Engineering Cryptographic Software

High-assurance crypto and Jasmin

INE

Winter 2024/25

This course

1. Limit crypto to “secure-channel” crypto
2. Make crypto software fast and secure (against software attacks)

This course

1. Limit crypto to “secure-channel” crypto
2. Make crypto software fast and secure (against software attacks)
Secure-channel crypto

- Symmetric crypto (block/stream cipher, hash function, MAC)
- ECC (ECDH, Schnorr signatures)

This course

1. Limit crypto to “secure-channel” crypto
2. Make crypto software fast and secure (against software attacks)

Secure-channel crypto

- Symmetric crypto (block/stream cipher, hash function, MAC)
- ECC (ECDH, Schnorr signatures)

Fast and secure
+ Optimize in C/assembly

- Follow the “constant-time” paradigm

Some things | like about the course

- Low-level programming on predictable platform
+ Algorithmics of multiprecision arithmetic

+ Scalar-multiplication algorithms

The times they are a-changin’

Post-quantum crypto
+ The world is moving from ECC to PQC
+ (Almost) no need for multiprecision arithmetic
+ (Almost) no need for scalar multiplication
+ More complex than optimizing just ECC scalar multiplication
- Starting to become part of standard crypto courses

The times they are a-changin’

Advanced microarchitectural attacks

+ Spectre: exploit leaks in speculative execution
- Hertzbleed: power leakage translates to frequency changes
+ Augury+GoFetch: attacks exploiting data-dependent prefetchers

+ Three categories of CPUs/platforms:

+ Platforms that support secure implementations (e.g., OpenTitan)
- Platforms that actively make secure implementations hard (large general-purpose CPUs)
+ Platforms that are in between (e.g., Cortex-M4)

The times they are a-changin’

High-assurance crypto

- Formal methods to improve crypto (software)
+ Possibly move away from C/assembly

3 properties for crypto code

1. Correctness 2. Security 3. Efficiency
+ Functionally correct + Don't leak secrets - Speed (clock cycles)
+ Memory safety - “Constant-time” + RAM usage
+ Thread safety - Resist Spectre attacks + Binary size
+ Termination + Resist Power/EM attacks + Energy consumption

+ Fault protection

+ Easy-to-use APIs

The “traditional approach”

1. Implement crypto in C
2. ldentify most relevant parts for performance

3. Re-implement those in assembly

Correctness?

"Are you actually sure that your software is correct?”

—prof. Gerhard Woeginger, Jan. 24, 2011.

#epicfall

mulq crypto_sign_ed25519_amd64_64_38 + Code Snippet is from > 8000 lines of
add ‘rax,%r13 assembly

adc Y%rdx,%ril4d . .

S Ty - Crypto always has more possible inputs
mov Y%r9,%rax than we can exhaustively test

mulq crypto_sign_ed25519_amd64_64_38 - Some bugs are triggered with very low

add ‘Yrax,%rid
adc %rdx,%ri5
adc $0,%r15 - Testing won't catch these bugs

mov %r10,%rax) .))

milq crypto_sign_ed25519_amd64_64_38 - Audits might, but this requires expert
add Yrax,%r15 knowledge!

adc %rdx,%rbx

adc $0,%rbx

mov %rill,jrax

mulq crypto_sign_ed25519_amd64_64_38

add ‘rax,%rbx

mov $0,%rsi

adc %rdx,%rsi

probability

Traditional timing attacks
- Software only, can be carried out remotely
+ In principle, we know how to systematically avoid them

+ Increasingly standard requirement: “‘constant-time”

Traditional timing attacks

- Software only, can be carried out remotely
+ In principle, we know how to systematically avoid them

+ Increasingly standard requirement: “‘constant-time”

Plus side Minus side

- Full control (at least for assembly) + Many ways to screw up
+ Various tools to check for timing leaks + C compiler isn't built for crypto

I T 1
I 1 |

! :38 6% I 17 Developers
() . (o]
143.2% i i —)
|
| 1 1

S

4.5% Don't use tools

75%
44 Developers

—

100%

31.8% Haven't tried to use tools

L

25% Don't know about tools

Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt, Peter Schwabe, Gilles Barthe, Pierre-Alain
Fouque, and Yasemin Acar: “They're not that hard to mitigate”: What Cryptographic Library Developers Think About
Timing Attacks. |IEEE S&P 2022

3. Efficiency!

High-assurance crypto

Traditional approach is great at producing very efficient software that is neither
(guaranteed to be) correct nor (guaranteed to be) secure.

