Radboud University

Implementing post-quantum crypto

Peter Schwabe
peter@cryptojedi.org
https://cryptojedi.org
February 1, 2018

Making (crypto) software fast

On "small" processors

- Step 1: Efficiently map algorithm to (arithmetic) instructions

Making (crypto) software fast

On "small" processors

- Step 1: Efficiently map algorithm to (arithmetic) instructions
- Step 2: Reduce memory access

Making (crypto) software fast

On "small" processors

- Step 1: Efficiently map algorithm to (arithmetic) instructions
- Step 2: Reduce memory access

On "interesting" processors

- The above plus exploit parallelism

Making (crypto) software fast

On "small" processors

- Step 1: Efficiently map algorithm to (arithmetic) instructions
- Step 2: Reduce memory access

On "interesting" processors

- The above plus exploit parallelism
- Exploit parallelism \neq multicore implementations

Making (crypto) software fast

On "small" processors

- Step 1: Efficiently map algorithm to (arithmetic) instructions
- Step 2: Reduce memory access

On "interesting" processors

- The above plus exploit parallelism
- Exploit parallelism \neq multicore implementations
- Pipelining: interleave execution of independent instructions
- Requires instruction-level parallelism

Making (crypto) software fast

On "small" processors

- Step 1: Efficiently map algorithm to (arithmetic) instructions
- Step 2: Reduce memory access

On "interesting" processors

- The above plus exploit parallelism
- Exploit parallelism \neq multicore implementations
- Pipelining: interleave execution of independent instructions
- Requires instruction-level parallelism
- Superscalar execution: multiple units \Rightarrow multiple ops per cycle
- Choose instructions that keep units busy

Making (crypto) software fast

On "small" processors

- Step 1: Efficiently map algorithm to (arithmetic) instructions
- Step 2: Reduce memory access

On "interesting" processors

- The above plus exploit parallelism
- Exploit parallelism \neq multicore implementations
- Pipelining: interleave execution of independent instructions
- Requires instruction-level parallelism
- Superscalar execution: multiple units \Rightarrow multiple ops per cycle
- Choose instructions that keep units busy
- Vectorize!

Vector computations

Scalar computation

- Load 32-bit integer a
- Load 32-bit integer b
- Perform addition

$$
c \leftarrow a+b
$$

- Store 32-bit integer c

Vectorized computation

- Load 4 consecutive 32-bit integers $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$
- Load 4 consecutive 32-bit integers $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$
- Perform addition $\left(c_{0}, c_{1}, c_{2}, c_{3}\right) \leftarrow$ $\left(a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)$
- Store 128 -bit vector $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)$

Vector computations

Scalar computation

- Load 32-bit integer a
- Load 32-bit integer b
- Perform addition

$$
c \leftarrow a+b
$$

- Store 32-bit integer c

Vectorized computation

- Load 4 consecutive 32-bit integers $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$
- Load 4 consecutive 32-bit integers $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$
- Perform addition $\left(c_{0}, c_{1}, c_{2}, c_{3}\right) \leftarrow$ $\left(a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)$
- Store 128 -bit vector $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)$
- Perform the same operations on independent data streams (SIMD)
- Vector instructions available on most "large" processors
- Instructions for vectors of bytes, integers, floats...

Vector computations

Scalar computation

- Load 32-bit integer a
- Load 32-bit integer b
- Perform addition

$$
c \leftarrow a+b
$$

- Store 32-bit integer c

Vectorized computation

- Load 4 consecutive 32-bit integers $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$
- Load 4 consecutive 32-bit integers $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$
- Perform addition $\left(c_{0}, c_{1}, c_{2}, c_{3}\right) \leftarrow$ $\left(a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)$
- Store 128 -bit vector $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)$
- Perform the same operations on independent data streams (SIMD)
- Vector instructions available on most "large" processors
- Instructions for vectors of bytes, integers, floats. . .
- Compilers will not help with vectorization

Vector computations

Scalar computation

- Load 32-bit integer a
- Load 32-bit integer b
- Perform addition

$$
c \leftarrow a+b
$$

- Store 32-bit integer c

Vectorized computation

- Load 4 consecutive 32-bit integers $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)$
- Load 4 consecutive 32-bit integers $\left(b_{0}, b_{1}, b_{2}, b_{3}\right)$
- Perform addition $\left(c_{0}, c_{1}, c_{2}, c_{3}\right) \leftarrow$ $\left(a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}\right)$
- Store 128 -bit vector $\left(c_{0}, c_{1}, c_{2}, c_{3}\right)$
- Perform the same operations on independent data streams (SIMD)
- Vector instructions available on most "large" processors
- Instructions for vectors of bytes, integers, floats...
- Compilers will not really help with vectorization

Why is this so great?

- Consider the Intel Skylake processor

Why is this so great?

- Consider the Intel Skylake processor
- 32-bit load throughput: 2 per cycle
- 32-bit add throughput: 4 per cycle
- 32-bit store throughput: 1 per cycle

Why is this so great?

- Consider the Intel Skylake processor
- 32-bit load throughput: 2 per cycle
- 32-bit add throughput: 4 per cycle
- 32-bit store throughput: 1 per cycle
- 256 -bit load throughput: 2 per cycle
- 8×32-bit add throughput: 3 per cycle
- 256-bit store throughput: 1 per cycle

Why is this so great?

