
◮ Idea: Lookups within one cache line should be safe
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“Countermeasure”
◮ Observation: This simple cache-timing attack does not reveal the

secret address, only the cache line
◮ Idea: Lookups within one cache line should be safe. . . or are they?
◮ Bernstein, 2005: “Does this guarantee constant-time S-box lookups?

No!”
◮ Osvik, Shamir, Tromer, 2006: “This is insufficient on processors

which leak low address bits”
◮ Reasons:

◮ Cache-bank conflicts
◮ Failed store-to-load forwarding
◮ . . .

◮ OpenSSL is using it in BN_mod_exp_mont_consttime
◮ Brickell (Intel), 2011: yeah, it’s fine as a countermeasure
◮ Bernstein, Schwabe, 2013: Demonstrate timing variability for access

within one cache line
◮ Yarom, Genkin, Heninger: CacheBleed attack “is able to recover

both 2048-bit and 4096-bit RSA secret keys from OpenSSL 1.0.2f
running on Intel Sandy Bridge processors after observing only 16,000
secret-key operations (decryption, signatures).”
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Countermeasure

uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)

{

size_t i;

int b;

uint32_t r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = (i == pos);

cmov(&r, &table[i], b); // See "eliminating branches"

}

return r;

}
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Countermeasure

uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)

{

size_t i;

int b;

uint32_t r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = (i == pos); /* DON’T! Compiler may do funny things! */

cmov(&r, &table[i], b);

}

return r;

}
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Countermeasure

uint32_t table[TABLE_LENGTH];

uint32_t lookup(size_t pos)

{

size_t i;

int b;

uint32_t r = table[0];

for(i=1;i<TABLE_LENGTH;i++)

{

b = isequal(i, pos);

cmov(&r, &table[i], b);

}

return r;

}
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Countermeasure, part 2

int isequal(uint32_t a, uint32_t b)

{

size_t i; uint32_t r = 0;

unsigned char *ta = (unsigned char *)&a;

unsigned char *tb = (unsigned char *)&b;

for(i=0;i<sizeof(uint32_t);i++)

{

r |= (ta[i] ^ tb[i]);

}

r = (-r) >> 31;

return (int)(1-r);

}
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Part II: How to make software fast
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Vector computations

Scalar computation

◮ Load 32-bit integer a

◮ Load 32-bit integer b

◮ Perform addition
c← a+ b

◮ Store 32-bit integer c

Vectorized computation

◮ Load 4 consecutive 32-bit integers
(a0, a1, a2, a3)

◮ Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

◮ Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

◮ Store 128-bit vector (c0, c1, c2, c3)
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◮ Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

◮ Store 128-bit vector (c0, c1, c2, c3)

◮ Perform the same operations on independent data streams (SIMD)

◮ Vector instructions available on most “large” processors

◮ Instructions for vectors of bytes, integers, floats. . .
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◮ Need to interleave data items (e.g., 32-bit integers) in memory

◮ Compilers will not help with vectorization
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Scalar computation

◮ Load 32-bit integer a

◮ Load 32-bit integer b

◮ Perform addition
c← a+ b

◮ Store 32-bit integer c

Vectorized computation
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◮ Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

◮ Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

◮ Store 128-bit vector (c0, c1, c2, c3)

◮ Perform the same operations on independent data streams (SIMD)

◮ Vector instructions available on most “large” processors

◮ Instructions for vectors of bytes, integers, floats. . .

◮ Need to interleave data items (e.g., 32-bit integers) in memory

◮ Compilers will not really help with vectorization
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Why is this so great?

◮ Consider the Intel Skylake processor
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◮ 32-bit store throughput: 1 per cycle
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Why is this so great?

◮ Consider the Intel Skylake processor
◮ 32-bit load throughput: 2 per cycle
◮ 32-bit add throughput: 4 per cycle
◮ 32-bit store throughput: 1 per cycle
◮ 256-bit load throughput: 2 per cycle
◮ 8× 32-bit add throughput: 3 per cycle
◮ 256-bit store throughput: 1 per cycle

◮ Vector instructions are almost as fast as scalar instructions but

do 8× the work

◮ Situation on other architectures/microarchitectures is similar

◮ Reason: cheap way to increase arithmetic throughput (less decoding,
address computation, etc.)
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Take-home message

“Big multipliers are pre-quantum,
vectorization is post-quantum”
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Standard-lattice-based schemes

◮ Standard-lattices operate on matrices over Zq, for “small” q

◮ These are trivially vectorizable

◮ So trivial that even compilers may do it!
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Standard-lattice-based schemes

◮ Standard-lattices operate on matrices over Zq, for “small” q

◮ These are trivially vectorizable

◮ So trivial that even compilers may do it!

