
Engineering Cryptographic Software
The Programming Assignments

Hien Pham and Amin Abdulrahman

January 2026



1

The Setup

What you will need hardware-wise:
▶ A laptop/computer
▶ An STM32Nucleo-L4R5ZI board
▶ A micro USB cable

What you will need software-wise:
▶ The VM available from: https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD71
▶ A recent version of VirtualBox + its expansion pack

→ The VM can be imported like this: VirtualBox→ File→ Import Appliance→ Select
CryptoEngineering-VM-v20260107.ova

1We also have copies on a USB drive

https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD7


2

Update the code

Please run:
git pull --rebase
(Optionally: git stash beofre and git stash apply after)



3

Assignment 0

Adding up 1000 integers



4

Summation

Simple task: Write a Jasmin program that sums up 1000 integers. Then make it fast.
Where to start:
▶ Inside the VM, find the directory of the assignment under ~/cryptoeng/assignment0-sum.
▶ Check the README for detailed information.
▶ You will only need to modify: sum.jazz
▶ sum_wrapper.h hints at the interface: The first argument is a pointer to an array of 32-bit

integers. The second argument is a 32-bit integer defining the number of integers to be
summed up (in our case, 1000).



5

Assignment 1

ChaCha20



6

Stream Cipher Recap: General

▶ Symmetric key cipher
▶ General idea: Combine plaintext with a stream of pseudorandom bytes, the keystream
▶ Loosely inspired by the one-time pad (OTP)

Encryption

Plaintext
mi

Ciphertext
ci

Secret Key

Keystream
Generator

ki

ci = mi ⊕ ki

Decryption

Ciphertext
ci

Plaintext
mi

Secret Key

Keystream
Generator

ki

mi = ci ⊕ ki



6

Stream Cipher Recap: General

▶ Symmetric key cipher
▶ General idea: Combine plaintext with a stream of pseudorandom bytes, the keystream
▶ Loosely inspired by the one-time pad (OTP)

Encryption

Plaintext
mi

Ciphertext
ci

Secret Key

Keystream
Generator

ki

ci = mi ⊕ ki

Decryption

Ciphertext
ci

Plaintext
mi

Secret Key

Keystream
Generator

ki

mi = ci ⊕ ki



7

Stream Cipher Recap: Security & Comparison

For a stream cipher to be secure, it should offer the following:
▶ Have a “random”-looking keystream
▶ Bias-free keystream
▶ Large-period keystream
▶ Impossibility to recover the key from the ciphertext or keystream

In comparison to block ciphers (e.g., AES):
▶ Operating on small chunks of data (e.g., in a streaming context) will not make the output a

full-sized block
▶ More resistant to noise on transmission channel
▶ Stream ciphers are often faster and more easily implementable in hardware



7

Stream Cipher Recap: Security & Comparison

For a stream cipher to be secure, it should offer the following:
▶ Have a “random”-looking keystream
▶ Bias-free keystream
▶ Large-period keystream
▶ Impossibility to recover the key from the ciphertext or keystream

In comparison to block ciphers (e.g., AES):
▶ Operating on small chunks of data (e.g., in a streaming context) will not make the output a

full-sized block
▶ More resistant to noise on transmission channel
▶ Stream ciphers are often faster and more easily implementable in hardware



8

ChaCha20

▶ Stream cipher proposed by Bernstein in 2008
▶ Alternative to AES on platforms without hardware acceleration
▶ ARX design: Add, Rotate, XOR
▶ “Easily” implementable in constant-time
▶ Used in TLS, SSH, and other modern protocols
▶ Details: https://datatracker.ietf.org/doc/html/rfc8439

Parameters:
▶ 256-bit key (32 bytes)
▶ 96-bit nonce (12 bytes)
▶ 32-bit block counter (4 bytes)
▶ Generates 64-byte keystream blocks

https://datatracker.ietf.org/doc/html/rfc8439


8

ChaCha20

▶ Stream cipher proposed by Bernstein in 2008
▶ Alternative to AES on platforms without hardware acceleration
▶ ARX design: Add, Rotate, XOR
▶ “Easily” implementable in constant-time
▶ Used in TLS, SSH, and other modern protocols
▶ Details: https://datatracker.ietf.org/doc/html/rfc8439