- Consider the Intel Skylake processor
- 32-bit load throughput: 2 per cycle
- 32-bit add throughput: 4 per cycle
- 32-bit store throughput: 1 per cycle
- 256 -bit load throughput: 2 per cycle
- 8×32-bit add throughput: 3 per cycle
- 256 -bit store throughput: 1 per cycle
- Vector instructions are almost as fast as scalar instructions but do $8 \times$ the work

Why is this so great?

- Consider the Intel Skylake processor
- 32-bit load throughput: 2 per cycle
- 32-bit add throughput: 4 per cycle
- 32-bit store throughput: 1 per cycle
- 256-bit load throughput: 2 per cycle
- 8×32-bit add throughput: 3 per cycle
- 256-bit store throughput: 1 per cycle
- Vector instructions are almost as fast as scalar instructions but do $8 \times$ the work
- Situation on other architectures/microarchitectures is similar
- Reason: cheap way to increase arithmetic throughput (less decoding, address computation, etc.)
"Big multipliers are pre-quantum, vectorization is post-quantum"

Standard-lattice-based schemes

- Standard-lattices operate on matrices over \mathbb{Z}_{q}, for "small" q
- These are trivially vectorizable
- So trivial that even compilers may do it!

Standard-lattice-based schemes

- Standard-lattices operate on matrices over \mathbb{Z}_{q}, for "small" q
- These are trivially vectorizable
- So trivial that even compilers may do it!
- Standard-lattice-based signatures (e.g., Bai-Galbraith):
- Multiple attempts for signing (rejection sampling)
- Each attempt: compute Av for fixed A
- Standard-lattices operate on matrices over \mathbb{Z}_{q}, for "small" q
- These are trivially vectorizable
- So trivial that even compilers may do it!
- Standard-lattice-based signatures (e.g., Bai-Galbraith):
- Multiple attempts for signing (rejection sampling)
- Each attempt: compute Av for fixed A
- More efficient:
- Compute multiple products $A v_{i}$
- Typically ignore some results
- Standard-lattices operate on matrices over \mathbb{Z}_{q}, for "small" q
- These are trivially vectorizable
- So trivial that even compilers may do it!
- Standard-lattice-based signatures (e.g., Bai-Galbraith):
- Multiple attempts for signing (rejection sampling)
- Each attempt: compute Av for fixed A
- More efficient:
- Compute multiple products $\mathbf{A} \mathbf{v}_{\mathbf{i}}$
- Typically ignore some results
- Reason: reuse coefficients of \mathbf{A} in cache

Structured lattices

- Structured lattices (NTRU, RLWE, MLWE) work with polynomials
- Most important operation: multiply polynomials
- Obvious question: How do we vectorize polynomial multiplication?

Structured lattices

- Structured lattices (NTRU, RLWE, MLWE) work with polynomials
- Most important operation: multiply polynomials
- Obvious question: How do we vectorize polynomial multiplication?
- Let's take an example:

$$
\begin{aligned}
& r_{0}=f_{0} g_{0} \\
& r_{1}=f_{0} g_{1}+f_{1} g_{0} \\
& r_{2}=f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0} \\
& r_{3}=f_{0} g_{3}+f_{1} g_{2}+f_{2} g_{1}+f_{3} g_{0} \\
& r_{4}=f_{1} g_{3}+f_{2} g_{2}+f_{3} g_{1} \\
& r_{5}=f_{2} g_{3}+f_{3} g_{2} \\
& r_{6}=f_{3} g_{3}
\end{aligned}
$$

- Structured lattices (NTRU, RLWE, MLWE) work with polynomials
- Most important operation: multiply polynomials
- Obvious question: How do we vectorize polynomial multiplication?
- Let's take an example:

$$
\begin{aligned}
& r_{0}=f_{0} g_{0} \\
& r_{1}=f_{0} g_{1}+f_{1} g_{0} \\
& r_{2}=f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0} \\
& r_{3}=f_{0} g_{3}+f_{1} g_{2}+f_{2} g_{1}+f_{3} g_{0} \\
& r_{4}=f_{1} g_{3}+f_{2} g_{2}+f_{3} g_{1} \\
& r_{5}=f_{2} g_{3}+f_{3} g_{2} \\
& r_{6}=f_{3} g_{3}
\end{aligned}
$$

- Can easily load ($f_{0}, f_{1}, f_{2}, f_{3}$) and ($g_{0}, g_{1}, g_{2}, g_{3}$)
- Multiply, obtain $\left(f_{0} g_{0}, f_{1} g_{1}, f_{2} g_{2}, f_{3} g_{3}\right)$
- Structured lattices (NTRU, RLWE, MLWE) work with polynomials
- Most important operation: multiply polynomials
- Obvious question: How do we vectorize polynomial multiplication?
- Let's take an example:

$$
\begin{aligned}
& r_{0}=f_{0} g_{0} \\
& r_{1}=f_{0} g_{1}+f_{1} g_{0} \\
& r_{2}=f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0} \\
& r_{3}=f_{0} g_{3}+f_{1} g_{2}+f_{2} g_{1}+f_{3} g_{0} \\
& r_{4}=f_{1} g_{3}+f_{2} g_{2}+f_{3} g_{1} \\
& r_{5}=f_{2} g_{3}+f_{3} g_{2} \\
& r_{6}=f_{3} g_{3}
\end{aligned}
$$