◮ Standard-lattice-based signatures (e.g., Bai-Galbraith):
◮ Multiple attempts for signing (rejection sampling)
◮ Each attempt: compute Av for fixed A

◮ More efficient:
◮ Compute multiple products Avi

◮ Typically ignore some results

◮ Reason: reuse coefficients of A in cache
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Structured lattices
◮ Structured lattices (NTRU, RLWE, MLWE) work with polynomials

◮ Most important operation: multiply polynomials

◮ Obvious question: How do we vectorize polynomial multiplication?
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Structured lattices
◮ Structured lattices (NTRU, RLWE, MLWE) work with polynomials

◮ Most important operation: multiply polynomials

◮ Obvious question: How do we vectorize polynomial multiplication?

◮ Let’s take an example:

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

Implementing post-quantum cryptography 17



Structured lattices
◮ Structured lattices (NTRU, RLWE, MLWE) work with polynomials

◮ Most important operation: multiply polynomials

◮ Obvious question: How do we vectorize polynomial multiplication?

◮ Let’s take an example:

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

◮ Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

◮ Multiply, obtain (f0g0, f1g1, f2g2, f3g3)
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Structured lattices
◮ Structured lattices (NTRU, RLWE, MLWE) work with polynomials

◮ Most important operation: multiply polynomials

◮ Obvious question: How do we vectorize polynomial multiplication?

◮ Let’s take an example:

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

◮ Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

◮ Multiply, obtain (f0g0, f1g1, f2g2, f3g3)

◮ And now what?

◮ Looks like we need to shuffle a lot!
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Karatsuba and Toom

◮ Our polynomials have many more coefficients (say, 256–1024)

◮ Idea: use Karatsuba’s trick:
◮ consider n = 2k-coefficient polynomials f and g
◮ Split multiplication f · g into 3 half-size multiplications

(fℓ +Xkfh) · (gℓ +Xkgh)

= fℓgℓ +Xk(fℓgh + fhgℓ) +Xnfhgh

= fℓgℓ +Xk((fℓ + fh)(gℓ + gh)− fℓgℓ − fhgh) +Xnfhgh
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◮ Our polynomials have many more coefficients (say, 256–1024)

◮ Idea: use Karatsuba’s trick:
◮ consider n = 2k-coefficient polynomials f and g
◮ Split multiplication f · g into 3 half-size multiplications

(fℓ +Xkfh) · (gℓ +Xkgh)

= fℓgℓ +Xk(fℓgh + fhgℓ) +Xnfhgh

= fℓgℓ +Xk((fℓ + fh)(gℓ + gh)− fℓgℓ − fhgh) +Xnfhgh

◮ Apply recursively to obtain 9 quarter-size multiplications, 27
eighth-size multiplications etc.
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◮ Idea: use Karatsuba’s trick:
◮ consider n = 2k-coefficient polynomials f and g
◮ Split multiplication f · g into 3 half-size multiplications

(fℓ +Xkfh) · (gℓ +Xkgh)

= fℓgℓ +Xk(fℓgh + fhgℓ) +Xnfhgh

= fℓgℓ +Xk((fℓ + fh)(gℓ + gh)− fℓgℓ − fhgh) +Xnfhgh

◮ Apply recursively to obtain 9 quarter-size multiplications, 27
eighth-size multiplications etc.

