POST-QUANIUM KEY EXCHANGE

ヨРDヨM ALKMLÉo buaxs
"In the past, people have said, maybe it's 50 years away, it's a dream, maybe it'll happen sometime. I used to think it was 50. Now I'm thinking like it's 15 or a little more. It's within reach. It's within our lifetime. It's going to happen."
—Mark Ketchen (IBM), Feb. 2012, about quantum computers

The end of crypto as we know it

Shor's algorithm (1994)

- Factor integers in polynomial time
- Compute discrete logarithms in polynomial time
- Complete break of RSA, EIGamal, DSA, Diffie-Hellman
- Complete break of elliptic-curve variants (ECSDA, ECDH, ...)

The end of crypto as we know it

Shor's algorithm (1994)

- Factor integers in polynomial time
- Compute discrete logarithms in polynomial time
- Complete break of RSA, EIGamal, DSA, Diffie-Hellman
- Complete break of elliptic-curve variants (ECSDA, ECDH, ...)

Forward-secure post-quantum crypto

- Threatening today:
- Attacker records encrypted messages now
- Uses quantum computer in 1-2 decades to break encryption

The end of crypto as we know it

Shor's algorithm (1994)

- Factor integers in polynomial time
- Compute discrete logarithms in polynomial time
- Complete break of RSA, EIGamal, DSA, Diffie-Hellman
- Complete break of elliptic-curve variants (ECSDA, ECDH, ...)

Forward-secure post-quantum crypto

- Threatening today:
- Attacker records encrypted messages now
- Uses quantum computer in 1-2 decades to break encryption
- "Perfect forward secrecy" (PFS) does not help
- Countermeasure against key compromise
- Not a countermeasure against cryptographic break

The end of crypto as we know it

Shor's algorithm (1994)

- Factor integers in polynomial time
- Compute discrete logarithms in polynomial time
- Complete break of RSA, EIGamal, DSA, Diffie-Hellman
- Complete break of elliptic-curve variants (ECSDA, ECDH, ...)

Forward-secure post-quantum crypto

- Threatening today:
- Attacker records encrypted messages now
- Uses quantum computer in 1-2 decades to break encryption
- "Perfect forward secrecy" (PFS) does not help
- Countermeasure against key compromise
- Not a countermeasure against cryptographic break
- Consequence: Want post-quantum PFS crypto today

Ring-Learning-with-errors (RLWE)

- Let $\mathcal{R}_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$
- Let χ be an error distribution on \mathcal{R}_{q}
- Let $\mathbf{s} \in \mathcal{R}_{q}$ be secret
- Attacker is given pairs ($\mathbf{a}, \mathbf{a s}+\mathbf{e}$) with
- a uniformly random from \mathcal{R}_{q}
- e sampled from χ
- Task for the attacker: find s

Ring-Learning-with-errors (RLWE)

- Let $\mathcal{R}_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$
- Let χ be an error distribution on \mathcal{R}_{q}
- Let $\mathbf{s} \in \mathcal{R}_{q}$ be secret
- Attacker is given pairs ($\mathbf{a}, \mathbf{a s}+\mathbf{e}$) with
- a uniformly random from \mathcal{R}_{q}
- e sampled from χ
- Task for the attacker: find \mathbf{s}
- Common choice for χ : discrete Gaussian
- Common optimization for protocols: fix a

A bit of (R)LWE history

- Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem
- Regev, 2005: Introduce LWE-based encryption
- Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE encryption
- Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange
- Peikert, 2014: Improved RLWE-based key exchange
- Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement Peikert's key exchange in TLS:

A bit of (R)LWE history

- Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem
- Regev, 2005: Introduce LWE-based encryption
- Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE encryption
- Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange
- Peikert, 2014: Improved RLWE-based key exchange
- Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement Peikert's key exchange in TLS:
- $\mathcal{R}_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$
- $n=1024$
- $q=2^{32}-1$
- $\chi=D_{\mathbb{Z}, \sigma}$ (Discrete Gaussian) with $\sigma=8 / \sqrt{2 \pi} \approx 3.192$