- Can easily load ($f_{0}, f_{1}, f_{2}, f_{3}$) and ($g_{0}, g_{1}, g_{2}, g_{3}$)
- Multiply, obtain $\left(f_{0} g_{0}, f_{1} g_{1}, f_{2} g_{2}, f_{3} g_{3}\right)$
- And now what?
- Structured lattices (NTRU, RLWE, MLWE) work with polynomials
- Most important operation: multiply polynomials
- Obvious question: How do we vectorize polynomial multiplication?
- Let's take an example:

$$
\begin{aligned}
& r_{0}=f_{0} g_{0} \\
& r_{1}=f_{0} g_{1}+f_{1} g_{0} \\
& r_{2}=f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0} \\
& r_{3}=f_{0} g_{3}+f_{1} g_{2}+f_{2} g_{1}+f_{3} g_{0} \\
& r_{4}=f_{1} g_{3}+f_{2} g_{2}+f_{3} g_{1} \\
& r_{5}=f_{2} g_{3}+f_{3} g_{2} \\
& r_{6}=f_{3} g_{3}
\end{aligned}
$$

- Can easily load ($f_{0}, f_{1}, f_{2}, f_{3}$) and ($g_{0}, g_{1}, g_{2}, g_{3}$)
- Multiply, obtain $\left(f_{0} g_{0}, f_{1} g_{1}, f_{2} g_{2}, f_{3} g_{3}\right)$
- And now what?
- Looks like we need to shuffle a lot!
- Our polynomials have many more coefficients (say, 256-1024)
- Idea: use Karatsuba's trick:
- consider $n=2 k$-coefficient polynomials f and g
- Split multiplication $f \cdot g$ into 3 half-size multiplications

$$
\begin{aligned}
& \left(a_{\ell}+X^{k} a_{h}\right) \cdot\left(b_{\ell}+X^{k} b_{h}\right) \\
= & a_{\ell} b_{\ell}+X^{k}\left(a_{\ell} b_{h}+a_{h} b_{\ell}\right)+X^{n} a_{h} b_{h} \\
= & a_{\ell} b_{\ell}+X^{k}\left(\left(a_{\ell}+a_{h}\right)\left(b_{\ell}+b_{h}\right)-a_{\ell} b \ell-a_{h} b_{h}\right)+X^{n} a_{h} b_{h}
\end{aligned}
$$

- Our polynomials have many more coefficients (say, 256-1024)
- Idea: use Karatsuba's trick:
- consider $n=2 k$-coefficient polynomials f and g
- Split multiplication $f \cdot g$ into 3 half-size multiplications

$$
\begin{aligned}
& \left(a_{\ell}+X^{k} a_{h}\right) \cdot\left(b_{\ell}+X^{k} b_{h}\right) \\
= & a_{\ell} b_{\ell}+X^{k}\left(a_{\ell} b_{h}+a_{h} b_{\ell}\right)+X^{n} a_{h} b_{h} \\
= & a_{\ell} b_{\ell}+X^{k}\left(\left(a_{\ell}+a_{h}\right)\left(b_{\ell}+b_{h}\right)-a_{\ell} b \ell-a_{h} b_{h}\right)+X^{n} a_{h} b_{h}
\end{aligned}
$$

- Apply recursively to obtain 9 quarter-size multiplications, 27 eighth-size multiplications etc.
- Our polynomials have many more coefficients (say, 256-1024)
- Idea: use Karatsuba's trick:
- consider $n=2 k$-coefficient polynomials f and g
- Split multiplication $f \cdot g$ into 3 half-size multiplications

$$
\begin{aligned}
& \left(a_{\ell}+X^{k} a_{h}\right) \cdot\left(b_{\ell}+X^{k} b_{h}\right) \\
= & a_{\ell} b_{\ell}+X^{k}\left(a_{\ell} b_{h}+a_{h} b_{\ell}\right)+X^{n} a_{h} b_{h} \\
= & a_{\ell} b_{\ell}+X^{k}\left(\left(a_{\ell}+a_{h}\right)\left(b_{\ell}+b_{h}\right)-a_{\ell} b \ell-a_{h} b_{h}\right)+X^{n} a_{h} b_{h}
\end{aligned}
$$

- Apply recursively to obtain 9 quarter-size multiplications, 27 eighth-size multiplications etc.
- Generalization: Toom-Cook. Obtain, e.g., 5 third-size multiplications
- Split into sufficiently many "small" multiplications, vectorize across those
- Small example: compute $a \cdot b, c \cdot d, e \cdot f, g \cdot h$
- Each factor with 3 coefficients, e.g., $a=a_{0}+a_{1} X+a_{2} X^{2}$
- Small example: compute $a \cdot b, c \cdot d, e \cdot f, g \cdot h$
- Each factor with 3 coefficients, e.g., $a=a_{0}+a_{1} X+a_{2} X^{2}$
- Coefficients in memory:

$$
\mathrm{a} 0, \mathrm{a} 1, \mathrm{a} 2, \mathrm{~b} 0, \mathrm{~b} 1, \mathrm{~b} 2, \mathrm{c} 0, \ldots, \mathrm{~h} 1, \mathrm{~h} 2
$$