Parameters:
▶ 256-bit key (32 bytes)
▶ 96-bit nonce (12 bytes)
▶ 32-bit block counter (4 bytes)
▶ Generates 64-byte keystream blocks

https://datatracker.ietf.org/doc/html/rfc8439


9

ChaCha20

▶ Has a state of 64 bytes, 4×4 matrix of 32-bit words
▶ With c = constant, k = key, b = blockcount, and n = nonce:

cccccccc
0

cccccccc
1

cccccccc
2

cccccccc
3

kkkkkkkk
4

kkkkkkkk
5

kkkkkkkk
6

kkkkkkkk
7

kkkkkkkk
8

kkkkkkkk
9

kkkkkkkk
10

kkkkkkkk
11

bbbbbbbb
12

nnnnnnnn
13

nnnnnnnn
14

nnnnnnnn
15

Constants: 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574



10

ChaCha20

▶ Elementary operation: Quarterround (QR)
▶ Four add-xor-rotate operations each:

1. a += b; d ^= a; d <<<= 16;
2. c += d; b ^= c; b <<<= 12;
3. a += b; d ^= a; d <<<= 8;
4. c += d; b ^= c; b <<<= 7;

▶ Note: Addition mod 232

▶ Per block: 20 rounds = 10 × (column round + diagonal round)
▶ Column round: QR(0, 4, 8, 12), QR(1, 5, 9, 13), QR(2, 6, 10, 14), QR(3, 7, 11, 15)
▶ Diagonal round: QR(0, 5, 10, 15), QR(1, 6, 11, 12), QR(2, 7, 8, 13), QR(3, 4, 9, 14)



11

ChaCha20: Summary

1. Initialize the state (as previously shown)
2. Compute 20 rounds
3. Add (mod 232) initial state to newly obtained state
4. Obtain 64 bytes of keystream
5. XOR keystream onto plaintext

Ultimate goal:
export fn crypto_stream_chacha20_ietf(
reg u32 ct_ptr, reg ptr u8[12] nonce_ptr,
reg ptr u8[32] sk_ptr, reg u32 ct_len)



12

Implementing ChaCha20 on Cortex-M4

▶ Strategy for optimizing on the M4
▶ Write quarterround function in Jasmin
▶ (Merge 4 quarterround functions into a full round)
▶ Implement loop over 20 rounds in Jasmin
▶ Implement loop over message length in Jasmin
▶ Optimize inner loop over 20 rounds:

▶ Keep data in registers as much as possible (reduce loads/stores)
▶ Eliminate ROR instructions



13

Useful features of the M4

▶ 16 state words won’t fit into registers, you need the stack
▶ -auto-spill(-all)
▶ Use () = #spill(X); and () = #unspill(X);

▶ Second input of arithmetic instructions goes through barrel shifter
▶ Can shift/rotate one input for free
▶ Examples:

▶ a = b ^ (c << 2): left-shift c by 2, xor to b, store result in a
▶ c = a + (b >>r 5): right-rotate b by 5, add to a, store result in c
▶ Note: Ordering is important! Can only shift latter argument



13

Useful features of the M4

▶ 16 state words won’t fit into registers, you need the stack
▶ -auto-spill(-all)
▶ Use () = #spill(X); and () = #unspill(X);

▶ Second input of arithmetic instructions goes through barrel shifter
▶ Can shift/rotate one input for free
▶ Examples:

▶ a = b ^ (c << 2): left-shift c by 2, xor to b, store result in a
▶ c = a + (b >>r 5): right-rotate b by 5, add to a, store result in c
▶ Note: Ordering is important! Can only shift latter argument



14

Assignment 2

ECDH on Curve25519



15

Before we start

Please run:
git stash
git pull --rebase
git stash apply



16

Overview of this exercise

▶ Implement constant-time conditional move

▶ Implement scalar multiplication on Ed25519 using double-and-add
▶ Implement scalar multiplication on Ed25519 using double-and-add-always
▶ Verify correctness against the Python reference implementation
▶ Verify if the implementations are constant-time (CT) using Jasmin’s CT checker



16

Overview of this exercise

▶ Implement constant-time conditional move
▶ Implement scalar multiplication on Ed25519 using double-and-add

