
Engineering Cryptographic Software
An introduction to the Cortex-M4

Radboud University, Nijmegen, The Netherlands

Winter 2025/26



Our platform: Arm

◮ Company designs CPUs, does not build them

◮ Market leader for mobile devices, embedded systems

◮ ARMv7E-M architecture

◮ Cortex-M4 implements this
architecture

◮ Released in 2010, widely deployed

2



Our platform: Arm

◮ Company designs CPUs, does not build them

◮ Market leader for mobile devices, embedded systems

◮ ARMv7E-M architecture

◮ Cortex-M4 implements this
architecture

◮ Released in 2010, widely deployed

◮ STM32F407VGT6
◮ Cortex-M4 + peripherals

◮ 1024 KB flash

◮ 192 KB SRAM

◮ 168 MHz CPU

2



Pipeline

◮ Cortex-M4 has pipelined execution

3



Pipeline

◮ Cortex-M4 has pipelined execution

◮ 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch Decode Execute

Instruction 2 Fetch Decode Execute

Instruction 3 Fetch Decode Execute

3



Pipeline

◮ Cortex-M4 has pipelined execution

◮ 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch Decode Execute

Instruction 2 Fetch Decode Execute

Instruction 3 Fetch Decode Execute

◮ Branching breaks this
◮ But remedied by branch prediction + speculative execution

3



Pipeline

◮ Cortex-M4 has pipelined execution

◮ 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch Decode Execute

Instruction 2 Fetch Decode Execute

Instruction 3 Fetch Decode Execute

◮ Branching breaks this
◮ But remedied by branch prediction + speculative execution

◮ Execute happens in one cycle: dependencies do not cause stalls

3



Caches

◮ Access to RAM on the Cortex-M4 by itself is not cached

4



Caches

◮ Access to RAM on the Cortex-M4 by itself is not cached

◮ STM32F407 has cache to flash memory

◮ Lookups from constant tables go through cache → timing leakage!

4



Caches

◮ Access to RAM on the Cortex-M4 by itself is not cached

◮ STM32F407 has cache to flash memory

◮ Lookups from constant tables go through cache → timing leakage!

◮ Binaries also run on Cortex-M7, which has cached access to RAM

◮ Write “constant-time” code!
◮ No branching on secret data
◮ No memory access at secret locations

4



Caches

◮ Access to RAM on the Cortex-M4 by itself is not cached

◮ STM32F407 has cache to flash memory

◮ Lookups from constant tables go through cache → timing leakage!

◮ Binaries also run on Cortex-M7, which has cached access to RAM

◮ Write “constant-time” code!
◮ No branching on secret data
◮ No memory access at secret locations

◮ All relevant arithmetic is constant time

4



Registers

◮ 16 registers: r0–r15

5



Registers

◮ 16 registers: r0–r15

◮ Some special registers
◮ r13: sp (stack pointer)
◮ r14: lr (link register)
◮ r15: pc (program counter)

5



Registers

◮ 16 registers: r0–r15

◮ Some special registers
◮ r13: sp (stack pointer)
◮ r14: lr (link register)
◮ r15: pc (program counter)

◮ r0–r12 are general purpose and can be freely used

◮ r14 can be used inside a function if spilled and restored before return

◮ r13 and r15 should be used only for their purpose

5



Instructions

◮ Format: Instr Rd, Rn(, Rm)

6



Instructions

◮ Format: Instr Rd, Rn(, Rm)

◮ mov r0, r1 (equivalent to uint32_t r0 = r1;)

6



Instructions

◮ Format: Instr Rd, Rn(, Rm)

◮ mov r0, r1 (equivalent to uint32_t r0 = r1;)

◮ mov r0, #18

6



Instructions

◮ Format: Instr Rd, Rn(, Rm)

◮ mov r0, r1 (equivalent to uint32_t r0 = r1;)

◮ mov r0, #18

◮ Sometimes, a constant is too large to fit in an instruction
◮ Put constant in memory (see later) or construct it
◮ movw for bottom 16 bits, movt for top 16 bits

6



Instructions

◮ Format: Instr Rd, Rn(, Rm)

◮ mov r0, r1 (equivalent to uint32_t r0 = r1;)

◮ mov r0, #18

◮ Sometimes, a constant is too large to fit in an instruction
◮ Put constant in memory (see later) or construct it
◮ movw for bottom 16 bits, movt for top 16 bits

◮ add, but also adds, adc, and adcs

6



Instructions

◮ Format: Instr Rd, Rn(, Rm)