A bit of (R)LWE history

- Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem
- Regev, 2005: Introduce LWE-based encryption
- Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE encryption
- Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange
- Peikert, 2014: Improved RLWE-based key exchange
- Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement Peikert's key exchange in TLS:
- $\mathcal{R}_{q}=\mathbb{Z}_{q}[X] /\left(X^{n}+1\right)$
- $n=1024$
- $q=2^{32}-1$
- $\chi=D_{\mathbb{Z}, \sigma}$ (Discrete Gaussian) with $\sigma=8 / \sqrt{2 \pi} \approx 3.192$
- Claimed security level: 128 bits pre-quantum
- Failure probability: $\approx 2^{-131072}$

BCNS key exchange

Parameters: $q=2^{32}-1, n=1024$ Error distribution: $\chi=D_{\mathbb{Z}, \sigma}, \sigma=8 / \sqrt{2 \pi}$ Global system parameter: $\mathbf{a} \stackrel{\&}{\leftarrow} \mathcal{R}_{q}$		
Alice (server)		Bob (client)
$\begin{aligned} & \mathbf{s}, \mathbf{e} \stackrel{\S}{\leftarrow} \chi \\ & \mathbf{b} \leftarrow \mathbf{a s}+\mathbf{e} \end{aligned}$		$\mathbf{s}^{\prime}, \mathbf{e}^{\prime}, \mathbf{e}^{\prime \prime}{ }^{\text {s }}$
	$\xrightarrow{\text { b }}$	$\mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime}$
		$\mathbf{v} \leftarrow \mathrm{bs}^{\prime}+\mathrm{e}^{\prime \prime}$
		$\overline{\mathbf{v}} \stackrel{\&}{\leftarrow} \mathrm{dbl}(\mathbf{v})$
	$\stackrel{u}{4} \mathbf{v}^{\prime}$	$\mathbf{v}^{\prime}=\langle\overline{\mathbf{v}}\rangle_{2}$
$\mu \leftarrow \mathrm{rec}\left(2 \mathbf{u s}, \mathbf{v}^{\prime}\right)$		$\mu \leftarrow \backslash \overline{\mathbf{v}}]_{2}$

Alice has
$2 \mathbf{u s}=2$ ass $^{\prime}+2 \mathbf{e}^{\prime} \mathbf{s}$
Bob has
$\overline{\mathbf{v}} \approx 2 \mathbf{v}=2\left(\mathbf{b s}^{\prime}+\mathbf{e}^{\prime \prime}\right)=2\left((\mathbf{a s}+\mathbf{e}) \mathbf{s}^{\prime}+\mathbf{e}^{\prime \prime}\right)=2 \mathbf{a s s}^{\prime}+2 \mathbf{e s}^{\prime}+2 \mathbf{e}^{\prime \prime}$

A new hope

Our contributions

- Improve failure analysis and error reconciliation
- Choose parameters for failure probability $\approx 2^{-60}$

A new hope

Our contributions

- Improve failure analysis and error reconciliation
- Choose parameters for failure probability $\approx 2^{-60}$
- Keep dimension $n=1024$
- Drastically reduce q to $12289<2^{14}$
- Higher security, shorter messages, and speedups

A new hope

Our contributions

- Improve failure analysis and error reconciliation
- Choose parameters for failure probability $\approx 2^{-60}$
- Keep dimension $n=1024$
- Drastically reduce q to $12289<2^{14}$
- Higher security, shorter messages, and speedups
- Analysis of post-quantum security

A new hope

Our contributions

- Improve failure analysis and error reconciliation
- Choose parameters for failure probability $\approx 2^{-60}$
- Keep dimension $n=1024$
- Drastically reduce q to $12289<2^{14}$
- Higher security, shorter messages, and speedups
- Analysis of post-quantum security
- Use centered binomial noise $\psi_{k}(\mathrm{HW}(a)-\mathrm{HW}(b)$ for k-bit $a, b)$