▶ Implement scalar multiplication on Ed25519 using double-and-add-always
▶ Verify correctness against the Python reference implementation
▶ Verify if the implementations are constant-time (CT) using Jasmin’s CT checker



16

Overview of this exercise

▶ Implement constant-time conditional move
▶ Implement scalar multiplication on Ed25519 using double-and-add
▶ Implement scalar multiplication on Ed25519 using double-and-add-always

▶ Verify correctness against the Python reference implementation
▶ Verify if the implementations are constant-time (CT) using Jasmin’s CT checker



16

Overview of this exercise

▶ Implement constant-time conditional move
▶ Implement scalar multiplication on Ed25519 using double-and-add
▶ Implement scalar multiplication on Ed25519 using double-and-add-always
▶ Verify correctness against the Python reference implementation

▶ Verify if the implementations are constant-time (CT) using Jasmin’s CT checker



16

Overview of this exercise

▶ Implement constant-time conditional move
▶ Implement scalar multiplication on Ed25519 using double-and-add
▶ Implement scalar multiplication on Ed25519 using double-and-add-always
▶ Verify correctness against the Python reference implementation
▶ Verify if the implementations are constant-time (CT) using Jasmin’s CT checker



17

Structure of Assignment 2

The scalar multiplication is k ·Q, where:
▶ k is the scalar, i.e., an integer

▶ Q is a point on the twisted Edwards curve −x2 + y2 = 1 + dx2y2

▶ d = −121665/121666 over the field Fp with p = 2255 − 19, i.e.,
d = 37095705934669439343138083508754565189542113879843219016388785533085940283555

▶ Its coordinates are in Fp



17

Structure of Assignment 2

The scalar multiplication is k ·Q, where:
▶ k is the scalar, i.e., an integer
▶ Q is a point on the twisted Edwards curve −x2 + y2 = 1 + dx2y2

▶ d = −121665/121666 over the field Fp with p = 2255 − 19, i.e.,
d = 37095705934669439343138083508754565189542113879843219016388785533085940283555

▶ Its coordinates are in Fp



17

Structure of Assignment 2

The scalar multiplication is k ·Q, where:
▶ k is the scalar, i.e., an integer
▶ Q is a point on the twisted Edwards curve −x2 + y2 = 1 + dx2y2

▶ d = −121665/121666 over the field Fp with p = 2255 − 19, i.e.,
d = 37095705934669439343138083508754565189542113879843219016388785533085940283555

▶ Its coordinates are in Fp



18

Structure of Assignment 2

The scalar multiplication depends on two things: field arithmetic and group arithmetic.
▶ Field arithmetic over Fp:

▶ Modular addition, modular subtraction, modular multiplication, inversion
▶ Provided in src/fe25519.jazz

▶ Group arithmetic:
▶ Point addition, point doubling
▶ Provided in src/ge25519.jazz

▶ Scalar multiplication is provided in src/smult.jazz and src/smult_ct.jazz



18

Structure of Assignment 2

The scalar multiplication depends on two things: field arithmetic and group arithmetic.
▶ Field arithmetic over Fp:

▶ Modular addition, modular subtraction, modular multiplication, inversion
▶ Provided in src/fe25519.jazz

▶ Group arithmetic:
▶ Point addition, point doubling
▶ Provided in src/ge25519.jazz

▶ Scalar multiplication is provided in src/smult.jazz and src/smult_ct.jazz



18

Structure of Assignment 2

The scalar multiplication depends on two things: field arithmetic and group arithmetic.
▶ Field arithmetic over Fp:

▶ Modular addition, modular subtraction, modular multiplication, inversion
▶ Provided in src/fe25519.jazz

▶ Group arithmetic:
▶ Point addition, point doubling
▶ Provided in src/ge25519.jazz

▶ Scalar multiplication is provided in src/smult.jazz and src/smult_ct.jazz



19

Structure of Assignment 2

Available test targets:
▶ make TARGET=fe25519 test-board
▶ make TARGET=ge25519 test-board
▶ make test-board
▶ make CT=no test-board
▶ make TARGET=all test-board
▶ make TARGET=fe25519_rd32 test-board



