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The software arena(s)

Embedded microcontrollers
◮ This is what you’re looking at in the software assignment
◮ Typically very tight size constraints (ROM and RAM)
◮ Different optimization targets: size, speed
◮ No (or very little) parallel computation capabilities
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The software arena(s)

Embedded microcontrollers
◮ This is what you’re looking at in the software assignment
◮ Typically very tight size constraints (ROM and RAM)
◮ Different optimization targets: size, speed
◮ No (or very little) parallel computation capabilities

Servers, workstations, laptops, smartphones

◮ No serious size constraints for crypto
◮ Optimization target: speed (high throughput or low latency)
◮ Various different levels of parallelism

GPUs
◮ Special size restrictions apply for good performance
◮ Optimization target: speed (high throughput or low latency)
◮ Highly parallel architectures
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Throughput vs. Latency

◮ Some software makes extensive use of batching

◮ Faster for many computations, if those are performed “together”
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Throughput vs. Latency

◮ Some software makes extensive use of batching

◮ Faster for many computations, if those are performed “together”
◮ Example: McBits software (Bernstein, Chou, Schwabe, 2013):

◮ 15486208 cycles on Intel Ivy Bridge for 256 decryptions
◮ NOT: 15486208/256 = 60493 cycles for one decryption.
◮ Software needs to wait until enough inputs are available
◮ Delay from input to output is delay of 256 decryptions

◮ Highly parallel architectures (e.g., GPUs) focus on throughput
◮ This can be a problem for, e.g., low-latency network communication
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Benchmarking software

◮ Tools like time or time.h have too low resolution
◮ For serious optimization need to count CPU cycles
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Benchmarking software

◮ Tools like time or time.h have too low resolution
◮ For serious optimization need to count CPU cycles
◮ Use CPU’s built-in cycle counter, e.g., on AMD64:

static long long cpucycles(void)

{

unsigned long long result;

asm volatile("rdtsc;"

"shlq $32,%%rdx;"

"orq %%rdx,%%rax"

: "=a" (RES)

:

: "%rdx");

return result;

}
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Benchmarking pitfalls

1. Your program is not running exclusively on the CPU, there may be
interrupts
Solution: Measure many times, take the median (not average!)
Remark: Also report quartiles
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Benchmarking pitfalls

1. Your program is not running exclusively on the CPU, there may be
interrupts
Solution: Measure many times, take the median (not average!)
Remark: Also report quartiles

2. The rdtsc instruction reports reference cycles, your CPU may run
at a different speed
Solution: Switch off frequency scaling and TurboBoost/TurboCore

3. Hyperthreading may run another process on the same physical core
as your program
Solution: Switch off hyperthreading

4. Getting reproducible, publicly verifiable benchmarks is hard
Solution: Use public benchmarking framework SUPERCOP by
Bernstein and Lange:

http://bench.cr.yp.to

Remark: Please submit cryptographic software to eBACS!
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Computers and computer programs
A highly simplified view

M
em

ory

Branch Unit

ALU

Registers

L/S Unit

implicit

explicit

CPU

◮ A program is a sequence of
instructions

◮ Load/Store instructions move
data between memory and
registers (processed by the L/S
unit)

◮ Branch instructions
(conditionally) jump to a
position in the program

◮ Arithmetic instructions perform
simple operations on values in
registers (processed by the
ALU)

◮ Registers are fast (fixed-size)
storage units, addressed “by
name”
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A first program
Adding up 1000 integers

1. Set register R1 to zero

2. Set register R2 to zero

3. Load 32-bits from address START+R2 into register R3

4. Add 32-bit integers in R1 and R3, write the result in R1

5. Increase value in register R2 by 4

6. Compare value in register R2 to 4000

7. Goto line 3 if R2 was smaller than 4000
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A first program
Adding up 1000 integers in readable syntax

int32 result

int32 tmp

int32 ctr

result = 0

ctr = 0

looptop :

tmp = mem32[START+ctr]

result += tmp

ctr += 4

unsigned <? ctr - 4000

goto looptop if unsigned <
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Running the program

