


“In the past, people have said, maybe it’s 50 years away, it’s a dream,

maybe it’ll happen sometime. I used to think it was 50. Now I’m

thinking like it’s 15 or a little more. It’s within reach. It’s within our

lifetime. It’s going to happen.”

—Mark Ketchen (IBM), Feb. 2012, about quantum computers

2



The end of crypto as we know it

Shor’s algorithm (1994)

◮ Factor integers in polynomial time

◮ Compute discrete logarithms in polynomial time

◮ Complete break of RSA, ElGamal, DSA, Diffie-Hellman

◮ Complete break of elliptic-curve variants (ECSDA, ECDH, . . . )

3



The end of crypto as we know it

Shor’s algorithm (1994)

◮ Factor integers in polynomial time

◮ Compute discrete logarithms in polynomial time

◮ Complete break of RSA, ElGamal, DSA, Diffie-Hellman

◮ Complete break of elliptic-curve variants (ECSDA, ECDH, . . . )

Forward-secure post-quantum crypto

◮ Threatening today:
◮ Attacker records encrypted messages now
◮ Uses quantum computer in 1-2 decades to break encryption

3



The end of crypto as we know it

Shor’s algorithm (1994)

◮ Factor integers in polynomial time

◮ Compute discrete logarithms in polynomial time

◮ Complete break of RSA, ElGamal, DSA, Diffie-Hellman

◮ Complete break of elliptic-curve variants (ECSDA, ECDH, . . . )

Forward-secure post-quantum crypto

◮ Threatening today:
◮ Attacker records encrypted messages now
◮ Uses quantum computer in 1-2 decades to break encryption

◮ “Perfect forward secrecy” (PFS) does not help
◮ Countermeasure against key compromise
◮ Not a countermeasure against cryptographic break

3



The end of crypto as we know it

Shor’s algorithm (1994)

◮ Factor integers in polynomial time

◮ Compute discrete logarithms in polynomial time

◮ Complete break of RSA, ElGamal, DSA, Diffie-Hellman

◮ Complete break of elliptic-curve variants (ECSDA, ECDH, . . . )

Forward-secure post-quantum crypto

◮ Threatening today:
◮ Attacker records encrypted messages now
◮ Uses quantum computer in 1-2 decades to break encryption

◮ “Perfect forward secrecy” (PFS) does not help
◮ Countermeasure against key compromise
◮ Not a countermeasure against cryptographic break

◮ Consequence: Want post-quantum PFS crypto today

3



Ring-Learning-with-errors (RLWE)

◮ Let Rq = Zq[X ]/(Xn + 1)

◮ Let χ be an error distribution on Rq

◮ Let s ∈ Rq be secret

◮ Attacker is given pairs (a, as + e) with
◮ a uniformly random from Rq

◮ e sampled from χ

◮ Task for the attacker: find s

4



Ring-Learning-with-errors (RLWE)

◮ Let Rq = Zq[X ]/(Xn + 1)

◮ Let χ be an error distribution on Rq

◮ Let s ∈ Rq be secret

◮ Attacker is given pairs (a, as + e) with
◮ a uniformly random from Rq

◮ e sampled from χ

◮ Task for the attacker: find s

◮ Common choice for χ: discrete Gaussian

◮ Common optimization for protocols: fix a

4



A bit of (R)LWE history

◮ Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem

◮ Regev, 2005: Introduce LWE-based encryption

◮ Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption

◮ Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange

◮ Peikert, 2014: Improved RLWE-based key exchange

◮ Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert’s key exchange in TLS:

5



A bit of (R)LWE history

◮ Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem

◮ Regev, 2005: Introduce LWE-based encryption

◮ Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption

◮ Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange

◮ Peikert, 2014: Improved RLWE-based key exchange

◮ Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert’s key exchange in TLS:

◮ Rq = Zq [X]/(Xn + 1)
◮ n = 1024
◮ q = 232 − 1
◮ χ = DZ,σ (Discrete Gaussian) with σ = 8/