◮ Generalization: Toom-Cook. Obtain, e.g., 5 third-size multiplications

◮ Split into sufficiently many “small” multiplications, vectorize across
those
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Transposing/Interleaving

◮ Small example: compute a · b, c · d, e · f , g · h
◮ Each factor with 3 coefficients, e.g., a = a0 + a1X + a2X

2
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◮ Small example: compute a · b, c · d, e · f , g · h
◮ Each factor with 3 coefficients, e.g., a = a0 + a1X + a2X

2

◮ Coefficients in memory:

a0, a1, a2, b0, b1, b2, c0,..., h1, h2

◮ Problem:
◮ Vector loads will yield

v0 = (a0, a1, a2, b0) . . . v6 = (g2, h0, h1, h2)

◮ However, we need

v0 = (a0, c0, e0, h0) . . . v6 = (b2, d2, f2, g2)
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Transposing/Interleaving

◮ Small example: compute a · b, c · d, e · f , g · h
◮ Each factor with 3 coefficients, e.g., a = a0 + a1X + a2X

2

◮ Coefficients in memory:

a0, a1, a2, b0, b1, b2, c0,..., h1, h2

◮ Problem:
◮ Vector loads will yield

v0 = (a0, a1, a2, b0) . . . v6 = (g2, h0, h1, h2)

◮ However, we need

v0 = (a0, c0, e0, h0) . . . v6 = (b2, d2, f2, g2)

◮ Solution: transpose data matrix (or interleave words):

a0, c0, e0, h0, a1, c1, e1,..., f2, g2
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Two applications of Karatsuba/Toom

Streamlined NTRU Prime 4591
761

◮ Multiply in the ring R = Z4591[X ]/(X761 −X − 1)

◮ Pad input polynomial to 768 coefficients

◮ 5 levels of Karatsuba: 243 multiplications of 24-coefficient
polynomials

◮ Massively lazy reduction using double-precision floats

◮ 28 682 Haswell cycles for multiplication in R
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Two applications of Karatsuba/Toom

Streamlined NTRU Prime 4591
761

◮ Multiply in the ring R = Z4591[X ]/(X761 −X − 1)

◮ Pad input polynomial to 768 coefficients

◮ 5 levels of Karatsuba: 243 multiplications of 24-coefficient
polynomials

◮ Massively lazy reduction using double-precision floats

◮ 28 682 Haswell cycles for multiplication in R

NTRU-HRSS-KEM

◮ Multiply in the ring R = Z8192[X ]/(X701 − 1)

◮ Use Toom-Cook to split into 7 quarter-size, then 2 levels of
Karatsuba

◮ Obtain 63 multiplications of 44-coefficient polynomials

◮ 11 722 Haswell cycles for multiplication in R
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We can do better: NTTs

◮ Many LWE/MLWE systems use very specific parameters:
◮ Work in polynomial ring R = Zq[X]/(Xn + 1)
◮ Choose n a power of 2
◮ Choose q prime, s.t. 2n divides (q − 1)
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◮ Examples: NewHope (n = 1024, q = 12289), Kyber
(n = 256, q = 7681)
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◮ Many LWE/MLWE systems use very specific parameters:
◮ Work in polynomial ring R = Zq[X]/(Xn + 1)
◮ Choose n a power of 2
◮ Choose q prime, s.t. 2n divides (q − 1)

◮ Examples: NewHope (n = 1024, q = 12289), Kyber
(n = 256, q = 7681)

◮ Big advantage: fast negacyclic number-theoretic transform

◮ Given g ∈ R, n-th primitive root of unity ω and ψ =
√
ω, compute

NTT(g) = ĝ =

n−1∑

i=0

ĝiX
i, with

ĝi =

n−1∑

j=0

ψjgjω
ij ,
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i, with
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◮ Compute f · g as NTT−1(NTT(f) ◦ NTT(g))
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We can do better: NTTs

◮ Many LWE/MLWE systems use very specific parameters:
◮ Work in polynomial ring R = Zq[X]/(Xn + 1)
◮ Choose n a power of 2
◮ Choose q prime, s.t. 2n divides (q − 1)

◮ Examples: NewHope (n = 1024, q = 12289), Kyber
(n = 256, q = 7681)

◮ Big advantage: fast negacyclic number-theoretic transform

◮ Given g ∈ R, n-th primitive root of unity ω and ψ =
√
ω, compute

NTT(g) = ĝ =

n−1∑

i=0

ĝiX
i, with

ĝi =

n−1∑

j=0

ψjgjω
ij ,

◮ Compute f · g as NTT−1(NTT(f) ◦ NTT(g))

◮ NTT−1 is essentially the same computation as NTT
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Zooming into the NTT

