Engineering Cryptographic Software

An introduction to the Cortex-M4

Radboud University, Nijmegen, The Netherlands

AN,

4/
MiNe~

S
Yiorren

Winter 2025/26

Our platform: Arm

» Company designs CPUs, does not build them
» Market leader for mobile devices, embedded systems

» ARMvV7E-M architecture

» Cortex-M4 implements this
architecture

> Released in 2010, widely deployed

Our platform: Arm

» Company designs CPUs, does not build them
» Market leader for mobile devices, embedded systems

» ARMvV7E-M architecture

> Cortex-M4 implements this
architecture

> Released in 2010, widely deployed

> STM32F407VGT6
> Cortex-M4 + peripherals

> 1024 KB flash
192 KB SRAM
> 168 MHz CPU

v

Pipeline

» Cortex-M4 has pipelined execution

Pipeline

» Cortex-M4 has pipelined execution
> 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch || Decode || Execute |
Instruction 2 | Fetch || Decode || Execute |
Instruction 3 | Fetch || Decode || Execute

Pipeline

» Cortex-M4 has pipelined execution
> 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch || Decode || Execute |
Instruction 2 | Fetch || Decode || Execute |
Instruction 3 | Fetch || Decode || Execute

» Branching breaks this

» But remedied by branch prediction + speculative execution

Pipeline

» Cortex-M4 has pipelined execution
> 3 stages: fetch, decode, execute

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Instruction 1 Fetch || Decode || Execute |
Instruction 2 | Fetch || Decode || Execute |
Instruction 3 | Fetch || Decode || Execute

» Branching breaks this
» But remedied by branch prediction + speculative execution

» Execute happens in one cycle: dependencies do not cause stalls

Caches

» Access to RAM on the Cortex-M4 by itself is not cached

Caches

» Access to RAM on the Cortex-M4 by itself is not cached
» STM32F407 has cache to flash memory
» Lookups from constant tables go through cache — timing leakage!

Caches

» Access to RAM on the Cortex-M4 by itself is not cached

» STM32F407 has cache to flash memory

» Lookups from constant tables go through cache — timing leakage!
» Binaries also run on Cortex-M7, which has cached access to RAM

» Write “constant-time” code!

» No branching on secret data
» No memory access at secret locations

Caches

Access to RAM on the Cortex-M4 by itself is not cached
STM32F407 has cache to flash memory
Lookups from constant tables go through cache — timing leakage!

Binaries also run on Cortex-M7, which has cached access to RAM

» Write “constant-time” code!

» No branching on secret data
» No memory access at secret locations

v

All relevant arithmetic is constant time

Registers

> 16 registers: rO-r15

Registers

> 16 registers: rO-r15
» Some special registers

> r13: sp (stack pointer)
> ri14: 1r (link register)
> ri5: pc (program counter)

Registers

> 16 registers: rO-r15
Some special registers
> r13: sp (stack pointer)
> ri14: 1r (link register)
> ri5: pc (program counter)

v

v

r0-r12 are general purpose and can be freely used
» ri14 can be used inside a function if spilled and restored before return

v

r13 and r15 should be used only for their purpose

Instructions

» Format: Instr Rd, Rn(, Rm)

Instructions

» Format: Instr Rd, Rn(, Rm)

> mov r0, rl (equivalent to uint32_t r0 = ri;)

Instructions

» Format: Instr Rd, Rn(, Rm)
> mov r0, rl (equivalent to uint32_t r0 = ri;)
» mov rO, #18

Instructions

» Format: Instr Rd, Rn(, Rm)
> mov r0, rl (equivalent to uint32_t r0 = ri;)
» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction

> Put constant in memory (see later) or construct it
» movw for bottom 16 bits, movt for top 16 bits

Instructions

» Format: Instr Rd, Rn(, Rm)
> mov r0, rl (equivalent to uint32_t r0 = ri;)

» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction
> Put constant in memory (see later) or construct it
» movw for bottom 16 bits, movt for top 16 bits

» add, but also adds, adc, and adcs

Instructions

» Format: Instr Rd, Rn(, Rm)

> mov r0, rl (equivalent to uint32_t r0 = ri;)

» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction
> Put constant in memory (see later) or construct it
» movw for bottom 16 bits, movt for top 16 bits

» add, but also adds, adc, and adcs

> By default, flags never get updated!
» Many instructions have a variant that sets flags by appending s

Instructions

» Format: Instr Rd, Rn(, Rm)
> mov r0, rl (equivalent to uint32_t r0 = ri;)
» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction

> Put constant in memory (see later) or construct it
» movw for bottom 16 bits, movt for top 16 bits

» add, but also adds, adc, and adcs

> By default, flags never get updated!
» Many instructions have a variant that sets flags by appending s

> Bitwise operations: eor, and, orr, mvn

Instructions

» Format: Instr Rd, Rn(, Rm)
> mov r0, rl (equivalent to uint32_t r0 = ri;)
» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction

> Put constant in memory (see later) or construct it
» movw for bottom 16 bits, movt for top 16 bits

» add, but also adds, adc, and adcs

> By default, flags never get updated!
» Many instructions have a variant that sets flags by appending s

> Bitwise operations: eor, and, orr, mvn

» Shifts/rotates: ror, 1sl, 1sr, asr

Instructions

» Format: Instr Rd, Rn(, Rm)
> mov r0, rl (equivalent to uint32_t r0 = ri;)
» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction

> Put constant in memory (see later) or construct it
» movw for bottom 16 bits, movt for top 16 bits

» add, but also adds, adc, and adcs

> By default, flags never get updated!
» Many instructions have a variant that sets flags by appending s

> Bitwise operations: eor, and, orr, mvn

v

Shifts/rotates: ror, 1sl, 1sr, asr
» All have variants with registers as operands and with a constant
(‘immediate’)

Combined barrel shifter

» Distinctive feature of Arm architecture
» Every Rm operand goes through barrel shifter
» Possible to do this: eor r0, r1, r2, 1lsl #2

Combined barrel shifter

» Distinctive feature of Arm architecture
» Every Rm operand goes through barrel shifter
» Possible to do this: eor r0, r1, r2, 1lsl #2

» Two instructions for the price of one, only costs 1 cycle

Combined barrel shifter

v

Distinctive feature of Arm architecture
» Every Rm operand goes through barrel shifter
Possible to do this: eor r0, r1, r2, 1sl #2

v

v

Two instructions for the price of one, only costs 1 cycle

» Optimized code uses this all the time

» Possible with most arithmetic instructions

Barrel shifter example

Possible:

mov
mov
ror
orr
1s1
eor

r0,
ril,
ril,
r2,
r2,
r0,

#42
#37
ri, #1
rO0O, r1
r2, #1
r2

Barrel shifter example

Possible: More efficient:
mov r0, #42 mov r0, #42
mov rl, #37 mov rl, #37
ror rl, rl, #1 orr r2, r0, rl, ror #1
orr r2, rO, ri eor rO, rO, r2, 1sl #1

1s1l r2, r2, #1
eor r0, r2

Barrel shifter example

Possible:

mov
mov
ror
orr
1s1
eor

r0,
ril,
ril,
r2,
r2,
r0,

#42
#37
ri, #1
rO0O, r1
r2, #1
r2

More efficient:

mov
mov
orr
eor

r0,
ril,
r2,
r0,

» Barrel shifter does not update Rm, i.e. r1 and r2!

#42
#37
rO0, rl, ror #1
rO0O, r2, 1sl #1

Branching and labels

> After every 32-bit instruction, pc += 4

> By writing to the pc, we can jump to arbitrary locations (and
continue execution from there)

Branching and labels

> After every 32-bit instruction, pc += 4

> By writing to the pc, we can jump to arbitrary locations (and
continue execution from there)

» While programming, addresses of instructions are not known

Branching and labels

> After every 32-bit instruction, pc += 4

> By writing to the pc, we can jump to arbitrary locations (and
continue execution from there)

» While programming, addresses of instructions are not known
» Solution: define a label and use b to branch to labels

Branching and labels

v

After every 32-bit instruction, pc += 4

By writing to the pc, we can jump to arbitrary locations (and
continue execution from there)

While programming, addresses of instructions are not known
Solution: define a fabel and use b to branch to labels
Assembler and linker later resolve the address

Branching and labels

v

After every 32-bit instruction, pc += 4

By writing to the pc, we can jump to arbitrary locations (and
continue execution from there)

While programming, addresses of instructions are not known
Solution: define a fabel and use b to branch to labels
Assembler and linker later resolve the address

mov r0, #42
b somelabel
mov r0, #37
somelabel:

Conditional branches

» How to do a for/while loop?