- Small example: compute $a \cdot b, c \cdot d, e \cdot f, g \cdot h$
- Each factor with 3 coefficients, e.g., $a=a_{0}+a_{1} X+a_{2} X^{2}$
- Coefficients in memory:

$$
\mathrm{a} 0, \mathrm{a} 1, \mathrm{a} 2, \mathrm{~b} 0, \mathrm{~b} 1, \mathrm{~b} 2, \mathrm{c} 0, \ldots, \mathrm{~h} 1, \mathrm{~h} 2
$$

- Problem:
- Vector loads will yield

$$
v_{0}=\left(a_{0}, a_{1}, a_{2}, b_{0}\right) \quad \ldots \quad v_{6}=\left(g_{2}, h_{0}, h_{1}, h_{2}\right)
$$

- However, we need

$$
v_{0}=\left(a_{0}, c_{0}, e_{0}, h_{0}\right) \quad \ldots \quad v_{6}=\left(b_{2}, d_{2}, f_{2}, g_{2}\right)
$$

- Small example: compute $a \cdot b, c \cdot d, e \cdot f, g \cdot h$
- Each factor with 3 coefficients, e.g., $a=a_{0}+a_{1} X+a_{2} X^{2}$
- Coefficients in memory:

$$
\mathrm{a} 0, \mathrm{a} 1, \mathrm{a} 2, \mathrm{~b} 0, \mathrm{~b} 1, \mathrm{~b} 2, \mathrm{c} 0, \ldots, \mathrm{~h} 1, \mathrm{~h} 2
$$

- Problem:
- Vector loads will yield

$$
v_{0}=\left(a_{0}, a_{1}, a_{2}, b_{0}\right) \quad \ldots \quad v_{6}=\left(g_{2}, h_{0}, h_{1}, h_{2}\right)
$$

- However, we need

$$
v_{0}=\left(a_{0}, c_{0}, e_{0}, h_{0}\right) \quad \ldots \quad v_{6}=\left(b_{2}, d_{2}, f_{2}, g_{2}\right)
$$

- Solution: transpose data matrix (or interleave words):

$$
\mathrm{a} 0, \mathrm{c} 0, \mathrm{e} 0, \mathrm{~h} 0, \mathrm{a}, \mathrm{c} 1, \mathrm{e} 1, \ldots, \mathrm{f} 2, \mathrm{~g} 2
$$

Streamlined NTRU Prime 4591^{761}

- Multiply in the ring $\mathcal{R}=\mathbb{Z}_{4591}[X] /\left(X^{761}-X-1\right)$
- Pad input polynomial to 768 coefficients
- 5 levels of Karatsuba: 243 multiplications of 24-coefficient polynomials
- Massively lazy reduction using double-precision floats
- 28682 Haswell cycles for multiplication in \mathcal{R}

Streamlined NTRU Prime $4591{ }^{761}$

- Multiply in the ring $\mathcal{R}=\mathbb{Z}_{4591}[X] /\left(X^{761}-X-1\right)$
- Pad input polynomial to 768 coefficients
- 5 levels of Karatsuba: 243 multiplications of 24-coefficient polynomials
- Massively lazy reduction using double-precision floats
- 28682 Haswell cycles for multiplication in \mathcal{R}

NTRU-HRSS-KEM

- Multiply in the ring $\mathcal{R}=\mathbb{Z}_{8192}[X] /\left(X^{701}-1\right)$
- Use Toom-Cook to split into 7 quarter-size, then 2 levels of Karatsuba
- Obtain 63 multiplications of 44-coefficient polynomials
- 11722 Haswell cycles for multiplication in \mathcal{R}

We can do better: NTTs

- Many LWE/MLWE systems use very specific parameters:
- Work in polynomial ring $\mathcal{R}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$
- Choose n a power of 2
- Choose q prime, s.t. $2 n$ divides ($q-1$)

We can do better: NTTs

- Many LWE/MLWE systems use very specific parameters:
- Work in polynomial ring $\mathcal{R}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$
- Choose n a power of 2
- Choose q prime, s.t. $2 n$ divides $(q-1)$
- Examples: NewHope ($n=1024, q=12289$), Kyber ($n=256, q=7681$)

We can do better: NTTs

- Many LWE/MLWE systems use very specific parameters:
- Work in polynomial ring $\mathcal{R}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$
- Choose n a power of 2
- Choose q prime, s.t. $2 n$ divides $(q-1)$
- Examples: NewHope ($n=1024, q=12289$), Kyber ($n=256, q=7681$)
- Big advantage: fast negacyclic number-theoretic transform
- Given $g \in \mathcal{R}, n$-th primitive root of unity ω and $\psi=\sqrt{\omega}$, compute

$$
\begin{aligned}
\operatorname{NTT}(g) & =\hat{g}=\sum_{i=0}^{n-1} \hat{g}_{i} X^{i}, \text { with } \\
\hat{g}_{i} & =\sum_{j=0}^{n-1} \psi^{j} g_{j} \omega^{i j},
\end{aligned}
$$