◮ Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

◮ Cycles needs to be long enough to finish the most complex
supported instruction
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Running the program

◮ Easy approach: Per “time-slot” (cycle) execute one instruction, then
go for the next

◮ Cycles needs to be long enough to finish the most complex
supported instruction

◮ Other approach: Chop instructions into smaller tasks, e.g. for
addition:

1. Fetch instruction
2. Decode instruction
3. Fetch register arguments
4. Execute (actual addition)
5. Write back to register

◮ Overlap instructions (e.g., while one instruction is in step 2, the next
one can do step 1 etc.)

◮ This is called pipelined execution (many more stages possible)
◮ Advantage: cycles can be much shorter (higher clock speed)
◮ Requirement for overlapping execution: instructions have to be

independent
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Instruction throughput and latency

◮ While the ALU is executing an instruction the L/S and branch units
are idle
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Instruction throughput and latency

◮ While the ALU is executing an instruction the L/S and branch units
are idle

◮ Idea: Duplicate fetch and decode, handle two or three instructions
per cycle
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◮ This concept is called superscalar execution

10



Instruction throughput and latency

◮ While the ALU is executing an instruction the L/S and branch units
are idle

◮ Idea: Duplicate fetch and decode, handle two or three instructions
per cycle

◮ While we’re at it: Why not deploy two ALUs
◮ This concept is called superscalar execution
◮ Number of independent instructions of one type per cycle:

throughput

◮ Number of cycles that need to pass before the result can be used:
latency
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An example computer
Still highly simplified

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

implicit

explicit

CPU

Latencies and throughputs

◮ At most 4 instructions per cycle
◮ At most 1 Load/Store

instruction per cycle
◮ At most 2 arithmetic

instructions per cycle
◮ Arithmetic latency: 2 cycles
◮ Load latency: 3 cycles
◮ Branches have to be last

instruction in a cycle
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Adding up 1000 integers on this computer

◮ Need at least 1000 load
instructions: ≥ 1000 cycles

Latencies and throughputs

◮ At most 4 instructions per cycle
◮ At most 1 Load/Store

instruction per cycle
◮ At most 2 arithmetic

instructions per cycle
◮ Arithmetic latency: 2 cycles
◮ Load latency: 3 cycles
◮ Branches have to be last

instruction in a cycle
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Adding up 1000 integers on this computer

◮ Need at least 1000 load
instructions: ≥ 1000 cycles

◮ Need at least 999 addition
instructions: ≥ 500 cycles

◮ At least 1999 instructions:
≥ 500 cycles

◮ Lower bound: 1000 cycles

Latencies and throughputs

◮ At most 4 instructions per cycle
◮ At most 1 Load/Store

instruction per cycle
◮ At most 2 arithmetic

instructions per cycle
◮ Arithmetic latency: 2 cycles
◮ Load latency: 3 cycles
◮ Branches have to be last

instruction in a cycle
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How about our program?

int32 result

int32 tmp

int32 ctr

result = 0

ctr = 0

looptop :

tmp = mem32[START+ctr]

result += tmp

ctr += 4

unsigned <? ctr - 4000

goto looptop if unsigned <
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How about our program?

int32 result

int32 tmp

int32 ctr

result = 0

ctr = 0

looptop :

tmp = mem32[START+ctr ]

# wait 2 cycles for tmp

result += tmp

ctr += 4

# wait 1 cycle for ctr

unsigned <? ctr - 4000

# wait 1 cycle for unsigned <

goto looptop if unsigned <

◮ Addition has to wait for load
◮ Comparison has to wait for

addition
◮ Branch has to wait for

comparison
◮ Each iteration of the loop takes

8 cycles
◮ Total: > 8000 cycles
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How about our program?

int32 result

int32 tmp

int32 ctr

result = 0

ctr = 0

looptop :

tmp = mem32[START+ctr ]