◮ FFT in a finite field

◮ Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th

roots of unity

◮ Divide-and-conquer approach
◮ Write polynomial f as f0(X

2) +Xf1(X
2)
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◮ Divide-and-conquer approach
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f(β) = f0(β
2) + βf1(β

2) and

f(−β) = f0(β
2)− βf1(β
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◮ Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th

roots of unity

◮ Divide-and-conquer approach
◮ Write polynomial f as f0(X

2) +Xf1(X
2)

◮ Huge overlap between evaluating

f(β) = f0(β
2) + βf1(β

2) and

f(−β) = f0(β
2)− βf1(β

2)

◮ f0 has n/2 coefficients
◮ Evaluate f0 at all (n/2)-th roots of unity by recursive application
◮ Same for f1
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Zooming into the NTT

◮ FFT in a finite field

◮ Evaluate polynomial f = f0 + f1X + · · ·+ fn−1X
n−1 at all n-th

roots of unity

◮ Divide-and-conquer approach
◮ Write polynomial f as f0(X

2) +Xf1(X
2)

◮ Huge overlap between evaluating

f(β) = f0(β
2) + βf1(β

2) and

f(−β) = f0(β
2)− βf1(β

2)

◮ f0 has n/2 coefficients
◮ Evaluate f0 at all (n/2)-th roots of unity by recursive application
◮ Same for f1

◮ Apply recursively through logn levels
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Vectorizing the NTT

◮ First thing to do: replace recursion by iteration

◮ Loop over logn levels with n/2 “butterflies” each

◮ Butterfly on level k:
◮ Pick up fi and fi+2k

◮ Multiply fi+2k by a power of ω to obtain t
◮ Compute fi+2k ← ai − t
◮ Compute fi ← ai + t

◮ All n/2 butterflies on one level are independent

◮ Vectorize across those butterflies
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Vectorized NTT results

◮ Güneysu, Oder, Pöppelmann, Schwabe, 2013:
◮ 4480 Sandy Bridge cycles (n = 512, 23-bit q)
◮ Use double-precision floats to represent coefficients
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Vectorized NTT results

◮ Güneysu, Oder, Pöppelmann, Schwabe, 2013:
◮ 4480 Sandy Bridge cycles (n = 512, 23-bit q)
◮ Use double-precision floats to represent coefficients

◮ Alkim, Ducas, Pöppelmann, Schwabe, 2016:
◮ 8448 Haswell cycles (n = 1024, 14-bit q)
◮ Still use doubles

◮ Longa, Naehrig, 2016:
◮ 9100 Haswell cycles (n = 1024, 14-bit q)
◮ Uses vectorized integer arithmetic

◮ Seiler, 2018:
◮ 2784 Haswell cycles (n = 1024, 14-bit q)
◮ 460 Haswell cycles (n = 256, 13-bit q)
◮ Uses vectorized integer arithmetic
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How about hashing?

◮ NTT-based multiplication is fast

◮ Consequence: “symmetric” parts in lattice-based crypto becomes
significant overhead!

◮ Most important: hashes and XOFs
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◮ Cannot vectorize across blocks
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How about hashing?

◮ NTT-based multiplication is fast

◮ Consequence: “symmetric” parts in lattice-based crypto becomes
significant overhead!

◮ Most important: hashes and XOFs

◮ Typical hash construction:
◮ Process message in blocks
◮ Each block modifies an internal state
◮ Cannot vectorize across blocks

◮ Idea: Vectorize internal processing (permutation or compression
function)

◮ Two problems:
◮ Often strong dependencies between instructions
◮ Need limited instruction-level parallelism for pipelining
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How about hashing?

◮ NTT-based multiplication is fast

◮ Consequence: “symmetric” parts in lattice-based crypto becomes
significant overhead!

◮ Most important: hashes and XOFs

◮ Typical hash construction:
◮ Process message in blocks
◮ Each block modifies an internal state
◮ Cannot vectorize across blocks

◮ Idea: Vectorize internal processing (permutation or compression
function)

◮ Two problems:
◮ Often strong dependencies between instructions
◮ Need limited instruction-level parallelism for pipelining

◮ Consequence: consider designing with parallel hash/XOF calls!