We can do better: NTTs

- Many LWE/MLWE systems use very specific parameters:
- Work in polynomial ring $\mathcal{R}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$
- Choose n a power of 2
- Choose q prime, s.t. $2 n$ divides $(q-1)$
- Examples: NewHope ($n=1024, q=12289$), Kyber ($n=256, q=7681$)
- Big advantage: fast negacyclic number-theoretic transform
- Given $g \in \mathcal{R}, n$-th primitive root of unity ω and $\psi=\sqrt{\omega}$, compute

$$
\begin{aligned}
\operatorname{NTT}(g) & =\hat{g}=\sum_{i=0}^{n-1} \hat{g}_{i} X^{i}, \text { with } \\
\hat{g}_{i} & =\sum_{j=0}^{n-1} \psi^{j} g_{j} \omega^{i j},
\end{aligned}
$$

- Compute $f \cdot g$ as $\operatorname{NTT}^{-1}(\operatorname{NTT}(f) \circ \operatorname{NTT}(g))$

We can do better: NTTs

- Many LWE/MLWE systems use very specific parameters:
- Work in polynomial ring $\mathcal{R}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$
- Choose n a power of 2
- Choose q prime, s.t. $2 n$ divides $(q-1)$
- Examples: NewHope ($n=1024, q=12289$), Kyber ($n=256, q=7681$)
- Big advantage: fast negacyclic number-theoretic transform
- Given $g \in \mathcal{R}, n$-th primitive root of unity ω and $\psi=\sqrt{\omega}$, compute

$$
\begin{aligned}
\operatorname{NTT}(g) & =\hat{g}=\sum_{i=0}^{n-1} \hat{g}_{i} X^{i}, \text { with } \\
\hat{g}_{i} & =\sum_{j=0}^{n-1} \psi^{j} g_{j} \omega^{i j},
\end{aligned}
$$

- Compute $f \cdot g$ as $\mathrm{NTT}^{-1}\left(\operatorname{NTT}(f) \circ \mathrm{NTT}^{(g)}\right)$
- NTT^{-1} is essentially the same computation as NTT

Zooming into the NTT

- FFT in a finite field
- Evaluate polynomial $f=f_{0}+f_{1} X+\cdots+f_{n-1} X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(X^{2}\right)+X f_{1}\left(X^{2}\right)$

Zooming into the NTT

- FFT in a finite field
- Evaluate polynomial $f=f_{0}+f_{1} X+\cdots+f_{n-1} X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(X^{2}\right)+X f_{1}\left(X^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\beta) & =f_{0}\left(\beta^{2}\right)+\beta f_{1}\left(\beta^{2}\right) \text { and } \\
f(-\beta) & =f_{0}\left(\beta^{2}\right)-\beta f_{1}\left(\beta^{2}\right)
\end{aligned}
$$

Zooming into the NTT

- FFT in a finite field
- Evaluate polynomial $f=f_{0}+f_{1} X+\cdots+f_{n-1} X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(X^{2}\right)+X f_{1}\left(X^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\beta) & =f_{0}\left(\beta^{2}\right)+\beta f_{1}\left(\beta^{2}\right) \text { and } \\
f(-\beta) & =f_{0}\left(\beta^{2}\right)-\beta f_{1}\left(\beta^{2}\right)
\end{aligned}
$$

- f_{0} has $n / 2$ coefficients
- Evaluate f_{0} at all ($n / 2$)-th roots of unity by recursive application
- Same for f_{1}

Zooming into the NTT

- FFT in a finite field
- Evaluate polynomial $f=f_{0}+f_{1} X+\cdots+f_{n-1} X^{n-1}$ at all n-th roots of unity
- Divide-and-conquer approach
- Write polynomial f as $f_{0}\left(X^{2}\right)+X f_{1}\left(X^{2}\right)$
- Huge overlap between evaluating

$$
\begin{aligned}
f(\beta) & =f_{0}\left(\beta^{2}\right)+\beta f_{1}\left(\beta^{2}\right) \text { and } \\
f(-\beta) & =f_{0}\left(\beta^{2}\right)-\beta f_{1}\left(\beta^{2}\right)
\end{aligned}
$$

- f_{0} has $n / 2$ coefficients
- Evaluate f_{0} at all ($n / 2$)-th roots of unity by recursive application
- Same for f_{1}
- Apply recursively through $\log n$ levels

Vectorizing the NTT

- First thing to do: replace recursion by iteration
- Loop over $\log n$ levels with $n / 2$ "butterflies" each
- Butterfly on level k :
- Pick up f_{i} and $f_{i+2^{k}}$
- Multiply $f_{i+2^{k}}$ by a power of ω to obtain t
- Compute $f_{i+2^{k}} \leftarrow a_{i}-t$
- Compute $f_{i} \leftarrow a_{i}+t$
- All $n / 2$ butterflies on one level are independent
- Vectorize across those butterflies

Vectorized NTT results

- Güneysu, Oder, Pöppelmann, Schwabe, 2013:
- 4480 Sandy Bridge cycles ($n=512,23$-bit q)
- Use double-precision floats to represent coefficients

Vectorized NTT results

- Güneysu, Oder, Pöppelmann, Schwabe, 2013:
- 4480 Sandy Bridge cycles ($n=512,23$-bit q)
- Use double-precision floats to represent coefficients
- Alkim, Ducas, Pöppelmann, Schwabe, 2016:
- 8448 Haswell cycles ($n=1024,14$-bit q)
- Still use doubles