A new hope

Our contributions

- Improve failure analysis and error reconciliation
- Choose parameters for failure probability $\approx 2^{-60}$
- Keep dimension $n=1024$
- Drastically reduce q to $12289<2^{14}$
- Higher security, shorter messages, and speedups
- Analysis of post-quantum security
- Use centered binomial noise $\psi_{k}(\mathrm{HW}(a)-\mathrm{HW}(b)$ for k-bit $a, b)$
- Choose a fresh parameter a for every protocol run

A new hope

Our contributions

- Improve failure analysis and error reconciliation
- Choose parameters for failure probability $\approx 2^{-60}$
- Keep dimension $n=1024$
- Drastically reduce q to $12289<2^{14}$
- Higher security, shorter messages, and speedups
- Analysis of post-quantum security
- Use centered binomial noise $\psi_{k}(\mathrm{HW}(a)-\mathrm{HW}(b)$ for k-bit $a, b)$
- Choose a fresh parameter a for every protocol run
- Encode polynomials in NTT domain

A new hope

Our contributions

- Improve failure analysis and error reconciliation
- Choose parameters for failure probability $\approx 2^{-60}$
- Keep dimension $n=1024$
- Drastically reduce q to $12289<2^{14}$
- Higher security, shorter messages, and speedups
- Analysis of post-quantum security
- Use centered binomial noise $\psi_{k}(\mathrm{HW}(a)-\mathrm{HW}(b)$ for k-bit $a, b)$
- Choose a fresh parameter a for every protocol run
- Encode polynomials in NTT domain
- Multiple implementations

A new hope - protocol

Parameters: $q=12289<2^{14}, n=1024$
Error distribution: ψ_{16}

Alice (server)

Bob (client)

$$
\text { seed } \stackrel{\$}{\leftarrow}\{0,1\}^{256}
$$

$\mathbf{a} \leftarrow \operatorname{Parse}($ SHAKE-128(seed) $)$

$\mathbf{s}, \mathbf{e} \stackrel{\Phi}{\leftarrow} \psi_{16}^{n}$		$\mathbf{s}^{\prime}, \mathbf{e}^{\prime}, \mathbf{e}^{\prime \prime} \stackrel{\$}{\leftarrow} \psi_{16}^{n}$
$\mathbf{b} \leftarrow \mathbf{a s}+\mathbf{e}$	$\xrightarrow{(\mathbf{b}, \text { seed })}$	$\mathbf{a} \leftarrow \operatorname{Parse}(S H A K E-128(\text { seed }))$
		$\mathbf{u} \leftarrow \mathbf{a s}^{\prime}+\mathbf{e}^{\prime}$
		$\mathbf{v} \leftarrow \mathbf{b s}^{\prime}+\mathbf{e}^{\prime \prime}$
$\mathbf{v}^{\prime} \leftarrow \mathbf{u s}$	$\stackrel{(\mathbf{u}, \mathbf{r})}{ }$	$\mathbf{r} \stackrel{\&}{\leftarrow} \operatorname{HelpRec}(\mathbf{v})$
$k \leftarrow \operatorname{Rec}\left(\mathbf{v}^{\prime}, \mathbf{r}\right)$		$k \leftarrow \operatorname{Rec}(\mathbf{v}, \mathbf{r})$
$\mu \leftarrow$ SHA3-256(k)		$\mu \leftarrow$ SHA3-256(k)

Alice has $\quad \mathbf{v}^{\prime}=\mathbf{u s}=\mathbf{a s s}^{\prime}+\mathbf{e}^{\prime} \mathbf{s}$
Bob has $\quad \mathbf{v}=\mathbf{b s}^{\prime}+\mathbf{e}^{\prime \prime}=(\mathbf{a s}+\mathbf{e}) \mathbf{s}^{\prime}+\mathbf{e}^{\prime \prime}=\mathbf{a s s}^{\prime}+\mathbf{e s}^{\prime}+\mathbf{e}^{\prime \prime}$

Error reconciliation

- After running the protocol
- Alice has $\mathbf{x}_{A}=\mathbf{a s s}^{\prime}+\mathbf{e}^{\prime} \mathbf{s}$
- Bob has $\mathbf{x}_{B}=\mathbf{a s s}^{\prime}+\mathbf{e s}^{\prime}+\mathbf{e}^{\prime \prime}$
- Those elements are similar, but not the same
- Problem: How to agree on the same key from these noisy vectors?

