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This course

1. Limit crypto to “secure-channel” crypto

2. Make crypto software fast and secure (against software attacks)

Secure-channel crypto
• Symmetric crypto (block/stream cipher, hash function, MAC)

• ECC (ECDH, Schnorr signatures)

Fast and secure
• Optimize in C/assembly

• Follow the “constant-time” paradigm
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Some things I like about the course

• Low-level programming on predictable platform

• Algorithmics of multiprecision arithmetic

• Scalar-multiplication algorithms

2



The times they are a-changin’

Post-quantum crypto
• The world is moving from ECC to PQC

• (Almost) no need for multiprecision arithmetic

• (Almost) no need for scalar multiplication

• More complex than optimizing just ECC scalar multiplication

• Starting to become part of standard crypto courses
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The times they are a-changin’

Advanced microarchitectural attacks
• Spectre: exploit leaks in speculative execution

• Hertzbleed: power leakage translates to frequency changes

• Augury+GoFetch: attacks exploiting data-dependent prefetchers
• Three categories of CPUs/platforms:

• Platforms that support secure implementations (e.g., OpenTitan)
• Platforms that actively make secure implementations hard (large general-purpose CPUs)
• Platforms that are in between (e.g., Cortex-M4)
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The times they are a-changin’

High-assurance crypto
• Formal methods to improve crypto (software)

• Possibly move away from C/assembly
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3 properties for crypto code

1. Correctness
• Functionally correct

• Memory safety

• Thread safety

• Termination

2. Security
• Don’t leak secrets

• “Constant-time”

• Resist Spectre attacks

• Resist Power/EM attacks

• Fault protection

• Easy-to-use APIs

3. Efficiency
• Speed (clock cycles)

• RAM usage

• Binary size

• Energy consumption

4



The “traditional approach”

1. Implement crypto in C

2. Identify most relevant parts for performance

3. Re-implement those in assembly
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Correctness?

“Are you actually sure that your software is correct?”

—prof. Gerhard Woeginger, Jan. 24, 2011.
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#epicfail

mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r13
adc %rdx,%r14
adc $0,%r14
mov %r9,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r14
adc %rdx,%r15
adc $0,%r15
mov %r10,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%r15
adc %rdx,%rbx
adc $0,%rbx
mov %r11,%rax
mulq crypto_sign_ed25519_amd64_64_38
add %rax,%rbx
mov $0,%rsi
adc %rdx,%rsi

• Code snippet is from > 8000 lines of
assembly

• Crypto always has more possible inputs
than we can exhaustively test

• Some bugs are triggered with very low
probability

• Testing won’t catch these bugs

• Audits might, but this requires expert
knowledge!
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Security?

Traditional timing attacks
• Software only, can be carried out remotely

• In principle, we know how to systematically avoid them

• Increasingly standard requirement: “constant-time”

Plus side
• Full control (at least for assembly)

• Various tools to check for timing leaks

Minus side
• Many ways to screw up

• C compiler isn’t built for crypto
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Security?

100%

38.6%43.2%

75%

25% Don't know about tools

31.8% Haven't tried to use tools

4.5% Don't use tools

44 Developers

17 Developers

Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter Schwabe, Gilles Barthe, Pierre-Alain

Fouque, and Yasemin Acar: “They’re not that hard to mitigate”: What Cryptographic Library Developers Think About

Timing Attacks. IEEE S&P 2022 8



3. Efficiency!
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High-assurance crypto

Traditional approach is great at producing very efficient software that is neither
(guaranteed to be) correct nor (guaranteed to be) secure.