Vectorized NTT results

- Güneysu, Oder, Pöppelmann, Schwabe, 2013:
- 4480 Sandy Bridge cycles ($n=512,23$-bit q)
- Use double-precision floats to represent coefficients
- Alkim, Ducas, Pöppelmann, Schwabe, 2016:
- 8448 Haswell cycles ($n=1024,14$-bit q)
- Still use doubles
- Longa, Naehrig, 2016:
- 9100 Haswell cycles ($n=1024,14$-bit q)
- Uses vectorized integer arithmetic

Vectorized NTT results

- Güneysu, Oder, Pöppelmann, Schwabe, 2013:
- 4480 Sandy Bridge cycles ($n=512,23$-bit q)
- Use double-precision floats to represent coefficients
- Alkim, Ducas, Pöppelmann, Schwabe, 2016:
- 8448 Haswell cycles ($n=1024,14$-bit q)
- Still use doubles
- Longa, Naehrig, 2016:
- 9100 Haswell cycles ($n=1024,14$-bit q)
- Uses vectorized integer arithmetic
- Seiler, 2018:
- 2784 Haswell cycles ($n=1024,14$-bit q)
- 460 Haswell cycles ($n=256,13$-bit q)
- Uses vectorized integer arithmetic

How about hashing?

- NTT-based multiplication is fast
- Consequence: "symmetric" parts in lattice-based crypto becomes significant overhead!
- Most important: hashes and XOFs

How about hashing?

- NTT-based multiplication is fast
- Consequence: "symmetric" parts in lattice-based crypto becomes significant overhead!
- Most important: hashes and XOFs
- Typical hash construction:
- Process message in blocks
- Each block modifies an internal state
- Cannot vectorize across blocks

How about hashing?

- NTT-based multiplication is fast
- Consequence: "symmetric" parts in lattice-based crypto becomes significant overhead!
- Most important: hashes and XOFs
- Typical hash construction:
- Process message in blocks
- Each block modifies an internal state
- Cannot vectorize across blocks
- Idea: Vectorize internal processing (permutation or compression function)
- Two problems:
- Often strong dependencies between instructions
- Need limited instruction-level parallelism for pipelining

How about hashing?

- NTT-based multiplication is fast
- Consequence: "symmetric" parts in lattice-based crypto becomes significant overhead!
- Most important: hashes and XOFs
- Typical hash construction:
- Process message in blocks
- Each block modifies an internal state
- Cannot vectorize across blocks
- Idea: Vectorize internal processing (permutation or compression function)
- Two problems:
- Often strong dependencies between instructions
- Need limited instruction-level parallelism for pipelining
- Consequence: consider designing with parallel hash/XOF calls!
- So far we've looked at lattices, how about other PQCRYPTO?
- Code-based crypto (and some $\mathcal{M Q}$-based crypto) need binary-field arithmetic
- Typical: operations in $\mathbb{F}_{2^{k}}$ for $k \in 1, \ldots, 20$
- So far we've looked at lattices, how about other PQCRYPTO?
- Code-based crypto (and some $\mathcal{M Q}$-based crypto) need binary-field arithmetic
- Typical: operations in $\mathbb{F}_{2^{k}}$ for $k \in 1, \ldots, 20$
- Most architectures don't support this efficiently
- Traditional approach: use lookups (log tables)
- So far we've looked at lattices, how about other PQCRYPTO?
- Code-based crypto (and some $\mathcal{M Q}$-based crypto) need binary-field arithmetic
- Typical: operations in $\mathbb{F}_{2^{k}}$ for $k \in 1, \ldots, 20$
- Most architectures don't support this efficiently
- Traditional approach: use lookups (log tables)
- Obvious question: can vector operations help?

Bitslicing

- So far: vectors of bytes, 32-bit words, floats,...
- Consider now vectors of bits

Bitslicing

- So far: vectors of bytes, 32-bit words, floats,...
- Consider now vectors of bits
- Perform arithmetic on those vectors using XOR, AND, OR
- "Simulate hardware implemenations in software"

Bitslicing

- So far: vectors of bytes, 32-bit words, floats,...
- Consider now vectors of bits
- Perform arithmetic on those vectors using XOR, AND, OR
- "Simulate hardware implemenations in software"
- Technique was introduced by Biham in 1997 for DES
- Bitslicing works for every algorithm
- Efficient bitslicing needs a huge amount of data-level parallelism

Bitslicing binary polynomials

4-coefficient binary polynomials
$\left(a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0}\right)$, with $a_{i} \in\{0,1\}$
4-coefficient bitsliced binary polynomials
typedef unsigned char poly4; /* 4 coefficients in the low 4 bits */ typedef unsigned long long poly4x64[4];

```
void poly4_bitslice(poly4x64 r, const poly4 x[64])
{
    int i,j;
    for(i=0;i<4;i++)
    {
        r[i] = 0;
        for(j=0;j<64;j++)
                r[i] |= (unsigned long long)(1 & (x[j] >> i))<<j;
    }
}
```

```
typedef unsigned long long poly4x64[4];
typedef unsigned long long poly7x64[7];
void poly4x64_mul(poly7x64 r, const poly4x64 a, const poly4x64 b)
{
    r[0] = a[0] & b[0];
    r[1] = (a[0] & b[1]) - (a[1] & b[0]);
    r[2] = (a[0] & b[2]) ~ (a[1] & b[1]) ~ (a[2] & b[0]);
    r[3] = (a[0] & b[3]) ~ (a[1] & b[2]) ~ (a[2] & b[1]) ~ (a[3] & b[0]);
    r[4] = (a[1] & b[3]) ~ (a[2] & b[2]) ~ (a[3] & b[1]);
    r[5] = (a[2] & b[3]) - (a[3] & b[2]);
    r[6] = (a[3] & b[3]);
}
```