◮ mov r0, r1 (equivalent to uint32_t r0 = r1;)

◮ mov r0, #18

◮ Sometimes, a constant is too large to fit in an instruction
◮ Put constant in memory (see later) or construct it
◮ movw for bottom 16 bits, movt for top 16 bits

◮ add, but also adds, adc, and adcs

◮ By default, flags never get updated!
◮ Many instructions have a variant that sets flags by appending s

6



Instructions

◮ Format: Instr Rd, Rn(, Rm)

◮ mov r0, r1 (equivalent to uint32_t r0 = r1;)

◮ mov r0, #18

◮ Sometimes, a constant is too large to fit in an instruction
◮ Put constant in memory (see later) or construct it
◮ movw for bottom 16 bits, movt for top 16 bits

◮ add, but also adds, adc, and adcs

◮ By default, flags never get updated!
◮ Many instructions have a variant that sets flags by appending s

◮ Bitwise operations: eor, and, orr, mvn

6



Instructions

◮ Format: Instr Rd, Rn(, Rm)

◮ mov r0, r1 (equivalent to uint32_t r0 = r1;)

◮ mov r0, #18

◮ Sometimes, a constant is too large to fit in an instruction
◮ Put constant in memory (see later) or construct it
◮ movw for bottom 16 bits, movt for top 16 bits

◮ add, but also adds, adc, and adcs

◮ By default, flags never get updated!
◮ Many instructions have a variant that sets flags by appending s

◮ Bitwise operations: eor, and, orr, mvn

◮ Shifts/rotates: ror, lsl, lsr, asr

6



Instructions

◮ Format: Instr Rd, Rn(, Rm)

◮ mov r0, r1 (equivalent to uint32_t r0 = r1;)

◮ mov r0, #18

◮ Sometimes, a constant is too large to fit in an instruction
◮ Put constant in memory (see later) or construct it
◮ movw for bottom 16 bits, movt for top 16 bits

◮ add, but also adds, adc, and adcs

◮ By default, flags never get updated!
◮ Many instructions have a variant that sets flags by appending s

◮ Bitwise operations: eor, and, orr, mvn

◮ Shifts/rotates: ror, lsl, lsr, asr

◮ All have variants with registers as operands and with a constant
(‘immediate’)

6



Combined barrel shifter

◮ Distinctive feature of Arm architecture

◮ Every Rm operand goes through barrel shifter

◮ Possible to do this: eor r0, r1, r2, lsl #2

7



Combined barrel shifter

◮ Distinctive feature of Arm architecture

◮ Every Rm operand goes through barrel shifter

◮ Possible to do this: eor r0, r1, r2, lsl #2

◮ Two instructions for the price of one, only costs 1 cycle

7



Combined barrel shifter

◮ Distinctive feature of Arm architecture

◮ Every Rm operand goes through barrel shifter

◮ Possible to do this: eor r0, r1, r2, lsl #2

◮ Two instructions for the price of one, only costs 1 cycle

◮ Optimized code uses this all the time

◮ Possible with most arithmetic instructions

7



Barrel shifter example

Possible:

mov r0, #42

mov r1, #37

ror r1, r1 , #1

orr r2, r0 , r1

lsl r2, r2 , #1

eor r0, r2

8



Barrel shifter example

Possible:

mov r0, #42

mov r1, #37

ror r1, r1 , #1

orr r2, r0 , r1

lsl r2, r2 , #1

eor r0, r2

More efficient:

mov r0 , #42

mov r1 , #37

orr r2 , r0 , r1, ror #1

eor r0 , r0 , r2, lsl #1

8



Barrel shifter example

Possible:

mov r0, #42

mov r1, #37

ror r1, r1 , #1

orr r2, r0 , r1

lsl r2, r2 , #1

eor r0, r2

More efficient:

mov r0 , #42

mov r1 , #37

orr r2 , r0 , r1, ror #1

eor r0 , r0 , r2, lsl #1

◮ Barrel shifter does not update Rm, i.e. r1 and r2!