√
2π ≈ 3.192

5



A bit of (R)LWE history

◮ Hoffstein, Pipher, Silverman, 1996: NTRU cryptosystem

◮ Regev, 2005: Introduce LWE-based encryption

◮ Lyubashevsky, Peikert, Regev, 2010: Ring-LWE and Ring-LWE
encryption

◮ Ding, Xie, Lin, 2012: Transform to (R)LWE-based key exchange

◮ Peikert, 2014: Improved RLWE-based key exchange

◮ Bos, Costello, Naehrig, Stebila, 2015: Instantiate and implement
Peikert’s key exchange in TLS:

◮ Rq = Zq [X]/(Xn + 1)
◮ n = 1024
◮ q = 232 − 1
◮ χ = DZ,σ (Discrete Gaussian) with σ = 8/

√
2π ≈ 3.192

◮ Claimed security level: 128 bits pre-quantum
◮ Failure probability: ≈ 2−131072

5



BCNS key exchange

Parameters: q = 232 − 1, n = 1024

Error distribution: χ = DZ,σ, σ = 8/
√
2π

Global system parameter: a
$← Rq

Alice (server) Bob (client)

s, e
$← χ s

′, e′, e′′
$← χ

b←as + e
b−→ u←as

′ + e
′

v←bs
′ + e

′′

v̄
$← dbl(v)

u,v′

←−−− v
′ = 〈v̄〉2

µ←rec(2us,v′) µ←⌊v̄⌉2

Alice has 2us = 2ass′ + 2e′s

Bob has v̄ ≈ 2v = 2(bs′ + e
′′) = 2((as + e)s′ + e

′′) = 2ass′ + 2es′ + 2e′′

6



A new hope

Our contributions

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

7



A new hope

Our contributions

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Keep dimension n = 1024

◮ Drastically reduce q to 12289 < 214

◮ Higher security, shorter messages, and speedups

7



A new hope

Our contributions

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Keep dimension n = 1024

◮ Drastically reduce q to 12289 < 214

◮ Higher security, shorter messages, and speedups

◮ Analysis of post-quantum security

7



A new hope

Our contributions

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Keep dimension n = 1024

◮ Drastically reduce q to 12289 < 214

◮ Higher security, shorter messages, and speedups

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (HW(a)−HW(b) for k-bit a, b)

7



A new hope

Our contributions

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Keep dimension n = 1024

◮ Drastically reduce q to 12289 < 214

◮ Higher security, shorter messages, and speedups

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (HW(a)−HW(b) for k-bit a, b)

◮ Choose a fresh parameter a for every protocol run

7



A new hope

Our contributions

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Keep dimension n = 1024

◮ Drastically reduce q to 12289 < 214

◮ Higher security, shorter messages, and speedups

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (HW(a)−HW(b) for k-bit a, b)

◮ Choose a fresh parameter a for every protocol run

◮ Encode polynomials in NTT domain

7



A new hope

Our contributions

◮ Improve failure analysis and error reconciliation

◮ Choose parameters for failure probability ≈ 2−60

◮ Keep dimension n = 1024

◮ Drastically reduce q to 12289 < 214

◮ Higher security, shorter messages, and speedups

◮ Analysis of post-quantum security

◮ Use centered binomial noise ψk (HW(a)−HW(b) for k-bit a, b)

◮ Choose a fresh parameter a for every protocol run

◮ Encode polynomials in NTT domain

◮ Multiple implementations

7



A new hope – protocol

Parameters: q = 12289 < 214, n = 1024

Error distribution: ψ16

Alice (server) Bob (client)

seed
$← {0, 1}256

a←Parse(SHAKE-128(seed))

s, e
$← ψn

16 s
′, e′, e′′ $← ψn

16

b←as+ e
(b,seed)−−−−−→ a←Parse(SHAKE-128(seed))

u←as
′ + e

′

v←bs
′ + e

′′

v
′←us

(u,r)←−−− r
$← HelpRec(v)

k←Rec(v′, r) k←Rec(v, r)

µ←SHA3-256(k) µ←SHA3-256(k)

Alice has v
′ = us = ass

′ + e
′
s

Bob has v = bs
′ + e

′′ = (as + e)s′ + e
′′ = ass

′ + es
′ + e

′′

8



Error reconciliation

◮ After running the protocol
◮ Alice has xA = ass

′ + e
′
s

◮ Bob has xB = ass
′ + es

′ + e
′′

◮ Those elements are similar, but not the same

◮ Problem: How to agree on the same key from these noisy vectors?