McBits (revisited)

- Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
- Low-level: bitsliced arithmetic in $\mathbb{F}_{2^{k}}, k \in\{11, \ldots, 16\}$

McBits (revisited)

- Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
- Low-level: bitsliced arithmetic in $\mathbb{F}_{2^{k}}, k \in\{11, \ldots, 16\}$
- Higher level:
- Additive FFT for efficient root finding
- Transposed FFT for syndrome computation
- Batcher sort for random permutations

McBits (revisited)

- Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
- Low-level: bitsliced arithmetic in $\mathbb{F}_{2^{k}}, k \in\{11, \ldots, 16\}$
- Higher level:
- Additive FFT for efficient root finding
- Transposed FFT for syndrome computation
- Batcher sort for random permutations
- Results:
- 75935744 Ivy Bridge cycles for 256 decodings at ≈ 256-bit pre-quantum security
- Not $75935744 / 256=296624$ cycles for one decoding
- Reason: Need 256 independent decodings for parallelism

McBits (revisited)

- Bernstein, Chou, Schwabe, 2013: High-speed code-based crypto
- Low-level: bitsliced arithmetic in $\mathbb{F}_{2^{k}}, k \in\{11, \ldots, 16\}$
- Higher level:
- Additive FFT for efficient root finding
- Transposed FFT for syndrome computation
- Batcher sort for random permutations
- Results:
- 75935744 Ivy Bridge cycles for 256 decodings at ≈ 256-bit pre-quantum security
- Not $75935744 / 256=296624$ cycles for one decoding
- Reason: Need 256 independent decodings for parallelism
- Chou, CHES 2017: use internal parallelism
- Target even higher security (297 bits pre-quantum)
- Does not require independent decryptions
- Even faster, even when considering throughput

How about $\mathcal{M Q}$?

- Most important operation: evaluate system of quadratic equations
- Massively parallel, efficiently vectorizable

How about $\mathcal{M Q}$?

- Most important operation: evaluate system of quadratic equations
- Massively parallel, efficiently vectorizable
- Distinguish 3 (or 4) different cases, depending on the field
- $\mathbb{F}_{31}: 16$-bit-word vector elements, use integer arithmetic

How about $\mathcal{M Q}$?

- Most important operation: evaluate system of quadratic equations
- Massively parallel, efficiently vectorizable
- Distinguish 3 (or 4) different cases, depending on the field
- $\mathbb{F}_{31}: 16$-bit-word vector elements, use integer arithmetic
- $\mathbb{F}_{2} / \mathbb{F}_{4}$: Use bitslicing (see Joost's talk)

How about $\mathcal{M Q}$?

- Most important operation: evaluate system of quadratic equations
- Massively parallel, efficiently vectorizable
- Distinguish 3 (or 4) different cases, depending on the field
- $\mathbb{F}_{31}: 16$-bit-word vector elements, use integer arithmetic
- $\mathbb{F}_{2} / \mathbb{F}_{4}$: Use bitslicing (see Joost's talk)
- $\mathbb{F}_{16} / \mathbb{F}_{256}$: Use vector-permute instructions for table lookups
- For \mathbb{F}_{256} use tower-field arithmetic on top of \mathbb{F}_{16}

Recent $\mathcal{M Q}$ results

- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2016: 64 eqns in 64 vars over $\mathbb{F}_{31}: 6616$ Haswell cycles

Recent $\mathcal{M Q}$ results

- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2016: 64 eqns in 64 vars over $\mathbb{F}_{31}: 6616$ Haswell cycles
- Chen, Li, Peng, Yang, Cheng, 2017:
- 256 eqns in 256 vars over $\mathbb{F}_{2}: 92800$ Haswell cycles
- 128 eqns in 128 vars over \mathbb{F}_{4} : 32300 Haswell cycles
- 64 eqns in 64 vars over \mathbb{F}_{16} : 9600 Haswell cycles
- 64 eqns in 64 vars over $\mathbb{F}_{31}: 8700$ Haswell cycles
- 64 eqns in 64 vars over $\mathbb{F}_{256}: 16200$ Haswell cycles
- In particular for \mathbb{F}_{2} speedups for public inputs

Recent $\mathcal{M Q}$ results

- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2016: 64 eqns in 64 vars over $\mathbb{F}_{31}: 6616$ Haswell cycles
- Chen, Li, Peng, Yang, Cheng, 2017:
- 256 eqns in 256 vars over $\mathbb{F}_{2}: 92800$ Haswell cycles
- 128 eqns in 128 vars over \mathbb{F}_{4} : 32300 Haswell cycles
- 64 eqns in 64 vars over $\mathbb{F}_{16}: 9600$ Haswell cycles
- 64 eqns in 64 vars over $\mathbb{F}_{31}: 8700$ Haswell cycles
- 64 eqns in 64 vars over $\mathbb{F}_{256}: 16200$ Haswell cycles
- In particular for \mathbb{F}_{2} speedups for public inputs
- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe, 2017: 128 eqns in 128 vars over \mathbb{F}_{4} : 17558 Haswell cycles (batched)

Vectorizing hash-based signatures

- I said earlier that hashes are hard to vectorize
- How about hash-based signatures?