8



Branching and labels

◮ After every 32-bit instruction, pc += 4

◮ By writing to the pc, we can jump to arbitrary locations (and
continue execution from there)

9



Branching and labels

◮ After every 32-bit instruction, pc += 4

◮ By writing to the pc, we can jump to arbitrary locations (and
continue execution from there)

◮ While programming, addresses of instructions are not known

9



Branching and labels

◮ After every 32-bit instruction, pc += 4

◮ By writing to the pc, we can jump to arbitrary locations (and
continue execution from there)

◮ While programming, addresses of instructions are not known

◮ Solution: define a label and use b to branch to labels

9



Branching and labels

◮ After every 32-bit instruction, pc += 4

◮ By writing to the pc, we can jump to arbitrary locations (and
continue execution from there)

◮ While programming, addresses of instructions are not known

◮ Solution: define a label and use b to branch to labels

◮ Assembler and linker later resolve the address

9



Branching and labels

◮ After every 32-bit instruction, pc += 4

◮ By writing to the pc, we can jump to arbitrary locations (and
continue execution from there)

◮ While programming, addresses of instructions are not known

◮ Solution: define a label and use b to branch to labels

◮ Assembler and linker later resolve the address

mov r0, #42

b somelabel

mov r0, #37

somelabel:

...

9



Conditional branches

◮ How to do a for/while loop?

10



Conditional branches

◮ How to do a for/while loop?

◮ Need to do a test and branch depending on the outcome

10



Conditional branches

◮ How to do a for/while loop?

◮ Need to do a test and branch depending on the outcome
◮ cmp r0, r1 (r1 can also be shifted/rotated!)
◮ cmp r0, #5

10



Conditional branches

◮ How to do a for/while loop?

◮ Need to do a test and branch depending on the outcome
◮ cmp r0, r1 (r1 can also be shifted/rotated!)
◮ cmp r0, #5

◮ Really: subtract, set status flags, discard result

10



Conditional branches

◮ How to do a for/while loop?

◮ Need to do a test and branch depending on the outcome
◮ cmp r0, r1 (r1 can also be shifted/rotated!)
◮ cmp r0, #5

◮ Really: subtract, set status flags, discard result

◮ Instead of b, use a conditional branch
◮ beq label (r0 == r1)
◮ bne label (r0 != r1)

10



Conditional branches

◮ How to do a for/while loop?

◮ Need to do a test and branch depending on the outcome
◮ cmp r0, r1 (r1 can also be shifted/rotated!)
◮ cmp r0, #5

◮ Really: subtract, set status flags, discard result

◮ Instead of b, use a conditional branch
◮ beq label (r0 == r1)
◮ bne label (r0 != r1)
◮ bhi label (r0 > r1, unsigned)
◮ bls label (r0 <= r1, unsigned)
◮ bgt label (r0 > r1, signed)
◮ bge label (r0 >= r1, signed)

10



Conditional branches

◮ How to do a for/while loop?

◮ Need to do a test and branch depending on the outcome
◮ cmp r0, r1 (r1 can also be shifted/rotated!)
◮ cmp r0, #5

◮ Really: subtract, set status flags, discard result

◮ Instead of b, use a conditional branch
◮ beq label (r0 == r1)
◮ bne label (r0 != r1)
◮ bhi label (r0 > r1, unsigned)
◮ bls label (r0 <= r1, unsigned)
◮ bgt label (r0 > r1, signed)
◮ bge label (r0 >= r1, signed)
◮ And many more

10



Conditional branches (example)

◮ In C:

uint32_t a, b = 100;

for (a = 0; a <= 50; a++) {

b += a;

}

◮ In asm:

mov r0, #0 // a

mov r1, #100 // b

loop:

add r1, r0 // b += a

add r0, #1 // a++

cmp r0, #50 // compare a and 50

bls loop // loop if <=

11



The stack

◮ Often data does not fit in registers

12



The stack

◮ Often data does not fit in registers

◮ Solution: push intermediate values to the stack (changes sp)

12



The stack

◮ Often data does not fit in registers

◮ Solution: push intermediate values to the stack (changes sp)

◮ push {r0, r1}

12



The stack

◮ Often data does not fit in registers

◮ Solution: push intermediate values to the stack (changes sp)

◮ push {r0, r1}

◮ Can now re-use r0 and r1

12



The stack

◮ Often data does not fit in registers

◮ Solution: push intermediate values to the stack (changes sp)

◮ push {r0, r1}

◮ Can now re-use r0 and r1

◮ Later retrieve values in any register you like: pop {r0, r2}

12



The stack

◮ Often data does not fit in registers

◮ Solution: push intermediate values to the stack (changes sp)

◮ push {r0, r1}

◮ Can now re-use r0 and r1

◮ Later retrieve values in any register you like: pop {r0, r2}

◮ Can load from the stack without moving sp (in a few slides)