# wait 2 cycles for tmp

result += tmp

ctr += 4

# wait 1 cycle for ctr

unsigned <? ctr - 4000

# wait 1 cycle for unsigned <

goto looptop if unsigned <

◮ Addition has to wait for load
◮ Comparison has to wait for

addition
◮ Branch has to wait for

comparison
◮ Each iteration of the loop takes

8 cycles
◮ Total: > 8000 cycles
◮ This program sucks!
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Making the program fast
Step 1 – Unrolling

result = 0

tmp = mem32[START +0]

result += tmp

tmp = mem32[START +4]

result += tmp

tmp = mem32[START +8]

result += tmp

...

tmp = mem32[START +3996]

result += tmp

◮ Remove all the loop control:
unrolling
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Making the program fast
Step 1 – Unrolling

result = 0

tmp = mem32 [START +0]

# wait 2 cycles for tmp

result += tmp

tmp = mem32 [START +4]

# wait 2 cycles for tmp

result += tmp

tmp = mem32 [START +8]

# wait 2 cycles for tmp

result += tmp

...

tmp = mem32 [START +3996]

# wait 2 cycles for tmp

result += tmp

◮ Remove all the loop control:
unrolling

◮ Each load-and-add now takes 3
cycles

◮ Total: ≈ 3000 cycles
◮ Better, but still too slow
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Making the program fast
Step 2 – Instruction Scheduling

result = mem32[START + 0]

tmp0 = mem32[START + 4]

tmp1 = mem32[START + 8]

tmp2 = mem32[START +12]

result += tmp0

tmp0 = mem32[START +16]

result += tmp1

tmp1 = mem32[START +20]

result += tmp2

tmp2 = mem32[START +24]

...

result += tmp2

tmp2 = mem32[START +3996]

result += tmp0

result += tmp1

result += tmp2

◮ Load values earlier
◮ Load latencies are hidden
◮ Use more registers for loaded

values (tmp0, tmp1, tmp2)
◮ Get rid of one addition to zero
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Making the program fast
Step 2 – Instruction Scheduling

result = mem32 [START + 0]

tmp0 = mem32 [START + 4]

tmp1 = mem32 [START + 8]

tmp2 = mem32 [START +12]

result += tmp0

tmp0 = mem32[START +16]

# wait 1 cycle for result

result += tmp1

tmp1 = mem32[START +20]

# wait 1 cycle for result

result += tmp2

tmp2 = mem32[START +24]

...

result += tmp2

tmp2 = mem32[START +3996]

# wait 1 cycle for result

result += tmp0

# wait 1 cycle for result

result += tmp1

# wait 1 cycle for result

result += tmp2

◮ Load values earlier
◮ Load latencies are hidden
◮ Use more registers for loaded

values (tmp0, tmp1, tmp2)
◮ Get rid of one addition to zero
◮ Now arithmetic latencies kick in
◮ Total: ≈ 2000 cycles
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Making the program fast
Step 3 – More Instruction Scheduling (two accumulators)

result0 = mem32 [START + 0]

tmp0 = mem32 [START + 8]

result1 = mem32 [START + 4]

tmp1 = mem32 [START +12]

tmp2 = mem32 [START +16]

result0 += tmp0

tmp0 = mem32 [START +20]

result1 += tmp1

tmp1 = mem32 [START +24]

result0 += tmp2

tmp2 = mem32 [START +28]

...

result0 += tmp1

tmp1 = mem32 [START +3996]

result1 += tmp2

result0 += tmp0

result1 += tmp1

result0 += result1

◮ Use one more accumulator
register (result1)

◮ All latencies hidden
◮ Total: 1004 cycles
◮ Asymptotically n cycles for n

additions
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Summary of what we did

◮ Analyze the algorithm in terms of machine instructions
◮ Look at what the respective machine is able to do
◮ Compute a lower bound of the cycles
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Summary of what we did

◮ Analyze the algorithm in terms of machine instructions
◮ Look at what the respective machine is able to do
◮ Compute a lower bound of the cycles
◮ Optimize until we (almost) reached the lower bound:

◮ Unroll the loop
◮ Interleave independent instructions (instruction scheduling)
◮ Resulting program is larger and requires more registers!