10

Conditional branches

» How to do a for/while loop?
» Need to do a test and branch depending on the outcome

10

Conditional branches

» How to do a for/while loop?
» Need to do a test and branch depending on the outcome

» cmp r0, ril (rl can also be shifted/rotated!)
> cmp r0, #5

10

Conditional branches

» How to do a for/while loop?
» Need to do a test and branch depending on the outcome

» cmp r0, ril (rl can also be shifted/rotated!)
> cmp r0, #5

» Really: subtract, set status flags, discard result

10

Conditional branches

» How to do a for/while loop?
» Need to do a test and branch depending on the outcome
» cmp r0, ril (rl can also be shifted/rotated!)
> cmp r0, #5
» Really: subtract, set status flags, discard result
» Instead of b, use a conditional branch
> beq label (r0 == ri)
» bne label (r0 !'= r1)

10

Conditional branches

» How to do a for/while loop?

» Need to do a test and branch depending on the outcome
» cmp r0, ril (rl can also be shifted/rotated!)

> cmp r0, #5

» Really: subtract, set status flags, discard result

» Instead of b, use a conditional branch

>

vyvyvVvy

beq label
bne /label
bhi label
bls label
bgt label
bge label

(ro
(ro
(xo
(ro
(ro
(ro

== ri)

1= r1)

> rl, unsigned)
<= ri, unsigned)
> r1, signed)

>= rl, signed)

10

Conditional branches

» How to do a for/while loop?

» Need to do a test and branch depending on the outcome
» cmp r0, ril (rl can also be shifted/rotated!)

> cmp r0, #5

» Really: subtract, set status flags, discard result

» Instead of b, use a conditional branch

>

VVvVYyVYVYY

beq label
bne /label
bhi label
bls label
bgt label
bge label

(ro
(ro
(xo
(ro
(ro
(ro

And many more

== r1)
1= r1)
> rl, unsigned)

<= ri, unsigned)
> r1, signed)
>= r1, signed)

10

Conditional branches (example)

» |In C:
uint32_t a, b =
for (a = 0; a <=
b += a;
}
» In asm:
mov r0, #0 //

mov rl, #100 //

loop:

100;

50; at++) {

a
b

add r1, ro0 // b += a

add ro0, #1 // a++

cmp r0O, #50 //
bls loop //

compare a and 50
loop if <=

11

The stack

» Often data does not fit in registers

12

The stack

» Often data does not fit in registers

» Solution: push intermediate values to the stack (changes sp)

12

The stack

» Often data does not fit in registers
» Solution: push intermediate values to the stack (changes sp)
» push {r0, ri}

12

The stack

» Often data does not fit in registers

» Solution: push intermediate values to the stack (changes sp)
» push {r0, ri}

» Can now re-use rO and ri

12

The stack

» Often data does not fit in registers

» Solution: push intermediate values to the stack (changes sp)
» push {r0, ri}

» Can now re-use rO and ri

» Later retrieve values in any register you like: pop {r0, r2}

12

The stack

» Often data does not fit in registers

» Solution: push intermediate values to the stack (changes sp)
» push {r0, ri}

» Can now re-use rO and ri

>

Later retrieve values in any register you like: pop {r0, r2}

v

Can load from the stack without moving sp (in a few slides)

v

Not popping all pushed values will crash the program

12

Memory

» Stack is nice for intermediate values, but not for constants or lookup
tables

13

Memory

» Stack is nice for intermediate values, but not for constants or lookup
tables

> ‘word = 32 bit, ‘halfword = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ =
8 bit, ‘nibble’ = 4 bit

13

Memory

» Stack is nice for intermediate values, but not for constants or lookup
tables

> ‘word = 32 bit, ‘halfword = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ =
8 bit, ‘nibble’ = 4 bit

» Can directly insert words and bytes as ‘data’

.data

somedata:

.word 0x01234567, Oxfedcba98
.byte 0x2a, 0x25

.text

//continue with code

13

Memory

» Stack is nice for intermediate values, but not for constants or lookup
tables

> ‘word = 32 bit, ‘halfword = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ =
8 bit, ‘nibble’ = 4 bit

» Can directly insert words and bytes as ‘data’

.data

somedata:

.word 0x01234567, Oxfedcba98
.byte 0x2a, 0x25

.text

//continue with code

» Ends up somewhere in RAM, need a label to access it

13

Memory

» Stack is nice for intermediate values, but not for constants or lookup
tables

> ‘word = 32 bit, ‘halfword = 16 bit, ‘doubleword’ = 64 bit, ‘byte’ =
8 bit, ‘nibble’ = 4 bit

» Can directly insert words and bytes as ‘data’

.data

somedata:

.word 0x01234567, Oxfedcba98
.byte 0x2a, 0x25

.text

//continue with code

» Ends up somewhere in RAM, need a label to access it
» For n bytes of uninitialized memory, use a label and .skip n
» For n bytes of O-initialized data, use .1lcomm somelabel, n