Implementing post-quantum cryptography 25



PQCRYPTO 6= Lattices

◮ So far we’ve looked at lattices, how about other PQCRYPTO?

◮ Code-based crypto (and someMQ-based crypto) need binary-field
arithmetic

◮ Typical: operations in F2k for k ∈ 1, . . . , 20

Implementing post-quantum cryptography 26



PQCRYPTO 6= Lattices

◮ So far we’ve looked at lattices, how about other PQCRYPTO?

◮ Code-based crypto (and someMQ-based crypto) need binary-field
arithmetic

◮ Typical: operations in F2k for k ∈ 1, . . . , 20

◮ Most architectures don’t support this efficiently

◮ Traditional approach: use lookups (log tables)

Implementing post-quantum cryptography 26



PQCRYPTO 6= Lattices

◮ So far we’ve looked at lattices, how about other PQCRYPTO?

◮ Code-based crypto (and someMQ-based crypto) need binary-field
arithmetic

◮ Typical: operations in F2k for k ∈ 1, . . . , 20

◮ Most architectures don’t support this efficiently

◮ Traditional approach: use lookups (log tables)

◮ Obvious question: can vector operations help?
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Bitslicing

◮ So far: vectors of bytes, 32-bit words, floats,. . .

◮ Consider now vectors of bits
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◮ “Simulate hardware implemenations in software”
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Bitslicing

◮ So far: vectors of bytes, 32-bit words, floats,. . .

◮ Consider now vectors of bits

◮ Perform arithmetic on those vectors using XOR, AND, OR

◮ “Simulate hardware implemenations in software”

◮ Technique was introduced by Biham in 1997 for DES

◮ Bitslicing works for every algorithm

◮ Efficient bitslicing needs a huge amount of data-level parallelism
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Bitslicing binary polynomials

4-coefficient binary polynomials

(a3x
3 + a2x

2 + a1x+ a0), with ai ∈ {0, 1}

4-coefficient bitsliced binary polynomials

typedef unsigned char poly4; /* 4 coefficients in the low 4 bits */

typedef unsigned long long poly4x64[4];

void poly4_bitslice(poly4x64 r, const poly4 f[64])

{

int i,j;

for(i=0;i<4;i++)

{

r[i] = 0;

for(j=0;j<64;j++)

r[i] |= (unsigned long long)(1 & (f[j] >> i))<<j;

}

}
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Bitsliced binary-polynomial multiplication

typedef unsigned long long poly4x64[4];

typedef unsigned long long poly7x64[7];

void poly4x64_mul(poly7x64 r, const poly4x64 f, const poly4x64 g)

{

r[0] = f[0] & g[0];

r[1] = (f[0] & g[1]) ^ (f[1] & g[0]);

r[2] = (f[0] & g[2]) ^ (f[1] & g[1]) ^ (f[2] & g[0]);

r[3] = (f[0] & g[3]) ^ (f[1] & g[2]) ^ (f[2] & g[1]) ^ (f[3] & g[0]);

r[4] = (f[1] & g[3]) ^ (f[2] & g[2]) ^ (f[3] & g[1]);

r[5] = (f[2] & g[3]) ^ (f[3] & g[2]);

r[6] = (f[3] & g[3]);

}
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McBits (revisited)

◮ Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto

◮ Low-level: bitsliced arithmetic in F2k , k ∈ {11, . . . , 16}
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◮ Results:
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pre-quantum security
◮ Not 75 935 744/256 = 296 624 cycles for one decoding
◮ Reason: Need 256 independent decodings for parallelism
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McBits (revisited)

◮ Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto

◮ Low-level: bitsliced arithmetic in F2k , k ∈ {11, . . . , 16}
◮ Higher level:

◮ Additive FFT for efficient root finding
◮ Transposed FFT for syndrome computation
◮ Batcher sort for random permutations

◮ Results:
◮ 75 935 744 Ivy Bridge cycles for 256 decodings at ≈ 256-bit

pre-quantum security
◮ Not 75 935 744/256 = 296 624 cycles for one decoding
◮ Reason: Need 256 independent decodings for parallelism

◮ Chou, CHES 2017: use internal parallelism
◮ Target even higher security (297 bits pre-quantum)
◮ Does not require independent decryptions
◮ Even faster, even when considering throughput
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How aboutMQ?