9



Error reconciliation

◮ After running the protocol
◮ Alice has xA = ass

′ + e
′
s

◮ Bob has xB = ass
′ + es

′ + e
′′

◮ Those elements are similar, but not the same

◮ Problem: How to agree on the same key from these noisy vectors?

◮ Known: extract one bit from each coefficient

◮ Also known: extract multiple bits from each coefficient
(decrease security)

9



Error reconciliation

◮ After running the protocol
◮ Alice has xA = ass

′ + e
′
s

◮ Bob has xB = ass
′ + es

′ + e
′′

◮ Those elements are similar, but not the same

◮ Problem: How to agree on the same key from these noisy vectors?

◮ Known: extract one bit from each coefficient

◮ Also known: extract multiple bits from each coefficient
(decrease security)

◮ NewHope: extract one bit from multiple coefficients
(increase security)

◮ Specifically: 1 bit from 4 coefficients → 256-bit key from 1024
coefficients; method inspired by analog error-correcting codes

9



Error reconciliation

◮ After running the protocol
◮ Alice has xA = ass

′ + e
′
s

◮ Bob has xB = ass
′ + es

′ + e
′′

◮ Those elements are similar, but not the same

◮ Problem: How to agree on the same key from these noisy vectors?

◮ Known: extract one bit from each coefficient

◮ Also known: extract multiple bits from each coefficient
(decrease security)

◮ NewHope: extract one bit from multiple coefficients
(increase security)

◮ Specifically: 1 bit from 4 coefficients → 256-bit key from 1024
coefficients; method inspired by analog error-correcting codes

◮ Generalize Peikert’s approach to obtain unbiased keys

9



Post-quantum security

◮ Consider RLWE instance as LWE instance

◮ Attack using BKZ

◮ BKZ uses SVP oracle in smaller dimension

◮ Consider only the cost of one call to that oracle
(“core-SVP hardness”)

10



Post-quantum security

◮ Consider RLWE instance as LWE instance

◮ Attack using BKZ

◮ BKZ uses SVP oracle in smaller dimension

◮ Consider only the cost of one call to that oracle
(“core-SVP hardness”)

◮ Consider quantum sieve as SVP oracle
◮ Best-known quantum cost (BKC): 20.265n

◮ Best-plausible quantum cost (BPC): 20.2075n

10



Post-quantum security

◮ Consider RLWE instance as LWE instance

◮ Attack using BKZ

◮ BKZ uses SVP oracle in smaller dimension

◮ Consider only the cost of one call to that oracle
(“core-SVP hardness”)

◮ Consider quantum sieve as SVP oracle
◮ Best-known quantum cost (BKC): 20.265n

◮ Best-plausible quantum cost (BPC): 20.2075n

◮ Obtain lower bounds on the bit security:

Known Classical Known Quantum Best Plausible

BCNS 86 78 61

NewHope 281 255 199

10



Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

11



Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

◮ Even without backdoor:
◮ Perform massive precomputation based on a

◮ Use precomputation to break all key exchanges
◮ Infeasible today, but who knows. . .
◮ Attack in the spirit of Logjam

11



Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

◮ Even without backdoor:
◮ Perform massive precomputation based on a

◮ Use precomputation to break all key exchanges
◮ Infeasible today, but who knows. . .
◮ Attack in the spirit of Logjam

◮ Solution in NewHope: Choose a fresh a every time

◮ Use SHAKE-128 to expand a 32-byte seed

11



Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

◮ Even without backdoor:
◮ Perform massive precomputation based on a

◮ Use precomputation to break all key exchanges
◮ Infeasible today, but who knows. . .
◮ Attack in the spirit of Logjam

◮ Solution in NewHope: Choose a fresh a every time

◮ Use SHAKE-128 to expand a 32-byte seed

◮ Server can cache a for some time (e.g., 1h)

11



Against all authority

◮ Remember the optimization of fixed a?