13

Memory

>

>

Stack is nice for intermediate values, but not for constants or lookup
tables

‘word'" = 32 bit, ‘halfword’ = 16 bit, ‘'doubleword = 64 bit, ‘byte' =
8 bit, ‘nibble’ = 4 bit

Can directly insert words and bytes as ‘data’

.data

somedata:

.word 0x01234567, Oxfedcba98
.byte 0x2a, 0x25

.text

//continue with code

Ends up somewhere in RAM, need a label to access it
For n bytes of uninitialized memory, use a label and .skip n
» For n bytes of O-initialized data, use .1lcomm somelabel, n

For global constants in ROM/flash, use .section .rodata

13

Using memory

» adr rO, somelabel

to get the address in a register

14

Using memory

» adr r0O, somelabel to get the address in a register
» 1dr/str r1, [r0] loads/stores a value

14

Using memory

» adr r0O, somelabel to get the address in a register
» 1dr/str r1, [r0] loads/stores a value
» 1dr r1, [rO, #4] loads from r0+4 (bytes)

14

Using memory

>
>
>
>
>

adr rO, somelabel to get the address in a register
ldr/str r1, [r0] loads/stores a value

1dr r1, [r0, #4] loads from r0+4 (bytes)

ldr r1, [rO, #4]! loads from r0+4 and increments r0 by 4
1dr r1, [r0], #4 loads from r0 and increments rO by 4

14

Using memory

vVvyvyvVvyVvyyvyy

adr

r0, somelabel to get the address in a register

ldr/str r1, [r0] loads/stores a value

1dr
ldr
ldr
1dr

1ldr
>

r1l, [r0, #4] loads from r0+4 (bytes)

rl, [r0, #4]! loads from r0+4 and increments r0 by 4
rl, [r0], #4 loads from r0 and increments r0 by 4
r1l, [r0, r2] loads from rO0+r2, cannot increment

r1l, [r0, r2, 1sl #2] is possible

if 2 was a byte-offset, it's now used as word-offset

14

Using memory

vVvyvyvVvyVvyyvyy

v

adr rO, somelabel to get the address in a register
ldr/str r1, [r0] loads/stores a value

1dr r1, [r0, #4] loads from r0+4 (bytes)

ldr r1, [rO, #4]! loads from r0+4 and increments r0 by 4
1dr r1, [r0], #4 loads from r0 and increments rO by 4
1dr r1, [r0, r2] loads from r0+r2, cannot increment

ldr r1, [r0, r2, 1sl #2] is possible
> if r2 was a byte-offset, it's now used as word-offset

str also has these variants

14

Using memory

vVvyvyvVvyVvyyvyy

vy

adr

r0, somelabel to get the address in a register

ldr/str r1, [r0] loads/stores a value

1dr
ldr
ldr
1dr

1ldr
>

str

r1l, [r0, #4] loads from r0+4 (bytes)

rl, [r0, #4]! loads from r0+4 and increments r0 by 4
rl, [r0], #4 loads from r0 and increments r0 by 4
r1l, [r0, r2] loads from rO0+r2, cannot increment

r1l, [r0, r2, 1sl #2] is possible

if 2 was a byte-offset, it's now used as word-offset

also has these variants

ldm/stm r0, {rl,r2,r5} loads/stores multiple from consecutive
memory locations

ldm/stm r0!, {r1l,r2,r53}[...] and increments r0

14

Using memory

vVvyvyvVvyVvyyvyy

vy

adr

r0, somelabel to get the address in a register

ldr/str r1, [r0] loads/stores a value

1dr
ldr
ldr
1dr

1ldr
>

str

r1l, [r0, #4] loads from r0+4 (bytes)

rl, [r0, #4]! loads from r0+4 and increments r0 by 4
rl, [r0], #4 loads from r0 and increments r0 by 4
r1l, [r0, r2] loads from rO0+r2, cannot increment

r1l, [r0, r2, 1sl #2] is possible

if 2 was a byte-offset, it's now used as word-offset

also has these variants

ldm/stm r0, {rl,r2,r5} loads/stores multiple from consecutive
memory locations

ldm/stm r0!, {r1l,r2,r53}[...] and increments r0
push {r0,r1} == stmdb sp!, {r0,r1}

>

‘store multiple decrement before’