◮ Note: Good instruction scheduling typically requires more registers
◮ Opposing requirements to register allocation (assigning registers to

live variables, minimizing memory access)
◮ Both instruction scheduling and register allocation are NP hard
◮ So is the joint problem
◮ Many instances are efficiently solvable

17



Architectures and microarchitectures

What instructions and how many registers do we have?

◮ Instructions are defined by the instruction set

◮ Supported register names are defined by the set of architectural

registers

◮ Instruction set and set of architectural registers together define the
architecture

◮ Examples for architectures: x86, AMD64, ARMv6, ARMv7,
UltraSPARC

◮ Sometimes base architectures are extended, e.g., MMX, SSE, NEON
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Architectures and microarchitectures

What instructions and how many registers do we have?

◮ Instructions are defined by the instruction set

◮ Supported register names are defined by the set of architectural

registers

◮ Instruction set and set of architectural registers together define the
architecture

◮ Examples for architectures: x86, AMD64, ARMv6, ARMv7,
UltraSPARC

◮ Sometimes base architectures are extended, e.g., MMX, SSE, NEON

What determines latencies etc?
◮ Different microarchitectures implement an architecture
◮ Latencies and throughputs are specific to a microarchitecture
◮ Example: Intel Core Ultra 7 165U implements the AMD64

architecture
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Out-of-order execution

◮ Optimal instruction scheduling depends on the microarchitecture
◮ Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
◮ Many software is shipped in binary form (cannot recompile)
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Out-of-order execution

◮ Optimal instruction scheduling depends on the microarchitecture
◮ Code optimized for one microarchitecture may run at very bad

performance on another microarchitecture
◮ Many software is shipped in binary form (cannot recompile)
◮ Idea: Let the processor reschedule instructions on the fly
◮ Look ahead a few instructions, pick one that can be executed
◮ This is called out-of-order execution

◮ Typically requires more physical than architectural registers and
register renaming

◮ Harder for the (assembly) programmer to understand what exactly
will happen with the code

◮ Harder to come up with optimal scheduling
◮ Harder to screw up completely

19



Optimizing Crypto vs. optimizing “something”

◮ So far there was nothing crypto-specific in this lecture
◮ Is optimizing crypto the same as optimizing any other software?
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Optimizing Crypto vs. optimizing “something”

◮ So far there was nothing crypto-specific in this lecture
◮ Is optimizing crypto the same as optimizing any other software?
◮ No. Cryptographic software deals with secret data (e.g., keys)
◮ Information about secret data must not leak through side channels
◮ Most critical for software implementations on “large” CPUs: software

must take constant time (independent of secret data)

20



Timing leakage part I

◮ Consider the following piece of code:
if s then

r ← A
else

r ← B
end if
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Timing leakage part I

◮ Consider the following piece of code:
if s then

r ← A
else

r ← B
end if

◮ General structure of any conditional branch
◮ A and B can be large computations, r can be a large state
◮ This code takes different amount of time, depending on s

◮ Obvious timing leak if s is secret
◮ Even if A and B take the same amount of cycles this is generally

not constant time!
◮ Reasons: Branch prediction, instruction-caches
◮ Never use secret-data-dependent branch conditions

21



Eliminating branches

◮ So, what do we do with this piece of code?
if s then

r ← A
else

r ← B
end if
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Eliminating branches

◮ So, what do we do with this piece of code?
if s then

r ← A
else

r ← B
end if

◮ Replace by
r ← sA+ (1− s)B

◮ Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication
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Eliminating branches

◮ So, what do we do with this piece of code?
if s then

r ← A
else

r ← B
end if

◮ Replace by
r ← sA+ (1− s)B

◮ Can expand s to all-one/all-zero mask and use XOR instead of
addition, AND instead of multiplication

◮ For very fast A and B this can even be faster

22



Cached memory access

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

Cache

implicit

CPU

◮ Memory access goes through a
cache

◮ Small but fast transparent
memory for frequently used
data
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Cached memory access