High-assurance crypto

Traditional approach is great at producing very efficient software that is neither
(guaranteed to be) correct nor (guaranteed to be) secure.

- |dea: Use tools/techniques from formal methods to prove
- functional correctness (including e.g., safety);
- certain implementation security properties; (and
- cryptographic security through reductions)

High-assurance crypto

Traditional approach is great at producing very efficient software that is neither
(guaranteed to be) correct nor (guaranteed to be) secure.

- |dea: Use tools/techniques from formal methods to prove
- functional correctness (including e.g., safety);
- certain implementation security properties; (and
- cryptographic security through reductions)
- Crypto software is a special here in multiple ways:
+ Usually fairly little code (+)
- Has precise formal specification (+)
« Inherently security-critical (+)

High-assurance crypto

Traditional approach is great at producing very efficient software that is neither
(guaranteed to be) correct nor (guaranteed to be) secure.

- |dea: Use tools/techniques from formal methods to prove
- functional correctness (including e.g., safety);
- certain implementation security properties; (and
- cryptographic security through reductions)
- Crypto software is a special here in multiple ways:
+ Usually fairly little code (+)
- Has precise formal specification (+)
« Inherently security-critical (+)
- Highly performance critical (=)

High-assurance crypto

Traditional approach is great at producing very efficient software that is neither
(guaranteed to be) correct nor (guaranteed to be) secure.

- |dea: Use tools/techniques from formal methods to prove
- functional correctness (including e.g., safety);
- certain implementation security properties; (and
- cryptographic security through reductions)
- Crypto software is a special here in multiple ways:
+ Usually fairly little code (+)
- Has precise formal specification (+)
« Inherently security-critical (+)
- Highly performance critical (=)

We want formal guarantees without giving up on performance.

High-assurance crypto

FORMOSA
CRYPTO

« Effort to formally verify crypto

+ Goal: verified PQC ready for deployment
+ Three main projects:

+ EasyCrypt proof assistant
+ Jasmin programming language
+ Libjade (PQ-)crypto library

+ Core community of ~ 30—40 people

+ Discussion forum with >280 people

Elic University of
BRISTOL

CASA

CYBER SECURITY IN THE AGE
OF LARGE-SCALE ADVERSARIES

=i dea

INESC

v d

lrrzia—

INVENTEURS DU MONDE NUMERIQUE

"' UNIVERSITAT
KLAGENFURT

~
MAX PLANCK INSTITUTE \g¢
FOR SECURITY AND PRIVACY &

[BPORTO

Radboud University %

%
ones®

RUHR
UNIVERSITAT
BOCHUM

EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

1

High-assurance crypto

Formosan black bear ¥a 24 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

The Formosan black bear (£ % #%, Ursus thibetanus formosanus), also known as the
Taiwanese black bear or white-throated bear, is a subspecies of the Asiatic black bear. It was Lomnosanjblack beir
first described by Robert Swinhoe in 1864. Formosan black bears are endemic to Taiwan. They are 2 ﬂ
also the largest land animals and the only native bears (Ursidae) in Taiwan. They are seen to
represent the Taiwanese nation.

Because of severe exploitation and habitat degradation in recent decades, populations of wild
Formosan black bears have been declining. This species was listed as "endangered" under Taiwan's
wildlife Conservation Act (Traditional Chinese: % A4/ 7 i%) in 1989. Their geographic distribution
is restricted to remote, rugged areas at elevations of 1,000-3,500 metres (3,300-11,500 ft). The
estimated number of individuals is 200 to 600.3]

Physical characteristics [edit]

The Formosan black bear is sturdily built and has a round head, short neck,
small eyes, and long snout. Its head measures 26-35 c¢m (10-14 in) in length
and 40-60 cm (16-24 in) in circumference. Its ears are 8-12 cm (3.1-4.7 in)
long. Its snout resembles a dog's, hence its nickname is "dog bear". Its tail is least
. . . N Extinct Threatened Concern
The V-shaped & inconspicuous and short—usually less than 10 cm (3.9 in) long. Its body is o N
white mark on a well covered with rough, glossy, black hair, which can grow over 10 c¢m long (EX) (EW) (CR) (EN) @ 1) (Le)
bear's chest ble (lucn 3.1)i11