14

Subroutines

somelabel:

add r0, ri1

add r0, rl, ror #2
add r0, rl, ror #4
bx 1r

main:

bl somelabel

mov r4, 10

mov r0, r2

mov rl, r3

bl somelabel

» 1r keeps track of ‘return address’

» Branch with link (b1) automatically sets 1r

Subroutines

somelabel:

add r0, ri1

add r0, rl, ror #2
add r0, rl, ror #4
bx 1r

main:

bl somelabel

mov r4, 10

mov r0, r2

mov rl, r3

bl somelabel

» 1r keeps track of ‘return address’

» Branch with link (b1) automatically sets 1r

» Some performance overhead due to branching

15

Application Binary Interface (ABI)

» Agreement on how to deal with parameters and return values

16

Application Binary Interface (ABI)

» Agreement on how to deal with parameters and return values

> |If it fits, parameters in r0-1r3

16

Application Binary Interface (ABI)

» Agreement on how to deal with parameters and return values

> |If it fits, parameters in r0-1r3

» Otherwise, a part in r0-r3 and the rest on the stack

16

Application Binary Interface (ABI)

» Agreement on how to deal with parameters and return values

> |If it fits, parameters in r0-1r3
» Otherwise, a part in r0-r3 and the rest on the stack
» Return value in r0

16

Application Binary Interface (ABI)

v

Agreement on how to deal with parameters and return values

If it fits, parameters in r0-r3
Otherwise, a part in rO-r3 and the rest on the stack

Return value in r0

The callee(!) should preserve r4-ri1 if it overwrites them
r12 is a scratch register (no need to preserve)
Important when calling your assembly from, e.g., C

16

Application Binary Interface (ABI)

» Agreement on how to deal with parameters and return values

> If it fits, parameters in rO-r3
» Otherwise, a part in r0-r3 and the rest on the stack

» Return value in r0

» The callee(!) should preserve r4-ri1 if it overwrites them
> ri12is a scratch register (no need to preserve)
» Important when calling your assembly from, e.g., C

» For private subroutines: can ignore this ABI

16

Architecture Reference Manual

» Large PDF that includes all of this, and more

> Available online: https://developer.arm.com/documentation/
ddi0403/eb/

» See Chapter A7 for instruction listings and descriptions

17

https://developer.arm.com/documentation/ddi0403/eb/
https://developer.arm.com/documentation/ddi0403/eb/

Architecture Reference Manual

AB7.3 ADD (immediate)

This instruction adds an immediate value to a register value, and writes the result to the destination register.

It can optionally update the condition flags based on the result.

Encoding T1 All versions of the Thumb ISA.
ADDS <Rd>, <Rn>, #<imm3>

ADD<c> <Rd>,<Rn> #<imm3>

1514 13 1211 10 9 8 7 6 5 4 3 2 1 0
IOOUII l|llOlimm3I Rn ‘ Rd |

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock();

Encoding T2 All versions of the Thumb ISA.
ADDS <Rdn>, #<imm8>

ADD<c> <Rdn>,#<imm8>
1514131211 109 8 7 6 5 4 3 2 1 O
|0 01 | 1 (}| Rdn

imm§

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock();

Encoding T3 ARMvT-M
ADD{S}<c>.W <Rd>,<Rn>,#<const>

Outside IT block.
Inside IT block.

imm32 = ZeroExtend(imm3, 32);

Outside I'T block.
Inside IT block.

imm32 = ZeroExtend(imm8, 32);

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4

18

Architecture Reference Manual

Assembler syntax

ADD{S}<c><q> {<Rd>,} <Rn>, #<const>
ADDM<c><q> {<Rd>,} <Rn>, #<const>

where:

S

<C><q>

<Rd>

<Rn>

<const>

If present, specifies that the instruction updates the flags. Ott
update the flags.

See Standard assembler syntax fields on page A6-7.
Specifies the destination register. If <Rd> is omitted, this reg

Specifies the register that contains the first operand. If the S|
(SP plus immediate) on page A6-26. If the PC is specified fc

Specifies the immediate value to be added to the value obta
allowed values is 0-7 for encoding T1, 0-255 for encoding 1
See Modified immediate constants in Thumb instructions o)
allowed values for encoding T3

19

Time to get to work!

» If you haven't “walked through” the STM32F4 getting started, do so.

» If you never wrote assembly before, download this example in your
assignment folder:
https://github.com/denigreco/
crypto_engineering_asm_example.git

» Otherwise, start working on ChaCha20

» These slides are also on the course website

20

https://github.com/denigreco/crypto_engineering_asm_example.git
https://github.com/denigreco/crypto_engineering_asm_example.git