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

Cache

implicit

CPU

◮ Memory access goes through a
cache

◮ Small but fast transparent
memory for frequently used
data

◮ A load from memory places
data also in the cache

◮ Data remains in cache until it’s
replaced by other data

◮ Loading data is fast if data is in
the cache (cache hit)

◮ Loading data is slow if data is
not in the cache (cache miss)
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Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

T [32] . . . T [47]

T [48] . . . T [63]

T [64] . . . T [79]

T [80] . . . T [95]

T [96] . . . T [111]

T [112] . . . T [127]

T [128] . . . T [143]

T [144] . . . T [159]

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T [223]

T [224] . . . T [239]

T [240] . . . T [255]

◮ Consider lookup table of 32-bit integers
◮ Cache lines have 64 bytes
◮ Crypto and the attacker’s program run

on the same CPU
◮ Tables are in cache
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Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

attacker’s data

attacker’s data
T [64] . . . T [79]

T [80] . . . T [95]

attacker’s data

attacker’s data

attacker’s data

attacker’s data
T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T [223]

attacker’s data

attacker’s data

◮ Consider lookup table of 32-bit integers
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◮ Consider lookup table of 32-bit integers
◮ Cache lines have 64 bytes
◮ Crypto and the attacker’s program run

on the same CPU
◮ Tables are in cache
◮ The attacker’s program replaces some

cache lines
◮ Crypto continues, loads from table

again
◮ Attacker loads his data:

◮ Fast: cache hit (crypto did not just
load from this line)

◮ Slow: cache miss (crypto just loaded
from this line)
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Some comments on cache-timing

◮ This is only the most basic cache-timing attack
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Some comments on cache-timing

◮ This is only the most basic cache-timing attack
◮ Non-secret cache lines are not enough for security
◮ Load/Store addresses influence timing in many different ways
◮ Do not access memory at secret-data-dependent addresses

◮ Timing attacks are practical:
Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used
for Linux hard-disk encryption

◮ Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key
from OpenSSL implementation
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Eliminating lookups

◮ Want to load item at (secret) position p from table of size n
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Eliminating lookups

◮ Want to load item at (secret) position p from table of size n

◮ Load all items, use arithmetic to pick the right one:
for i from 0 to n− 1 do

d← T [i]
if p = i then

r ← d
end if

end for

◮ Problem 1: if-statements are not constant time (see before)
◮ Problem 2: Comparisons are not constant time, replace by, e.g.:

static unsigned long long eq(uint32_t a, uint32_t b)

{

unsigned long long t = a ^ b;

t = (-t) >> 63;

return 1-t;

}

26



Is that all? (Timing leakage part III)

Lesson so far
◮ Avoid all data flow from secrets to branch conditions and memory

addresses
◮ This can always be done; cost highly depends on the algorithm
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Is that all? (Timing leakage part III)

Lesson so far
◮ Avoid all data flow from secrets to branch conditions and memory

addresses
◮ This can always be done; cost highly depends on the algorithm
◮ Test this with valgrind and uninitialized secret data (see https://

www.post-apocalyptic-crypto.org/timecop/)

“In order for a function to be constant time, the branches taken and
memory addresses accessed must be independent of any secret inputs.
(That’s assuming that the fundamental processor instructions are
constant time, but that’s true for all sane CPUs.)”

—Langley, Apr. 2010

“So the argument to the DIV instruction was smaller and DIV, on Intel,
takes a variable amount of time depending on its arguments!”

—Langley, Feb. 2013
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Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs
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Dangerous arithmetic (examples)

◮ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs
◮ Various math instructions on Intel/AMD CPUs (FSIN, FCOS. . . )
◮ MUL, MULHW, MULHWU on many PowerPC CPUs
◮ UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3.