Error reconciliation

- After running the protocol
- Alice has $\mathbf{x}_{A}=\mathbf{a s s}^{\prime}+\mathbf{e}^{\prime} \mathbf{s}$
- Bob has $\mathbf{x}_{B}=\mathbf{a s s}^{\prime}+\mathbf{e s}^{\prime}+\mathbf{e}^{\prime \prime}$
- Those elements are similar, but not the same
- Problem: How to agree on the same key from these noisy vectors?
- Known: extract one bit from each coefficient
- Also known: extract multiple bits from each coefficient (decrease security)

Error reconciliation

- After running the protocol
- Alice has $\mathbf{x}_{A}=\mathbf{a s s}^{\prime}+\mathbf{e}^{\prime} \mathbf{s}$
- Bob has $\mathbf{x}_{B}=\mathbf{a s s}^{\prime}+\mathbf{e s}^{\prime}+\mathbf{e}^{\prime \prime}$
- Those elements are similar, but not the same
- Problem: How to agree on the same key from these noisy vectors?
- Known: extract one bit from each coefficient
- Also known: extract multiple bits from each coefficient (decrease security)
- NewHope: extract one bit from multiple coefficients (increase security)
- Specifically: 1 bit from 4 coefficients $\rightarrow 256$-bit key from 1024 coefficients; method inspired by analog error-correcting codes

Error reconciliation

- After running the protocol
- Alice has $\mathbf{x}_{A}=\mathbf{a s s}^{\prime}+\mathbf{e}^{\prime} \mathbf{s}$
- Bob has $\mathbf{x}_{B}=\mathbf{a s s}^{\prime}+\mathbf{e s}^{\prime}+\mathbf{e}^{\prime \prime}$
- Those elements are similar, but not the same
- Problem: How to agree on the same key from these noisy vectors?
- Known: extract one bit from each coefficient
- Also known: extract multiple bits from each coefficient (decrease security)
- NewHope: extract one bit from multiple coefficients (increase security)
- Specifically: 1 bit from 4 coefficients $\rightarrow 256$-bit key from 1024 coefficients; method inspired by analog error-correcting codes
- Generalize Peikert's approach to obtain unbiased keys

Post-quantum security

- Consider RLWE instance as LWE instance
- Attack using BKZ
- BKZ uses SVP oracle in smaller dimension
- Consider only the cost of one call to that oracle ("core-SVP hardness")

Post-quantum security

- Consider RLWE instance as LWE instance
- Attack using BKZ
- BKZ uses SVP oracle in smaller dimension
- Consider only the cost of one call to that oracle ("core-SVP hardness")
- Consider quantum sieve as SVP oracle
- Best-known quantum cost (BKC): $2^{0.265 n}$
- Best-plausible quantum cost (BPC): $2^{0.2075 n}$

Post-quantum security

- Consider RLWE instance as LWE instance
- Attack using BKZ
- BKZ uses SVP oracle in smaller dimension
- Consider only the cost of one call to that oracle ("core-SVP hardness')
- Consider quantum sieve as SVP oracle
- Best-known quantum cost (BKC): $2^{0.265 n}$
- Best-plausible quantum cost (BPC): $2^{0.2075 n}$
- Obtain lower bounds on the bit security:

	Known Classical	Known Quantum	Best Plausible
BCNS	86	78	61
NewHope	281	255	199

Against all authority

- Remember the optimization of fixed \mathbf{a} ?
- What if \mathbf{a} is backdoored?
- Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)

Against all authority

- Remember the optimization of fixed \mathbf{a} ?
- What if \mathbf{a} is backdoored?
- Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)
- Even without backdoor:
- Perform massive precomputation based on a
- Use precomputation to break all key exchanges
- Infeasible today, but who knows...
- Attack in the spirit of Logjam