Conservation status

around the neck. The tip of its chin is white. On the chest, there is a Vulneral

https://en.wikipedia.org/wiki/Formosan_black_bear

https://en.wikipedia.org/wiki/Formosan_black_bear

High-assurance crypto

FORMOSA
CRYPTO

« Effort to formally verify crypto

+ Goal: verified PQC ready for deployment
+ Three main projects:

+ EasyCrypt proof assistant
+ Jasmin programming language
+ Libjade (PQ-)crypto library

+ Core community of ~ 30—40 people

+ Discussion forum with >280 people

Elic University of
BRISTOL

CASA

CYBER SECURITY IN THE AGE
OF LARGE-SCALE ADVERSARIES

=i dea

INESC

v d

lrrzia—

INVENTEURS DU MONDE NUMERIQUE

"' UNIVERSITAT
KLAGENFURT

~
MAX PLANCK INSTITUTE \g¢
FOR SECURITY AND PRIVACY &

[BPORTO

Radboud University %

%
ones®

RUHR
UNIVERSITAT
BOCHUM

EINDHOVEN
UNIVERSITY OF
TECHNOLOGY

1

The toolchain and workflow

Jasmin code
.jazz, .jinc

!

automatic

safety
(7 checker

Easycrypt Model

fil S ERERERE Jasmin Compiler
-CCTes extracts to
interactive : - .
proofs ' certifiably-compiles to
for all kinds of v
properties Q\‘

EasyCrypt assembly

The toolchain and workflow

\
Jasmin code
.jazz, .jinc

Easycrypt Model

.ec files
interactive : - .
proofs ' certifiably-c(@ipiles to
for all kinds of v
properties Q\‘

EasyCrypt assembly

Implementing in Jasmin

Almeida, Barbosa, Barthe, Blot, Grégoire, Laporte, Oliveira, Pacheco, Schmidt, Strub. Jasmin: High-Assurance

and High-Speed Cryptography. ACM CCS 2017

- Language with “C-like” syntax
+ Programming in Jasmin is much closer to assembly:
+ Generally: 1 line in Jasmin — 1 line in assembly
- A few exceptions, but highly predictable
+ Compiler does not schedule code
+ Compiler does not spill registers

https://dl.acm.org/doi/10.1145/3133956.3134078
https://dl.acm.org/doi/10.1145/3133956.3134078

Implementing in Jasmin

Almeida, Barbosa, Barthe, Blot, Grégoire, Laporte, Oliveira, Pacheco, Schmidt, Strub. Jasmin: High-Assurance
and High-Speed Cryptography. ACM CCS 2017

- Language with “C-like” syntax
+ Programming in Jasmin is much closer to assembly:

+ Generally: 1 line in Jasmin — 1 line in assembly
- A few exceptions, but highly predictable

+ Compiler does not schedule code

+ Compiler does not spill registers

+ Compiler is formally proven to preserve semantics
- Static (trusted) safety checker
- Compiler is formally proven to preserve constant-time property

https://dl.acm.org/doi/10.1145/3133956.3134078
https://dl.acm.org/doi/10.1145/3133956.3134078

Jasmin language features

+ Functions with arguments and local variables
- Optionally: inline functions
+ export functions to interface with C

Jasmin language features

+ Functions with arguments and local variables
- Optionally: inline functions

+ export functions to interface with C

- Stack and register arrays

- Loops (while and for)

- Conditionals (if, else)

Jasmin language features

+ Functions with arguments and local variables
- Optionally: inline functions

+ export functions to interface with C

- Stack and register arrays

- Loops (while and for)

- Conditionals (if, else)

- “Intrinsics”, e.g., for vector instructions

+ Limited support for system calls

Memory and thread safety

-+ Jasmin does not support dynamic memory allocation
+ All memory locations are either

- external memory accessible through export function pointer arguments, or
- allocated on the stack

Memory and thread safety

-+ Jasmin does not support dynamic memory allocation
+ All memory locations are either

- external memory accessible through export function pointer arguments, or
- allocated on the stack

- Checking memory safety is separate compiler pass

jasminc -checksafety INPUT. jazz
- This typically takes a while to finish
- Safety checker is currently being re-written

Memory and thread safety

-+ Jasmin does not support dynamic memory allocation

+ All memory locations are either

- external memory accessible through export function pointer arguments, or
- allocated on the stack

- Checking memory safety is separate compiler pass

jasminc -checksafety INPUT. jazz
- This typically takes a while to finish
- Safety checker is currently being re-written
+ Jasmin does not have global variables
- Thread safe (except if external memory is shared)

So, where are we?