Solution
◮ Avoid these instructions
◮ Make sure that inputs to the instructions don’t leak timing

information

28



Compilers don’t help here

◮ Example for dangerous code:

for(j=0;j<8;j++) {

mask = -(int16_t)((msg[i] >> j)&1);

r->coeffs[8*i+j] = mask & ((KYBER_Q+1)/2);

}

◮ Another example:

t = (((t << 1) + KYBER_Q/2)/KYBER_Q) & 1;

◮ Moritz Schneider, Daniele Lain Ivan Puddu Nicolas Dutly Srdjan
Čapkun: Breaking Bad: How Compilers Break Constant-Time
Implementations https://arxiv.org/pdf/2410.13489
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“The multicore revolution”

◮ Until early years 2000 each new processor generation had higher
clock speeds

◮ Nowadays: increase performance by number of cores:
◮ My laptop has 2 physical (and 4 virtual) cores
◮ Smartphones typically have 2 or 4 cores
◮ Servers have 4, 8, 16,. . . cores
◮ Special-purpose hardware (e.g., GPUs) often comes with many more

cores

◮ Consequence: “The free lunch is over” (Herb Sutter, 2005)
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◮ Until early years 2000 each new processor generation had higher
clock speeds

◮ Nowadays: increase performance by number of cores:
◮ My laptop has 2 physical (and 4 virtual) cores
◮ Smartphones typically have 2 or 4 cores
◮ Servers have 4, 8, 16,. . . cores
◮ Special-purpose hardware (e.g., GPUs) often comes with many more

cores

◮ Consequence: “The free lunch is over” (Herb Sutter, 2005)

“As a result, system designers and software engineers can no longer rely
on increasing clock speed to hide software bloat. Instead, they must
somehow learn to make effective use of increasing parallelism.”

—Maurice Herlihy: The Multicore Revolution, 2007
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Why multicore doesn’t matter. . .
. . . for algorithm design in crypto

Crypto is fast (single core of Intel Core i3-2310M)

◮ > 50 RSA-4096 signatures per second
◮ > 8000 RSA-4096 signature verifications per second
◮ > 28000 Ed25519 signatures per second
◮ > 9000 Ed25519 signature verifications per second
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Why multicore doesn’t matter. . .
. . . for algorithm design in crypto

Crypto is fast (single core of Intel Core i3-2310M)

◮ > 50 RSA-4096 signatures per second
◮ > 8000 RSA-4096 signature verifications per second
◮ > 28000 Ed25519 signatures per second
◮ > 9000 Ed25519 signature verifications per second

◮ If you perform only one crypto operation, you don’t care

◮ Many crypto operations are trivially parallel on multiple cores

31



Vector computations

Scalar computation

◮ Load 32-bit integer a
◮ Load 32-bit integer b
◮ Perform addition

c← a+ b

◮ Store 32-bit integer c

Vectorized computation

◮ Load 4 consecutive 32-bit integers
(a0, a1, a2, a3)

◮ Load 4 consecutive 32-bit integers
(b0, b1, b2, b3)

◮ Perform addition (c0, c1, c2, c3)←
(a0 + b0, a1 + b1, a2 + b2, a3 + b3)

◮ Store 128-bit vector (c0, c1, c2, c3)
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◮ Perform the same operations on independent data streams (SIMD)
◮ Vector instructions available on most “large” processors
◮ Instructions for vectors of bytes, integers, floats. . .
◮ Need to interleave data items (e.g., 32-bit integers) in memory
◮ Compilers will not really help with vectorization
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Back to adding up 1000 integers

◮ Imagine that
◮ vector addition is as fast as scalar addition
◮ vector loads are as fast as scalar loads
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Back to adding up 1000 integers

◮ Imagine that
◮ vector addition is as fast as scalar addition
◮ vector loads are as fast as scalar loads

◮ Need only 250 vector additions, 250 vector loads (+ adding up 4
partial sums)

◮ Lower bound of 250 cycles
◮ Very straight-forward modification of the program
◮ Fully unrolled loop needs only 1/4 of the space

33



Is it really that efficient?

◮ Consider the Intel Skylake processor with AVX2
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Is it really that efficient?