Against all authority

- Remember the optimization of fixed \mathbf{a} ?
- What if \mathbf{a} is backdoored?
- Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)
- Even without backdoor:
- Perform massive precomputation based on a
- Use precomputation to break all key exchanges
- Infeasible today, but who knows...
- Attack in the spirit of Logjam
- Solution in NewHope: Choose a fresh a every time
- Use SHAKE-128 to expand a 32 -byte seed

Against all authority

- Remember the optimization of fixed \mathbf{a} ?
- What if a is backdoored?
- Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)
- Even without backdoor:
- Perform massive precomputation based on a
- Use precomputation to break all key exchanges
- Infeasible today, but who knows...
- Attack in the spirit of Logjam
- Solution in NewHope: Choose a fresh a every time
- Use SHAKE-128 to expand a 32-byte seed
- Server can cache a for some time (e.g., 1h)

Against all authority

- Remember the optimization of fixed \mathbf{a} ?
- What if a is backdoored?
- Parameter-generating authority can break key exchange
- "Solution": Nothing-up-my-sleeves (involves endless discussion!)
- Even without backdoor:
- Perform massive precomputation based on a
- Use precomputation to break all key exchanges
- Infeasible today, but who knows...
- Attack in the spirit of Logjam
- Solution in NewHope: Choose a fresh a every time
- Use SHAKE-128 to expand a 32-byte seed
- Server can cache a for some time (e.g., 1h)
- Must not reuse keys/noise!

Implementation

- Multiplication in \mathcal{R}_{q} using number-theoretic transform (NTT)
- Message format:
- Send polynomials in NTT domain
- Eliminate two of the required NTTs

Implementation

- Multiplication in \mathcal{R}_{q} using number-theoretic transform (NTT)
- Message format:
- Send polynomials in NTT domain
- Eliminate two of the required NTTs
- C reference implementation:
- Arithmetic on 16-bit and 32-bit integers
- No division (/) or modulo (\%) operator
- Use Montgomery reductions inside NTT
- Use ChaCha20 for noise sampling

Implementation

- Multiplication in \mathcal{R}_{q} using number-theoretic transform (NTT)
- Message format:
- Send polynomials in NTT domain
- Eliminate two of the required NTTs
- C reference implementation:
- Arithmetic on 16-bit and 32-bit integers
- No division (/) or modulo (\%) operator
- Use Montgomery reductions inside NTT
- Use ChaCha20 for noise sampling
- AVX2 implementation:
- Speed up NTT using vectorized double arithmetic
- Use AVX2 for centered binomial
- Use AVX2 for error reconciliation
- Use AES-256 for noise sampling

Performance

	BCNS	C ref	AVX2
Key generation (server)	≈ 2477958	258246	88920
Key gen + shared key (client)	≈ 3995977	384994	110986
Shared key (server)	≈ 481937	86280	19422

- Cycle counts from one core of an Intel i7-4770K (Haswell)
- BCNS benchmarks are derived from openssl speed
- Includes around ≈ 37000 cycles for generation of a on each side
- Compare to X25519 elliptic-curve scalar mult: 156092 cycles

NewHope in the real world

- July 7, Google announces 2-year post-quantum experiment
- NewHope+X25519 (CECPQ1) in BoringSSL for Chrome Canary
- Used in access to select Google services

NewHope online

Paper:
Software:
https://cryptojedi.org/papers/\#newhope https://cryptojedi.org/crypto/\#newhope

NewHope online

Paper: https://cryptojedi.org/papers/\#newhope
Software: https://cryptojedi.org/crypto/\#newhope
Newhope for ARM: https://github.com/newhopearm/newhopearm.git (by Erdem Alkim, Philipp Jakubeit, and Peter Schwabe)
Newhope in Go: https://github.com/Yawning/newhope (by Yawning Angel)
Newhope in Rust: https://code.ciph.re/isis/newhopers (by Isis Lovecruft)
Newhope in Java: https://github.com/rweather/newhope-java (by Rhys Weatherley)
Newhope in Erlang: https://github.com/ahf/luke
(by Alexander Færøy)