20

Constant-time conditional move

The non-constant-time version in
src/fe25519.jazz:

fn fe25519_cmov(reg ptr u32[N] pr px,
reg u32 b)
-> reg ptr u32[N] {

if (b == 1) {
pr = #copy(px);

}

pr = pr;
return pr;

}

To make it constant-time:
▶ pr = b*px + (1 - b)*pr
▶ Expand b to all-one/all-zero mask
▶ Use AND as multiplication
▶ Use XOR as addition

To check if your implementation is correct, run: make TARGET=fe25519 test-board



21

Jasmin’s Constant-time Checker

Annotate your function’s arguments with public or secret types:
▶ public: data may be allowed to leak
▶ secret: must not leak
▶ Example: #[ct = "secret * public -> secret"]
▶ Reference:

https://jasmin-lang.readthedocs.io/en/stable/tools/ct.html#type-system

Run Jasmin’s CT checker on fe25519_cmov with:

jasmin-ct --arch arm-m4 src/fe25519.jazz --slice=fe25519_cmov

▶ --arch: target architecture
▶ --slice: function to check CT property

https://jasmin-lang.readthedocs.io/en/stable/tools/ct.html#type-system


21

Jasmin’s Constant-time Checker

Annotate your function’s arguments with public or secret types:
▶ public: data may be allowed to leak
▶ secret: must not leak
▶ Example: #[ct = "secret * public -> secret"]
▶ Reference:

https://jasmin-lang.readthedocs.io/en/stable/tools/ct.html#type-system

Run Jasmin’s CT checker on fe25519_cmov with:

jasmin-ct --arch arm-m4 src/fe25519.jazz --slice=fe25519_cmov

▶ --arch: target architecture
▶ --slice: function to check CT property

https://jasmin-lang.readthedocs.io/en/stable/tools/ct.html#type-system


22

Scalar Multiplication on Ed25519

Double-and-add:

R← Q
for i← n− 2 downto 0 do

R← 2Q
if (k)2[i] = 1 then

R← R+Q
end if

end for
return R

Double-and-add-always:

R← Q
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+Q
else

R← R+O
end if

end for
return R



23

Scalar Multiplication on Ed25519

In the scalar multiplication:
▶ Addition and doubling are point addition and doubling (in ge25519.jazz)

▶ -auto-spill is used
▶ To avoid register allocation errors, you may need to use #[spill] when introducing a new

register.
Once you are done, do:
▶ make CT=no test-board to test the double-and-add implementation
▶ make test-board to test the double-and-add-always implementation
▶ Annotate and run Jasmin’s CT checker on the function crypto_scalarmult



23

Scalar Multiplication on Ed25519

In the scalar multiplication:
▶ Addition and doubling are point addition and doubling (in ge25519.jazz)
▶ -auto-spill is used

▶ To avoid register allocation errors, you may need to use #[spill] when introducing a new
register.

Once you are done, do:
▶ make CT=no test-board to test the double-and-add implementation
▶ make test-board to test the double-and-add-always implementation
▶ Annotate and run Jasmin’s CT checker on the function crypto_scalarmult



23

Scalar Multiplication on Ed25519

In the scalar multiplication:
▶ Addition and doubling are point addition and doubling (in ge25519.jazz)
▶ -auto-spill is used
▶ To avoid register allocation errors, you may need to use #[spill] when introducing a new

register.

Once you are done, do:
▶ make CT=no test-board to test the double-and-add implementation
▶ make test-board to test the double-and-add-always implementation
▶ Annotate and run Jasmin’s CT checker on the function crypto_scalarmult



23

Scalar Multiplication on Ed25519

In the scalar multiplication:
▶ Addition and doubling are point addition and doubling (in ge25519.jazz)
▶ -auto-spill is used
▶ To avoid register allocation errors, you may need to use #[spill] when introducing a new

register.
Once you are done, do:
▶ make CT=no test-board to test the double-and-add implementation
▶ make test-board to test the double-and-add-always implementation
▶ Annotate and run Jasmin’s CT checker on the function crypto_scalarmult



24

Some Jasmin notations that may help you for this exercise:
▶ #copy(X): copy the content of an array to another array
▶ #[spill] reg u32 X: tell the Jasmin compiler to automatically spill register X onto the

stack
▶ !X: bit negation of X (i.e., !101 = 010)