Correctness

+ Functional correctness through EasyCrypt proofs

+ Thread and memory safety guaranteed by Jasmin

Efficiency

Security

So, where are we?

Correctness
+ Functional correctness through EasyCrypt proofs
+ Thread and memory safety guaranteed by Jasmin
- Still need to check that EC specification is correct!
- Could be addressed by machine-readable standards

Efficiency

Security

So, where are we?

Correctness
+ Functional correctness through EasyCrypt proofs
+ Thread and memory safety guaranteed by Jasmin
- Still need to check that EC specification is correct!
- Could be addressed by machine-readable standards

Efficiency
- Some limitations compared to assembly for memory safety
+ No limitations that (majorly) impact performance

Security

So, where are we?

Correctness
+ Functional correctness through EasyCrypt proofs
+ Thread and memory safety guaranteed by Jasmin
- Still need to check that EC specification is correct!
- Could be addressed by machine-readable standards

Efficiency
- Some limitations compared to assembly for memory safety
+ No limitations that (majorly) impact performance

Security
< 77

Timing attacks

if (secret)

{
do_ AQ);
}

else table[secret]

{
do_BQ);
}

Constant-time: Avoid those!

Did we get it right?

Option 1: Auditing

“Originally, me, a glass of bourbon, and gdb were a good trio. But that got old pretty quick.
(The manual analysis part — not the whiskey.)”

—Survey response in https://ia.cr./2021/1650

https://ia.cr./2021/1650

Did we get it right?

Option 2: Check/verify
- Implement, use tool to check “constant-time” property
+ Tool overview by Jan Jancar: https://crocs-muni.github.io/ct-tools/

+ Problems in practice:
+ Some tools not sound
+ Some tools not on binary/asm level Fairly high on my whishlist. ..
+ Some tools not usable

https://crocs-muni.github.io/ct-tools/

Did we get it right?

Option 3: Avoid variable-time code
+ Prevent leaking patterns on source level
- Prove that compilation doesn't introduce leakage

Information-flow type system

- Enforce constant-time on Jasmin source level
- Every piece of data is either secret or public
- Flow of secret information is traced by type system

"Any operation with a secret input produces a secret output”

https://eprint.iacr.org/2021/650

Information-flow type system

- Enforce constant-time on Jasmin source level
- Every piece of data is either secret or public
- Flow of secret information is traced by type system

"Any operation with a secret input produces a secret output”

+ Branch conditions and memory indices need to be public

https://eprint.iacr.org/2021/650

Information-flow type system

- Enforce constant-time on Jasmin source level
- Every piece of data is either secret or public
- Flow of secret information is traced by type system

"Any operation with a secret input produces a secret output”
+ Branch conditions and memory indices need to be public
« In principle can do this also in, e.g., Rust (secret_integers crate)

https://eprint.iacr.org/2021/650

Information-flow type system

- Enforce constant-time on Jasmin source level
- Every piece of data is either secret or public
- Flow of secret information is traced by type system

"Any operation with a secret input produces a secret output”
+ Branch conditions and memory indices need to be public
« In principle can do this also in, e.g., Rust (secret_integers crate)
-+ Jasmin compiler is verified to preserve constant-time!

Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn Priya. Structured Leakage and Applications to
Cryptographic Constant-Time and Cost. CCS 2021. https://eprint.iacr.org/2021/650

https://eprint.iacr.org/2021/650

Information-flow type system

- Enforce constant-time on Jasmin source level
- Every piece of data is either secret or public
- Flow of secret information is traced by type system

"Any operation with a secret input produces a secret output”
+ Branch conditions and memory indices need to be public
« In principle can do this also in, e.g., Rust (secret_integers crate)
-+ Jasmin compiler is verified to preserve constant-time!
- Explicit #declassify primitive to move from secret to public

+ #declassify creates a proof obligation!

Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn Priya. Structured Leakage and Applications to
Cryptographic Constant-Time and Cost. CCS 2021. https://eprint.iacr.org/2021/650

https://eprint.iacr.org/2021/650

Spectre v1 (“Speculative bounds-check bypass”)

stack u8[10] public;
stack u8[32] secret;
reg u8 t;

reg u64 r, i;

i= 0;

while(i < 10) {

t

r

public[(int) il
leak(t);

>

20

Countermeasures

Fencing

- Can prevent speculation through barriers (LFENCE)
+ Protecting all branches is possible but costly

21

Countermeasures

Fencing

- Can prevent speculation through barriers (LFENCE)
+ Protecting all branches is possible but costly

Speculative Load Hardening
- Idea: maintain misprediction predicate ms (in a register)
+ At every branch use arithmetic to update predicate
+ Option 1: Mask every loaded value with ms
- Option 2: Mask every address with ms
+ Effect: during misspeculation “leak” constant value

21

Countermeasures

Fencing

- Can prevent speculation through barriers (LFENCE)
+ Protecting all branches is possible but costly

Speculative Load Hardening

- Idea: maintain misprediction predicate ms (in a register)
+ At every branch use arithmetic to update predicate

+ Option 1: Mask every loaded value with ms

- Option 2: Mask every address with ms

+ Effect: during misspeculation “leak” constant value

+ Implemented in LLVM since version 8

- Still noticable performance overhead
- No formal guarantees of security

21

Selective SLH

Do we need to mask/protect all loads?

22

Selective SLH

Do we need to mask/protect all loads?

- No need to mask loads into registers that never enter leaking instructions

22

Selective SLH

Do we need to mask/protect all loads?

- No need to mask loads into registers that never enter leaking instructions
* secret registers never enter leaking instructions!

+ Obvious idea: mask only loads into public registers

22

Extending the type system

- Type system gets three security levels:

* secret: secret
+ public: public, also during misspeculation
+ transient: public, but possibly secret during misspeculation

23

Extending type system

- Type system gets three security levels:

* secret: secret
+ public: public, also during misspeculation
+ transient: public, but possibly secret during misspeculation

- Maintain misspeculation flag ms:

* ms = #init_msf(): Translate to LFENCE, set ms to zero
* ms = #set_msf (b, ms): Setms according to branch condition b
+ Branches invalidate ms

23

Extending the type system

- Type system gets three security levels:

* secret: secret
+ public: public, also during misspeculation
+ transient: public, but possibly secret during misspeculation

- Maintain misspeculation flag ms:

* ms = #init_msf(): Translate to LFENCE, set ms to zero
* ms = #set_msf (b, ms): Setms according to branch condition b
+ Branches invalidate ms

+ Two operations to lower level:

* x = #protect(x, ms): GO from transient t0 public
+ #protect translates to mask by ms

23

Extending the type system

- Type system gets three security levels:

* secret: secret
+ public: public, also during misspeculation
+ transient: public, but possibly secret during misspeculation

- Maintain misspeculation flag ms:

* ms = #init_msf(): Translate to LFENCE, set ms to zero
* ms = #set_msf (b, ms): Setms according to branch condition b
+ Branches invalidate ms

+ Two operations to lower level:

* x = #protect(x, ms): GO from transient t0 public
+ #protect translates to mask by ms

+ #declassify r: GO from secret O transient

- #declassify requires cryptographic proof/argument

23

Extending the type s

- Type system gets three security levels:

* secret: secret
+ public: public, also during misspeculation
+ transient: public, but possibly secret during misspeculation

- Maintain misspeculation flag ms:

* ms = #init_msf(): Translate to LFENCE, set ms to zero
* ms = #set_msf (b, ms): Setms according to branch condition b
+ Branches invalidate ms
+ Two operations to lower level:
* x = #protect(x, ms): GO from transient t0 public
+ #protect translates to mask by ms
+ #declassify r: GO from secret O transient
+ #declassify requires cryptographic proof/argument

- Still: allow branches and indexing only for public

23

The special case of crypto

+ We know what inputs are secret and what inputs are public
+ Most of the state is actually secret
+ Most loads do not need protect!

24

The special case of crypto

+ We know what inputs are secret and what inputs are public
+ Most of the state is actually secret

+ Most loads do not need protect!

+ Even better: mark additional inputs as secret

- No cost of those inputs don't flow into leaking instructions

24

The special case of crypto

+ We know what inputs are secret and what inputs are public
+ Most of the state is actually secret

+ Most loads do not need protect!