◮ Not popping all pushed values will crash the program

12



Memory

◮ Stack is nice for intermediate values, but not for constants or lookup
tables

13



Memory

◮ Stack is nice for intermediate values, but not for constants or lookup
tables

◮ ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ =
8 bit, ‘nibble’ = 4 bit

13



Memory

◮ Stack is nice for intermediate values, but not for constants or lookup
tables

◮ ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ =
8 bit, ‘nibble’ = 4 bit

◮ Can directly insert words and bytes as ‘data’

.data

somedata:

.word 0x01234567 , 0xfedcba98

.byte 0x2a , 0x25

.text

//continue with code

13



Memory

◮ Stack is nice for intermediate values, but not for constants or lookup
tables

◮ ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ =
8 bit, ‘nibble’ = 4 bit

◮ Can directly insert words and bytes as ‘data’

.data

somedata:

.word 0x01234567 , 0xfedcba98

.byte 0x2a , 0x25

.text

//continue with code

◮ Ends up somewhere in RAM, need a label to access it

13



Memory

◮ Stack is nice for intermediate values, but not for constants or lookup
tables

◮ ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ =
8 bit, ‘nibble’ = 4 bit

◮ Can directly insert words and bytes as ‘data’

.data

somedata:

.word 0x01234567 , 0xfedcba98

.byte 0x2a , 0x25

.text

//continue with code

◮ Ends up somewhere in RAM, need a label to access it

◮ For n bytes of uninitialized memory, use a label and .skip n

◮ For n bytes of 0-initialized data, use .lcomm somelabel, n

13



Memory

◮ Stack is nice for intermediate values, but not for constants or lookup
tables

◮ ‘word’ = 32 bit, ‘halfword’ = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ =
8 bit, ‘nibble’ = 4 bit

◮ Can directly insert words and bytes as ‘data’

.data

somedata:

.word 0x01234567 , 0xfedcba98

.byte 0x2a , 0x25

.text

//continue with code

◮ Ends up somewhere in RAM, need a label to access it

◮ For n bytes of uninitialized memory, use a label and .skip n

◮ For n bytes of 0-initialized data, use .lcomm somelabel, n

◮ For global constants in ROM/flash, use .section .rodata

13



Using memory

◮ adr r0, somelabel to get the address in a register

14



Using memory

◮ adr r0, somelabel to get the address in a register

◮ ldr/str r1, [r0] loads/stores a value

14



Using memory

◮ adr r0, somelabel to get the address in a register

◮ ldr/str r1, [r0] loads/stores a value

◮ ldr r1, [r0, #4] loads from r0+4 (bytes)

14



Using memory

◮ adr r0, somelabel to get the address in a register

◮ ldr/str r1, [r0] loads/stores a value

◮ ldr r1, [r0, #4] loads from r0+4 (bytes)

◮ ldr r1, [r0, #4]! loads from r0+4 and increments r0 by 4

◮ ldr r1, [r0], #4 loads from r0 and increments r0 by 4

14



Using memory

◮ adr r0, somelabel to get the address in a register

◮ ldr/str r1, [r0] loads/stores a value

◮ ldr r1, [r0, #4] loads from r0+4 (bytes)

◮ ldr r1, [r0, #4]! loads from r0+4 and increments r0 by 4

◮ ldr r1, [r0], #4 loads from r0 and increments r0 by 4

◮ ldr r1, [r0, r2] loads from r0+r2, cannot increment

◮ ldr r1, [r0, r2, lsl #2] is possible
◮ if r2 was a byte-offset, it’s now used as word-offset

14



Using memory

◮ adr r0, somelabel to get the address in a register

◮ ldr/str r1, [r0] loads/stores a value

◮ ldr r1, [r0, #4] loads from r0+4 (bytes)

◮ ldr r1, [r0, #4]! loads from r0+4 and increments r0 by 4

◮ ldr r1, [r0], #4 loads from r0 and increments r0 by 4

◮ ldr r1, [r0, r2] loads from r0+r2, cannot increment

◮ ldr r1, [r0, r2, lsl #2] is possible
◮ if r2 was a byte-offset, it’s now used as word-offset

◮ str also has these variants

14



Using memory

◮ adr r0, somelabel to get the address in a register

◮ ldr/str r1, [r0] loads/stores a value

◮ ldr r1, [r0, #4] loads from r0+4 (bytes)