◮ Consider the Intel Skylake processor with AVX2
◮ 32-bit load throughput: 2 per cycle
◮ 32-bit add throughput: 4 per cycle
◮ 32-bit store throughput: 1 per cycle
◮ 256-bit load throughput: 2 per cycle
◮ 8× 32-bit add throughput: 3 per cycle
◮ 256-bit store throughput: 1 per cycle

◮ AVX2 vector instructions are almost as fast as scalar

instructions but do 8× the work

◮ Situation on other architectures/microarchitectures is similar
◮ Reason: cheap way to increase arithmetic throughput (less decoding,

address computation, etc.)

34



More reasons for using vector arithmetic

◮ Data-dependent branches are expensive in SIMD
◮ Variably indexed loads (lookups) into vectors are expensive
◮ Need to rewrite algorithms to eliminate branches and lookups
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More reasons for using vector arithmetic

◮ Data-dependent branches are expensive in SIMD
◮ Variably indexed loads (lookups) into vectors are expensive
◮ Need to rewrite algorithms to eliminate branches and lookups
◮ Secret-data-dependent branches and secret branch conditions are the

major sources of timing-attack vulnerabilities
◮ Strong synergies between speeding up code with vector instructions

and protecting code!
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Vectorization problems I

Carry handling

◮ When adding two 32-bit integers, the result may have 33 bits (32-bit
result + carry)

◮ Scalar additions keep the carry in a special flag register

◮ Subsequent instructions can use this flag, e.g., “add with carry”
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Vectorization problems I

Carry handling

◮ When adding two 32-bit integers, the result may have 33 bits (32-bit
result + carry)

◮ Scalar additions keep the carry in a special flag register

◮ Subsequent instructions can use this flag, e.g., “add with carry”
◮ How about carries of vector additions?

◮ Answer 1: Special “carry generate” instruction (e.g., CBE-SPU)
◮ Answer 2: They’re lost, recomputation is expensive

◮ Need to avoid carries instead of handling them
◮ No problem for today’s lecture, but requires care for big-integer

arithmetic
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Vectorization problems II

Removing instruction-level parallelism

◮ If we don’t vectorize we perform multiple independent instructions
◮ We turn data-level parallelism (DLP) into instruction-level

parallelism (ILP)
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Vectorization problems II

Removing instruction-level parallelism

◮ If we don’t vectorize we perform multiple independent instructions
◮ We turn data-level parallelism (DLP) into instruction-level

parallelism (ILP)

◮ Pipelined and multiscalar execution need ILP
◮ Vectorization removes ILP
◮ Problematic for algorithms with, e.g., 4-way DLP
◮ Good example to see this: ChaCha vs. Blake
◮ Vectorization of ChaCha can resort to higher-level parallelism

(multiple blocks)
◮ Harder for Blake: each block depends on the previous one
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Vectorization problems III

Data shuffeling

◮ Consider multiplication of 4-coefficient polynomials
f = f0 + f1x+ f2x

2 + f3x
3 and g = g0 + g1x+ g2x

2 + g3x
3:

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3
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Vectorization problems III

Data shuffeling

◮ Consider multiplication of 4-coefficient polynomials
f = f0 + f1x+ f2x

2 + f3x
3 and g = g0 + g1x+ g2x

2 + g3x
3:

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

◮ Ignore carries, overflows etc. for a moment
◮ 16 multiplications, 9 additions
◮ How to vectorize multiplications?

38



Vectorization problems III

Data shuffeling

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

◮ Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

◮ Multiply, obtain (f0g0, f1g1, f2g2, f3g3)

38



Vectorization problems III

Data shuffeling

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

◮ Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

◮ Multiply, obtain (f0g0, f1g1, f2g2, f3g3)

◮ And now what?