• Idea: Use tools/techniques from formal methods to prove
• functional correctness (including e.g., safety);
• certain implementation security properties; (and
• cryptographic security through reductions)

• Crypto software is a special here in multiple ways:
• Usually fairly little code (+)
• Has precise formal specification (+)
• Inherently security-critical (+)

• Highly performance critical (–)

We want formal guarantees without giving up on performance.
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High-assurance crypto

• Effort to formally verify crypto

• Goal: verified PQC ready for deployment
• Three main projects:

• EasyCrypt proof assistant
• Jasmin programming language
• Libjade (PQ-)crypto library

• Core community of ≈ 30–40 people

• Discussion forum with >280 people
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High-assurance crypto

https://en.wikipedia.org/wiki/Formosan_black_bear 11
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The toolchain and workflow
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Implementing in Jasmin

Almeida, Barbosa, Barthe, Blot, Grégoire, Laporte, Oliveira, Pacheco, Schmidt, Strub. Jasmin: High-Assurance

and High-Speed Cryptography. ACM CCS 2017

• Language with “C-like” syntax
• Programming in Jasmin is much closer to assembly:

• Generally: 1 line in Jasmin → 1 line in assembly
• A few exceptions, but highly predictable
• Compiler does not schedule code
• Compiler does not spill registers

• Compiler is formally proven to preserve semantics

• Static (trusted) safety checker

• Compiler is formally proven to preserve constant-time property

13
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Jasmin language features

• Functions with arguments and local variables

• Optionally: inline functions

• export functions to interface with C

• Stack and register arrays

• Loops (while and for)

• Conditionals (if, else)

• “Intrinsics”, e.g., for vector instructions

• Limited support for system calls
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Memory and thread safety

• Jasmin does not support dynamic memory allocation
• All memory locations are either

• external memory accessible through export function pointer arguments, or
• allocated on the stack

• Checking memory safety is separate compiler pass

jasminc -checksafety INPUT.jazz

• This typically takes a while to finish

• Safety checker is currently being re-written

• Jasmin does not have global variables

• Thread safe (except if external memory is shared)
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So, where are we?

Correctness
• Functional correctness through EasyCrypt proofs

• Thread and memory safety guaranteed by Jasmin

• Still need to check that EC specification is correct!

• Could be addressed by machine-readable standards

Efficiency

• Some limitations compared to assembly for memory safety

• No limitations that (majorly) impact performance

Security

• ???
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Timing attacks

if(secret)
{

do_A();
}
else
{

do_B();
}

table[secret]

Constant-time: Avoid those!

17



Did we get it right?

Option 1: Auditing

“Originally, me, a glass of bourbon, and gdb were a good trio. But that got old pretty quick.
(The manual analysis part – not the whiskey.)”

—Survey response in https://ia.cr./2021/1650

18
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Did we get it right?

Option 2: Check/verify
• Implement, use tool to check “constant-time” property

• Tool overview by Ján Jančár: https://crocs-muni.github.io/ct-tools/

• Problems in practice:
• Some tools not sound
• Some tools not on binary/asm level
• Some tools not usable

 Fairly high on my whishlist. . .

18
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Did we get it right?

Option 3: Avoid variable-time code
• Prevent leaking patterns on source level

• Prove that compilation doesn’t introduce leakage

18



Information-flow type system

• Enforce constant-time on Jasmin source level

• Every piece of data is either secret or public

• Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

• Branch conditions and memory indices need to be public

• In principle can do this also in, e.g., Rust (secret_integers crate)

• Jasmin compiler is verified to preserve constant-time!

• Explicit #declassify primitive to move from secret to public

• #declassify creates a proof obligation!

Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn Priya. Structured Leakage and Applications to

Cryptographic Constant-Time and Cost. CCS 2021. https://eprint.iacr.org/2021/650

19
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Spectre v1 (“Speculative bounds-check bypass”)

stack u8[10] public;
stack u8[32] secret;
reg u8 t;
reg u64 r, i;

i = 0;
while(i < 10) {

t = public[(int) i] ;
r = leak(t);
...

}

20



Countermeasures

Fencing
• Can prevent speculation through barriers (LFENCE)

• Protecting all branches is possible but costly

Speculative Load Hardening
• Idea: maintain misprediction predicate ms (in a register)

• At every branch use arithmetic to update predicate

• Option 1: Mask every loaded value with ms

• Option 2: Mask every address with ms

• Effect: during misspeculation “leak” constant value
• Implemented in LLVM since version 8

• Still noticable performance overhead
• No formal guarantees of security
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Selective SLH

Do we need to mask/protect all loads?