◮ What if a is backdoored?

◮ Parameter-generating authority can break key exchange

◮ “Solution”: Nothing-up-my-sleeves (involves endless discussion!)

◮ Even without backdoor:
◮ Perform massive precomputation based on a

◮ Use precomputation to break all key exchanges
◮ Infeasible today, but who knows. . .
◮ Attack in the spirit of Logjam

◮ Solution in NewHope: Choose a fresh a every time

◮ Use SHAKE-128 to expand a 32-byte seed

◮ Server can cache a for some time (e.g., 1h)

◮ Must not reuse keys/noise!

11



Implementation

◮ Multiplication in Rq using number-theoretic transform (NTT)

◮ Message format:
◮ Send polynomials in NTT domain
◮ Eliminate two of the required NTTs

12



Implementation

◮ Multiplication in Rq using number-theoretic transform (NTT)

◮ Message format:
◮ Send polynomials in NTT domain
◮ Eliminate two of the required NTTs

◮ C reference implementation:
◮ Arithmetic on 16-bit and 32-bit integers
◮ No division (/) or modulo (%) operator
◮ Use Montgomery reductions inside NTT
◮ Use ChaCha20 for noise sampling

12



Implementation

◮ Multiplication in Rq using number-theoretic transform (NTT)

◮ Message format:
◮ Send polynomials in NTT domain
◮ Eliminate two of the required NTTs

◮ C reference implementation:
◮ Arithmetic on 16-bit and 32-bit integers
◮ No division (/) or modulo (%) operator
◮ Use Montgomery reductions inside NTT
◮ Use ChaCha20 for noise sampling

◮ AVX2 implementation:
◮ Speed up NTT using vectorized double arithmetic
◮ Use AVX2 for centered binomial
◮ Use AVX2 for error reconciliation
◮ Use AES-256 for noise sampling

12



Performance

BCNS C ref AVX2

Key generation (server) ≈ 2 477 958 258 246 88 920

Key gen + shared key (client) ≈ 3 995 977 384 994 110 986

Shared key (server) ≈ 481 937 86 280 19 422

◮ Cycle counts from one core of an Intel i7-4770K (Haswell)

◮ BCNS benchmarks are derived from openssl speed

◮ Includes around ≈ 37 000 cycles for generation of a on each side

◮ Compare to X25519 elliptic-curve scalar mult: 156 092 cycles

13



NewHope in the real world

◮ July 7, Google announces 2-year post-quantum experiment
◮ NewHope+X25519 (CECPQ1) in BoringSSL for Chrome Canary
◮ Used in access to select Google services

Image source: https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html

14



NewHope online
Paper: https://cryptojedi.org/papers/#newhope

Software: https://cryptojedi.org/crypto/#newhope

15

https://cryptojedi.org/papers/#newhope
https://cryptojedi.org/crypto/#newhope


NewHope online
Paper: https://cryptojedi.org/papers/#newhope

Software: https://cryptojedi.org/crypto/#newhope

Newhope for ARM: https://github.com/newhopearm/newhopearm.git

(by Erdem Alkim, Philipp Jakubeit, and Peter Schwabe)

Newhope in Go: https://github.com/Yawning/newhope

(by Yawning Angel)

Newhope in Rust: https://code.ciph.re/isis/newhopers

(by Isis Lovecruft)

Newhope in Java: https://github.com/rweather/newhope-java

(by Rhys Weatherley)

Newhope in Erlang: https://github.com/ahf/luke

(by Alexander Færøy)

newhope@cryptojedi.org

15

https://cryptojedi.org/papers/#newhope
https://cryptojedi.org/crypto/#newhope
https://github.com/newhopearm/newhopearm.git
https://github.com/Yawning/newhope
https://code.ciph.re/isis/newhopers
https://github.com/rweather/newhope-java
https://github.com/ahf/luke
mailto:newhope@cryptojedi.org