38



Vectorization problems III

Data shuffeling

r0 = f0g0

r1 = f0g1 + f1g0

r2 = f0g2 + f1g1 + f2g0

r3 = f0g3 + f1g2 + f2g1 + f3g0

r4 = f1g3 + f2g2 + f3g1

r5 = f2g3 + f3g2

r6 = f3g3

◮ Can easily load (f0, f1, f2, f3) and (g0, g1, g2, g3)

◮ Multiply, obtain (f0g0, f1g1, f2g2, f3g3)

◮ And now what?
◮ Answer: Need to shuffle data in input and output registers
◮ Significant overhead, not clear that vectorization speeds up

computation!
38



Efficient vectorization

◮ Most important question: Where does the parallelism come from?
◮ Easiest answer: Consider multiple batched encryptions, decryptions,

signature computations, verifications, etc. (but that increases
latency)

39



Efficient vectorization

◮ Most important question: Where does the parallelism come from?
◮ Easiest answer: Consider multiple batched encryptions, decryptions,

signature computations, verifications, etc. (but that increases
latency)

◮ Often: Can exploit lower-level parallelism

39



Efficient vectorization

◮ Most important question: Where does the parallelism come from?
◮ Easiest answer: Consider multiple batched encryptions, decryptions,

signature computations, verifications, etc. (but that increases
latency)

◮ Often: Can exploit lower-level parallelism
◮ Rule of thumb: parallelize on an as high as possible level
◮ Vectorization is hard to do as “add-on” optimization
◮ Reconsider algorithms and data structures, synergy with

constant-time algorithms
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Bitslicing

◮ Imagine registers that have only one bit
◮ Perform arithmetic on those registers using XOR, AND, OR
◮ Essentially the same as hardware implementations
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Bitslicing

◮ Imagine registers that have only one bit
◮ Perform arithmetic on those registers using XOR, AND, OR
◮ Essentially the same as hardware implementations
◮ But wait, registers are longer!
◮ Think of them as vectors of bits
◮ This needs transposition of the “binary data matrix”
◮ Perform the simulated hardware implementations on many

independent data streams
◮ Bitslicing works for every algorithm
◮ Bitslicing is inherently protected against timing attacks
◮ Efficient bitslicing needs a huge amount of data-level parallelism

40



Bitslicing binary polynomials

4-coefficient binary polynomials
(a3x

3 + a2x
2 + a1x+ a0), with ai ∈ {0, 1}

4-coefficient bitsliced binary polynomials

typedef unsigned char poly4; /* 4 coefficients in the low 4 bits */

typedef unsigned long long poly4x64[4];

void poly4_bitslice(poly4x64 r, const poly4 x[64])

{

int i,j;

for(i=0;i<4;i++)

{

r[i] = 0;

for(j=0;j<64;j++)

r[i] |= (unsigned long long)(1 & (x[j] >> i))<<j;

}

}
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Bitsliced binary-polynomial multiplication

typedef unsigned long long poly4x64[4];

typedef unsigned long long poly7x64[7];

void poly4x64_mul(poly7x64 r, const poly4x64 a, const poly4x64 b)

{

r[0] = a[0] & b[0];

r[1] = (a[0] & b[1]) ^ (a[1] & b[0]);

r[2] = (a[0] & b[2]) ^ (a[1] & b[1]) ^ (a[2] & b[0]);

r[3] = (a[0] & b[3]) ^ (a[1] & b[2]) ^ (a[2] & b[1]) ^ (a[3] & b[0]);

r[4] = (a[1] & b[3]) ^ (a[2] & b[2]) ^ (a[3] & b[1]);

r[5] = (a[2] & b[3]) ^ (a[3] & b[2]);

r[6] = (a[3] & b[3]);

}
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Bitslicing issues

◮ XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per
cycle on Intel Core 2)

◮ Can be very fast for operations that are not natively supported (like
arithmetic in binary fields)
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Bitslicing issues

◮ XOR, AND, OR, etc are usually fast (e.g., 3 128-bit operations per
cycle on Intel Core 2)

◮ Can be very fast for operations that are not natively supported (like
arithmetic in binary fields)

◮ Active data set increases massively (e.g., 128×)
◮ For “normal” vector operations, register space is increased

accordingly (e.g, 16 256-bit vector registers vs. 16 64-bit integer
registers)

◮ For bitslicing: Need to fit more data into the same registers
◮ Typical consequence: more loads and stores (that easily become the

performance bottleneck)
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