Vectorizing hash-based signatures

- I said earlier that hashes are hard to vectorize
- How about hash-based signatures?
- Most speed-critical operation is Winternitz public-key computation
- Compute 67 independent hash chains of length 15 each
- All hashes have the same (short) input length
- This is trivially vectorizable!

Vectorizing hash-based signatures

- I said earlier that hashes are hard to vectorize
- How about hash-based signatures?
- Most speed-critical operation is Winternitz public-key computation
- Compute 67 independent hash chains of length 15 each
- All hashes have the same (short) input length
- This is trivially vectorizable!
- Examples:
- Oliveira, López, Cabral, 2017: Optimize LMS and XMSS
- $\approx 10 \mathrm{~ms}$ for XMSS signing $(h=20)$ on Skylake

Vectorizing hash-based signatures

- I said earlier that hashes are hard to vectorize
- How about hash-based signatures?
- Most speed-critical operation is Winternitz public-key computation
- Compute 67 independent hash chains of length 15 each
- All hashes have the same (short) input length
- This is trivially vectorizable!
- Examples:
- Oliveira, López, Cabral, 2017: Optimize LMS and XMSS
- $\approx 10 \mathrm{~ms}$ for XMSS signing $(h=20)$ on Skylake
- Bernstein, Hopwood, Hülsing, Lange, Niederhagen, Papachristodoulou, Schneider, Schwabe, Wilcox-O'Hearn, 2015:
Optimize SPHINCS
- Vectorize also Merkle-tree hashes inside HORST computation
- ≈ 52 Mio cycles for signing on Haswell

Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

$$
v \leftarrow(m[i], m[j], m[k], m[\ell])
$$

Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

$$
v \leftarrow(m[i], m[j], m[k], m[\ell])
$$

2. Branches

$$
v \leftarrow(c[0] ? a: b, c[1] ? c: d, c[2] ? e: f, c[3] ? g: h)
$$

Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

$$
v \leftarrow(m[i], m[j], m[k], m[\ell])
$$

2. Branches

$$
v \leftarrow(c[0] ? a: b, c[1] ? c: d, c[2] ? e: f, c[3] ? g: h)
$$

Rethink algorithms

- Consequence: rethink algorithms without those constructs
- Different approach to thinking algorithms: a lot of fun!

Additional benefits

Two things very inefficient to vectorize

1. Variably indexed lookups:

$$
v \leftarrow(m[i], m[j], m[k], m[\ell])
$$

2. Branches

$$
v \leftarrow(c[0] ? a: b, c[1] ? c: d, c[2] ? e: f, c[3] ? g: h)
$$

Rethink algorithms

- Consequence: rethink algorithms without those constructs
- Different approach to thinking algorithms: a lot of fun!
- More importantly: eliminates most notorious timing side channels!
- Efficient vectorized implementations are often also "constant-time"

References

- Alkim, Bindel, Buchmann, Dagdelen, Schwabe: TESLA:

Tightly-Secure Efficient Signatures from Standard Lattices. https://cryptojedi.org/papers/\#tesla (superseded by https://eprint.iacr.org/2015/755)

- Bernstein, Chuengsatiansup, Lange, van Vredendaal: NTRU Prime: reducing attack surface at low cost. http://cr.yp.to/papers.html\#ntruprime
- Hülsing, Rijneveld, Schanck, Schwabe: High-speed key encapsulation from NTRU. https://cryptojedi.org/papers/\#ntrukem

References

- Güneysu, Oder, Pöppelmann, Schwabe: Software speed records for lattice-based signatures.
https://cryptojedi.org/papers/\#lattisigns
- Alkim, Ducas, Pöppelmann, Schwabe: Post-quantum key exchange - a new hope. https://cryptojedi.org/papers/\#newhope
- Longa, Naehrig: Speeding up the Number Theoretic Transform for Faster Ideal Lattice-Based Cryptography. https://eprint.iacr.org/2016/504
- Seiler: Faster AVX2 optimized NTT multiplication for Ring-LWE lattice cryptography https://eprint.iacr.org/2018/039

References

- Bernstein, Chou, Schwabe: McBits: fast constant-time code-based cryptography. https://cryptojedi.org/papers/\#mcbits
- Chou: McBits revisited. https://eprint.iacr.org/2017/793
- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe: From 5-pass $M Q$-based identification to $M Q$-based signatures. https://cryptojedi.org/papers/\#mqdss
- Chen, Li, Peng, Yang, Cheng: Implementing 128-bit Secure MPKC Signatures. https://eprint.iacr.org/2017/636
- Chen, Hülsing, Rijneveld, Samardjiska, Schwabe: SOFIA: MQ-based signatures in the QROM.
https://cryptojedi.org/papers/\#sofia

References

- Oliveira, López, Cabral: High Performance of Hash-based Signature Schemes http://thesai.org/Publications/ViewPaper?
Volume=8\&Issue=3\&Code=IJACSA\&SerialNo=58
- Bernstein, Hopwood, Hülsing, Lange, Niederhagen, Papachristodoulou, Schneider, Schwabe, Wilcox-O'Hearn: SPHINCS: practical stateless hash-based signatures. https://cryptojedi.org/papers/\#sphincs