• No need to mask loads into registers that never enter leaking instructions

• secret registers never enter leaking instructions!

• Obvious idea: mask only loads into public registers
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Extending the type system

• Type system gets three security levels:
• secret: secret
• public: public, also during misspeculation
• transient: public, but possibly secret during misspeculation

• Maintain misspeculation flag ms:
• ms = #init_msf(): Translate to LFENCE, set ms to zero
• ms = #set_msf(b, ms): Set ms according to branch condition b
• Branches invalidate ms

• Two operations to lower level:
• x = #protect(x, ms): Go from transient to public
• #protect translates to mask by ms

• #declassify r: Go from secret to transient
• #declassify requires cryptographic proof/argument

• Still: allow branches and indexing only for public
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The special case of crypto

• We know what inputs are secret and what inputs are public

• Most of the state is actually secret

• Most loads do not need protect!

• Even better: mark additional inputs as secret

• No cost of those inputs don’t flow into leaking instructions

• Even better: Spills don’t need protect if there is no branch between store and load

• Even better: “Spill” public data to MMX registers instead of stack

Type system supports programmer in writing efficient Spectre-v1-protected code!
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How about other Spectre variants?

Spectre v2
• Exploits speculation of indirect branches

• Jasmin does not support indirect branches

Spectre v3
• Better known as Meltdown

• Hardware bug, fixed in Hardware/Firmware

Spectre v4
• “Speculative store bypass”

• Loads may speculatively retrieve stale data

• Disable with SSBD CPU flag
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But wait, there’s more: Spectre-RSB

The attack
• Function returns use return-stack buffer (RSB) for speculative execution

• “Speculatively return to address on top of RSB”

• RSB is shared between processes running on the same core

• By default, RSB is not “wiped” on context switch

• Attacker can make returns jump anywhere (speculatively)

High-level countermeasure idea
• Limit attacker capabilities

• Speculative return only to well-defined restricted set of locations

• Use LFENCE or selective SLH to protect at those locations

26
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Return tables and more security typing

• Jasmin compiler has global view
• For each function, compiler knows all call sites into this function

• Replace return instructions with return tables:

• Sequence of conditional branches to select return location
• Number of branch instructions is logarithmic in number of call sites

• Effect: we speculatively “return” only to some call site of the respective function
• Speculation is now “Spectre v1” style (conditional branch)
• Except, not quite:

• Speculation of conditionals and loops is within control-flow graph
• Misspeculation of function “return” is outside control-flow graph

• Need modifications to security type system:
• public registers become transient after function call
• In some situations, we can preserve public type

Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, Zhang. Protecting crypto-
graphic code against Spectre-RSB ePrint 2024/1070.
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Security – zeroization

“. . .A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization
Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes
0. Don’t perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don’t scrub source-level invisible data

4. Mis-estimate stack space when scrubbing from caller
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Security – zeroization (ctd.)

Solution in Jasmin compiler

Zeroize used stack space and registers when returning from export function

• Make use of multiple features of Jasmin:
• Compiler has global view
• All stack usage is known at compile time
• Entry/return point is clearly defined

Arranz Olmos, Barthe, Gonzalez, Grégoire, Laporte, Léchenet, Oliveira, Schwabe: High-assurance zeroization.
TCHES 2024-1.
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Summary

Programming in Jasmin gives you

• A more convenient way to “write assembly”

• Safety guarantees

• Systematic timing-attack protection

• Systematic Spectre v1 protection
• Link to computer-verified (EasyCrypt) proofs of

• Functional correctness
• Cryptographic security

• Spoiler: there’s more to come
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Join us!

https://formosa-crypto.org

https://formosa-crypto.zulipchat.com/
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Research internship opportunity

• Location: Rennes, France

• Topic: Systematic Analysis of Side Channels in Novel ARM Microarchitectures

• Researchers: Daniel De Almeida Braga & Thomas Rokicki

• Possibility to follow up with Ph.D. trajectory
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