◮ ldr r1, [r0, #4]! loads from r0+4 and increments r0 by 4

◮ ldr r1, [r0], #4 loads from r0 and increments r0 by 4

◮ ldr r1, [r0, r2] loads from r0+r2, cannot increment

◮ ldr r1, [r0, r2, lsl #2] is possible
◮ if r2 was a byte-offset, it’s now used as word-offset

◮ str also has these variants

◮ ldm/stm r0, {r1,r2,r5} loads/stores multiple from consecutive
memory locations

◮ ldm/stm r0!, {r1,r2,r5} [. . .] and increments r0

14



Using memory

◮ adr r0, somelabel to get the address in a register

◮ ldr/str r1, [r0] loads/stores a value

◮ ldr r1, [r0, #4] loads from r0+4 (bytes)

◮ ldr r1, [r0, #4]! loads from r0+4 and increments r0 by 4

◮ ldr r1, [r0], #4 loads from r0 and increments r0 by 4

◮ ldr r1, [r0, r2] loads from r0+r2, cannot increment

◮ ldr r1, [r0, r2, lsl #2] is possible
◮ if r2 was a byte-offset, it’s now used as word-offset

◮ str also has these variants

◮ ldm/stm r0, {r1,r2,r5} loads/stores multiple from consecutive
memory locations

◮ ldm/stm r0!, {r1,r2,r5} [. . .] and increments r0

◮ push {r0,r1} == stmdb sp!, {r0,r1}

◮ ‘store multiple decrement before’

14



Subroutines

somelabel:

add r0 , r1

add r0 , r1 , ror #2

add r0 , r1 , ror #4

bx lr

main:

bl somelabel

mov r4 , r0

mov r0 , r2

mov r1 , r3

bl somelabel
◮ lr keeps track of ‘return address’

◮ Branch with link (bl) automatically sets lr

15



Subroutines

somelabel:

add r0 , r1

add r0 , r1 , ror #2

add r0 , r1 , ror #4

bx lr

main:

bl somelabel

mov r4 , r0

mov r0 , r2

mov r1 , r3

bl somelabel
◮ lr keeps track of ‘return address’

◮ Branch with link (bl) automatically sets lr

◮ Some performance overhead due to branching

15



Application Binary Interface (ABI)

◮ Agreement on how to deal with parameters and return values

16



Application Binary Interface (ABI)

◮ Agreement on how to deal with parameters and return values

◮ If it fits, parameters in r0-r3

16



Application Binary Interface (ABI)

◮ Agreement on how to deal with parameters and return values

◮ If it fits, parameters in r0-r3

◮ Otherwise, a part in r0-r3 and the rest on the stack

16



Application Binary Interface (ABI)

◮ Agreement on how to deal with parameters and return values

◮ If it fits, parameters in r0-r3

◮ Otherwise, a part in r0-r3 and the rest on the stack

◮ Return value in r0

16



Application Binary Interface (ABI)

◮ Agreement on how to deal with parameters and return values

◮ If it fits, parameters in r0-r3

◮ Otherwise, a part in r0-r3 and the rest on the stack

◮ Return value in r0

◮ The callee(!) should preserve r4-r11 if it overwrites them

◮ r12 is a scratch register (no need to preserve)

◮ Important when calling your assembly from, e.g., C

16



Application Binary Interface (ABI)

◮ Agreement on how to deal with parameters and return values

◮ If it fits, parameters in r0-r3

◮ Otherwise, a part in r0-r3 and the rest on the stack

◮ Return value in r0

◮ The callee(!) should preserve r4-r11 if it overwrites them

◮ r12 is a scratch register (no need to preserve)

◮ Important when calling your assembly from, e.g., C

◮ For private subroutines: can ignore this ABI

16



Architecture Reference Manual

◮ Large PDF that includes all of this, and more

◮ Available online: https://developer.arm.com/documentation/
ddi0403/eb/

◮ See Chapter A7 for instruction listings and descriptions

17

https://developer.arm.com/documentation/ddi0403/eb/
https://developer.arm.com/documentation/ddi0403/eb/


Architecture Reference Manual

18



Architecture Reference Manual

19



Time to get to work!

◮ If you haven’t “walked through” the STM32F4 getting started, do so.

◮ If you never wrote assembly before, download this example in your
assignment folder:
https://github.com/denigreco/

crypto_engineering_asm_example.git

◮ Otherwise, start working on ChaCha20

◮ These slides are also on the course website

20

https://github.com/denigreco/crypto_engineering_asm_example.git
https://github.com/denigreco/crypto_engineering_asm_example.git