+ Even better: mark additional inputs as secret

- No cost of those inputs don't flow into leaking instructions

- Even better: Spills don't need protect if there is no branch between store and load

24

The special case of crypto

+ We know what inputs are secret and what inputs are public

+ Most of the state is actually secret

+ Most loads do not need protect!

+ Even better: mark additional inputs as secret

- No cost of those inputs don't flow into leaking instructions

- Even better: Spills don't need protect if there is no branch between store and load
- Even better: “Spill" public data to MMX registers instead of stack

24

The special case of crypto

+ We know what inputs are secret and what inputs are public

+ Most of the state is actually secret

+ Most loads do not need protect!

+ Even better: mark additional inputs as secret

- No cost of those inputs don't flow into leaking instructions

- Even better: Spills don't need protect if there is no branch between store and load
- Even better: “Spill" public data to MMX registers instead of stack

Type system supports programmer in writing efficient Spectre-v1-protected code!

24

How about other Spectre variants?

Spectre v2

- Exploits speculation of indirect branches

- Jasmin does not support indirect branches

25

How about other Spectre variants?

Spectre v2

- Exploits speculation of indirect branches

- Jasmin does not support indirect branches

Spectre v3
+ Better known as Meltdown
- Hardware bug, fixed in Hardware/Firmware

25

How about other Spectre variants?

Spectre v2

- Exploits speculation of indirect branches

- Jasmin does not support indirect branches

Spectre v3
+ Better known as Meltdown
- Hardware bug, fixed in Hardware/Firmware

Spectre v4

- “Speculative store bypass”
- Loads may speculatively retrieve stale data
- Disable with SSBD CPU flag

25

But wait, there's more: Spectre-RSB

The attack

- Function returns use return-stack buffer (RSB) for speculative execution
- “Speculatively return to address on top of RSB”

26

But wait, there's more: Spectre-RSB

The attack
- Function returns use return-stack buffer (RSB) for speculative execution
- “Speculatively return to address on top of RSB”
- RSB is shared between processes running on the same core

- By default, RSB is not “wiped” on context switch

26

But wait, there's more: Spectre-RSB

The attack

- Function returns use return-stack buffer (RSB) for speculative execution
- “Speculatively return to address on top of RSB”

- RSB is shared between processes running on the same core

- By default, RSB is not “wiped” on context switch

- Attacker can make returns jump anywhere (speculatively)

26

But wait, there's more: Spectre-RSB

The attack

- Function returns use return-stack buffer (RSB) for speculative execution
- “Speculatively return to address on top of RSB”

- RSB is shared between processes running on the same core

- By default, RSB is not “wiped” on context switch

- Attacker can make returns jump anywhere (speculatively)

High-level countermeasure idea

+ Limit attacker capabilities
- Speculative return only to well-defined restricted set of locations
-+ Use LFENCE or selective SLH to protect at those locations

26

Return tables and more security typing

+ Jasmin compiler has global view
+ For each function, compiler knows all call sites into this function

Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, Zhang. Protecting crypto-
graphic code against Spectre-RSB ePrint 2024/1070.

27

https://eprint.iacr.org/2024/1070
https://eprint.iacr.org/2024/1070

Return tables and more security typing

+ Jasmin compiler has global view
+ For each function, compiler knows all call sites into this function
- Replace return instructions with return tables:

- Sequence of conditional branches to select return location

+ Number of branch instructions is logarithmic in number of call sites

Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, Zhang. Protecting crypto-
graphic code against Spectre-RSB ePrint 2024/1070.

27

https://eprint.iacr.org/2024/1070
https://eprint.iacr.org/2024/1070

Return tables and more security typing

+ Jasmin compiler has global view
+ For each function, compiler knows all call sites into this function
- Replace return instructions with return tables:
- Sequence of conditional branches to select return location
+ Number of branch instructions is logarithmic in number of call sites
- Effect: we speculatively “return” only to some call site of the respective function
- Speculation is now “Spectre v1” style (conditional branch)

Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, Zhang. Protecting crypto-
graphic code against Spectre-RSB ePrint 2024/1070.

27

https://eprint.iacr.org/2024/1070
https://eprint.iacr.org/2024/1070

Return tables and more security typing

+ Jasmin compiler has global view
+ For each function, compiler knows all call sites into this function
- Replace return instructions with return tables:
- Sequence of conditional branches to select return location
+ Number of branch instructions is logarithmic in number of call sites
- Effect: we speculatively “return” only to some call site of the respective function
- Speculation is now “Spectre v1” style (conditional branch)
+ Except, not quite:
+ Speculation of conditionals and loops is within control-flow graph
- Misspeculation of function “return” is outside control-flow graph

Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, Zhang. Protecting crypto-
graphic code against Spectre-RSB ePrint 2024/1070.