◮ Most important operation: evaluate system of quadratic equations

◮ Massively parallel, efficiently vectorizable
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◮ F31: 16-bit-word vector elements, use integer arithmetic
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◮ Distinguish 3 (or 4) different cases, depending on the field

◮ F31: 16-bit-word vector elements, use integer arithmetic

◮ F2/F4: Use bitslicing
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How aboutMQ?

◮ Most important operation: evaluate system of quadratic equations

◮ Massively parallel, efficiently vectorizable

◮ Distinguish 3 (or 4) different cases, depending on the field

◮ F31: 16-bit-word vector elements, use integer arithmetic

◮ F2/F4: Use bitslicing

◮ F16/F256: Use vector-permute instructions for table lookups

◮ For F256 use tower-field arithmetic on top of F16
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RecentMQ results

◮ Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2016:
64 eqns in 64 vars over F31: 6616 Haswell cycles
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RecentMQ results

◮ Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2016:
64 eqns in 64 vars over F31: 6616 Haswell cycles

◮ Chen, Li, Peng, Yang, Cheng, 2017:
◮ 256 eqns in 256 vars over F2: 92800 Haswell cycles
◮ 128 eqns in 128 vars over F4: 32300 Haswell cycles
◮ 64 eqns in 64 vars over F16: 9600 Haswell cycles
◮ 64 eqns in 64 vars over F31: 8700 Haswell cycles
◮ 64 eqns in 64 vars over F256: 16200 Haswell cycles
◮ In particular for F2 speedups for public inputs
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RecentMQ results

◮ Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2016:
64 eqns in 64 vars over F31: 6616 Haswell cycles

◮ Chen, Li, Peng, Yang, Cheng, 2017:
◮ 256 eqns in 256 vars over F2: 92800 Haswell cycles
◮ 128 eqns in 128 vars over F4: 32300 Haswell cycles
◮ 64 eqns in 64 vars over F16: 9600 Haswell cycles
◮ 64 eqns in 64 vars over F31: 8700 Haswell cycles
◮ 64 eqns in 64 vars over F256: 16200 Haswell cycles
◮ In particular for F2 speedups for public inputs

◮ Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2017:
128 eqns in 128 vars over F4: 17 558 Haswell cycles (batched)
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Vectorizing hash-based signatures

◮ I said earlier that hashes are hard to vectorize

◮ How about hash-based signatures?
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◮ Most speed-critical operation is Winternitz public-key computation

◮ Compute 67 independent hash chains of length 16 each

◮ All hashes have the same (short) input length

◮ This is trivially vectorizable!
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◮ Examples:
◮ Oliveira, López, Cabral, 2017: Optimize LMS and XMSS
◮ ≈ 10ms for XMSS signing (h = 20) on Skylake
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Vectorizing hash-based signatures

◮ I said earlier that hashes are hard to vectorize

◮ How about hash-based signatures?

◮ Most speed-critical operation is Winternitz public-key computation

◮ Compute 67 independent hash chains of length 16 each

◮ All hashes have the same (short) input length

◮ This is trivially vectorizable!

◮ Examples:
◮ Oliveira, López, Cabral, 2017: Optimize LMS and XMSS
◮ ≈ 10ms for XMSS signing (h = 20) on Skylake
◮ Bernstein, Hopwood, Hülsing, Lange, Niederhagen,

Papachristodoulou, Schneider, Schwabe, Wilcox-O’Hearn, 2015:
Optimize SPHINCS

◮ Vectorize also Merkle-tree hashes inside HORST computation
◮ ≈ 52Mio cycles for signing on Haswell
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Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

v ← (m[i],m[j],m[k],m[ℓ])
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2. Branches
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Rethink algorithms

◮ Consequence: rethink algorithms without those constructs

◮ Different approach to thinking algorithms: a lot of fun!
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Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

v ← (m[i],m[j],m[k],m[ℓ])

2. Branches

v ← (c[0]?a : b, c[1]?c : d, c[2]?e : f, c[3]?g : h)

Rethink algorithms

◮ Consequence: rethink algorithms without those constructs

◮ Different approach to thinking algorithms: a lot of fun!

◮ More importantly: eliminates most notorious timing side channels!

◮ Efficient vectorized implementations are often also “constant-time”
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