27

https://eprint.iacr.org/2024/1070
https://eprint.iacr.org/2024/1070

Return tables and more security typing

+ Jasmin compiler has global view
+ For each function, compiler knows all call sites into this function
- Replace return instructions with return tables:
- Sequence of conditional branches to select return location
+ Number of branch instructions is logarithmic in number of call sites
- Effect: we speculatively “return” only to some call site of the respective function
- Speculation is now “Spectre v1” style (conditional branch)
+ Except, not quite:
+ Speculation of conditionals and loops is within control-flow graph
- Misspeculation of function “return” is outside control-flow graph
- Need modifications to security type system:
- public registers become transient after function call
+ In some situations, we can preserve public type

Arranz Olmos, Barthe, Chuengsatiansup, Grégoire, Laporte, Oliveira, Schwabe, Yarom, Zhang. Protecting crypto-
graphic code against Spectre-RSB ePrint 2024/1070.

27

https://eprint.iacr.org/2024/1070
https://eprint.iacr.org/2024/1070

Security — zeroization

“... A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”
—FIPS 140-3, Section 9.7.A

28

Security — zeroization

“... A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”
—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

28

Security — zeroization

“... A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A
Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.
Failure modes

0. Don't perform any zeroization

28

Security — zeroization

“... A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A
Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.
Failure modes

0. Don't perform any zeroization
1. Dead-store elimination

28

Security — zeroization

“... A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.
Failure modes

0. Don't perform any zeroization
1. Dead-store elimination
2. Only API-level stack zeroization

28

Security — zeroization

“... A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”
—FIPS 140-3, Section 9.7.A

Goal of zeroization
Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes

0. Don't perform any zeroization

1. Dead-store elimination

2. Only API-level stack zeroization

3. Don't scrub source-level invisible data

28

Security — zeroization

“... A cryptographic module shall provide methods to zeroize all plaintext secret and private
cryptographic keys”

—FIPS 140-3, Section 9.7.A

Goal of zeroization

Scrub all (sensitive) data from memory (stack) and registers when crypto routine returns.

Failure modes

0.

> @ N =

Don't perform any zeroization

Dead-store elimination

Only API-level stack zeroization

Don't scrub source-level invisible data

Mis-estimate stack space when scrubbing from caller

28

Security — zeroization (ctd.)

Solution in Jasmin compiler

Zeroize used stack space and registers when returning from export function

Arranz Olmos, Barthe, Gonzalez, Grégoire, Laporte, Léchenet, Oliveira, Schwabe: High-assurance zeroization.
TCHES 2024-1.

29

https://eprint.iacr.org/2023/1713

Security — zeroization (

Solution in Jasmin compiler

Zeroize used stack space and registers when returning from export function

- Make use of multiple features of Jasmin:
+ Compiler has global view
- All stack usage is known at compile time
- Entry/return point is clearly defined

Arranz Olmos, Barthe, Gonzalez, Grégoire, Laporte, Léchenet, Oliveira, Schwabe: High-assurance zeroization.
TCHES 2024-1.

29

https://eprint.iacr.org/2023/1713

Programming in Jasmin gives you

- A more convenient way to “write assembly”
- Safety guarantees

- Systematic timing-attack protection

+ Systematic Spectre v1 protection

« Link to computer-verified (EasyCrypt) proofs of

- Functional correctness
+ Cryptographic security

30

Programming in Jasmin gives you

- A more convenient way to “write assembly”
- Safety guarantees

- Systematic timing-attack protection

+ Systematic Spectre v1 protection

« Link to computer-verified (EasyCrypt) proofs of

- Functional correctness
+ Cryptographic security

+ Spoiler: there's more to come

30

Join us!

https://formosa-crypto.org

https://formosa-crypto.zulipchat.com/

31

https://formosa-crypto.org
https://formosa-crypto.zulipchat.com/

Research internship opportunity

+ Location: Rennes, France

- Topic: Systematic Analysis of Side Channels in Novel ARM Microarchitectures
* Researchers: Daniel De Almeida Braga & Thomas Rokicki

- Possibility to follow up with Ph.D. trajectory

32

