Engineering Cryptographic Software

The Programming Assignments

Hien Pham and Amin Abdulrahman

January 2026



Ny

What you will need hardware-wise:
> A laptop/computer
» An STM32Nucleo-L4R5ZI board
» A micro USB cable
What you will need software-wise:
» The VM available from: https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD7'

> Arecent version of VirtualBox + its expansion pack

— The VM can be imported like this: VirtualBox — File — Import Appliance — Select
CryptoEngineering-VM-v20260107.ova

TWe also have copies on a USB drive


https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD7

Update the code

Please run:
git pull --rebase
(Optionally: git stash beofre and git stash apply after)



Assignment 0

Adding up 1000 integers



Ny

Simple task: Write a Jasmin program that sums up 1000 integers. Then make it fast.
Where to start:

> Inside the VM, find the directory of the assignment under ~/cryptoeng/assignmentO-sum.
> Check the README for detailed information.

> You will only need to modify: sum. jazz
>

sum_wrapper . h hints at the interface: The first argument is a pointer to an array of 32-bit
integers. The second argument is a 32-bit integer defining the number of integers to be
summed up (in our case, 1000).



Assignment 1

ChaCha20



Stream Cipher Recap: General

> Symmetric key cipher
> General idea: Combine plaintext with a stream of pseudorandom bytes, the keystream
» Loosely inspired by the one-time pad (OTP)



Ay

Stream Cipher Recap: General @\

> Symmetric key cipher
> General idea: Combine plaintext with a stream of pseudorandom bytes, the keystream
» Loosely inspired by the one-time pad (OTP)

Encryption Decryption
Secret Key Secret Key
Keystream Keystream
Generator Generator
k; k;
Plaintext N Ciphertext Plaintext N Ciphertext
ms N ms N




Stream Cipher Recap: Security & Comparison

For a stream cipher to be secure, it should offer the following:
» Have a ‘random’™looking keystream
> Bias-free keystream
> |arge-period keystream
» Impossibility to recover the key from the ciphertext or keystream



Stream Cipher Recap: Security & Comparison @@\

Ny

For a stream cipher to be secure, it should offer the following:

» Have a ‘random’™looking keystream

> Bias-free keystream

> |arge-period keystream

» Impossibility to recover the key from the ciphertext or keystream
In comparison to block ciphers (e.g., AES):

» Operating on small chunks of data (e.g., in a streaming context) will not make the output a
full-sized block

» More resistant to noise on transmission channel
> Stream ciphers are often faster and more easily implementable in hardware



@

Stream cipher proposed by Bernstein in 2008

Alternative to AES on platforms without hardware acceleration
ARX design: Add, Rotate, XOR

“Easily” implementable in constant-time

Used in TLS, SSH, and other modern protocols

Details: https://datatracker.ietf.org/doc/html/rfc8439

vVvyvVvyVvyyvyy


https://datatracker.ietf.org/doc/html/rfc8439

@

Ny

» Stream cipher proposed by Bernstein in 2008

> Alternative to AES on platforms without hardware acceleration

> ARX design: Add, Rotate, XOR

» “Easily” implementable in constant-time

» Used in TLS, SSH, and other modern protocols

» Details: https://datatracker.ietf.org/doc/html/rfc8439
Parameters:

> 256-bit key (32 bytes)

> 96-bit nonce (12 bytes)

» 32-bit block counter (4 bytes)

» Generates 64-byte keystream blocks


https://datatracker.ietf.org/doc/html/rfc8439

ChaCha20 @\

T

> Has a state of 64 bytes, 4x4 matrix of 32-bit words
» With ¢ = constant, k = key, b = blockcount, and n = nonce:

cccceccece cccccececece cccceccececcec ccccececcece

0 1 2 3

kkkkkkkk kkkkkkkk kkkkkkkk kkkkkkkk

4 5 6 7

kkkkkkkk kkkkkkkk kkkkkkkk kkkkkkkk

8 & 10 ilil

bbbbbbbb nnnnnnnn nnnnnnnn nnnnnnnn

12 13 14 15

Constants: 0x61707865, 0x3320646e, 0x79622d32, 0x6b206574



» Elementary operation: Quarterround (QR)
» Four add-xor-rotate operations each:

1. a += b; d "= a; d <<<= 16;
2. c+=d; b "= c; b <<= 12;
3. a+=Db; d "= a; d <<<= 8;
4 c+=d; b "= c; b <<= 7;

> Note: Addition mod 232
» Per block: 20 rounds = 10 x (column round + diagonal round)
» Column round: QR(0, 4, 8,12), QR(1, 5,9, 13), QR(2, 6, 10, 14), QR(3, 7, 11, 15)
> Diagonal round: QR(0, 5,10, 15), QR(1, 6,11, 12), QR(2, 7, 8,13), QR(3, 4,9, 14)



@‘H

1. Initialize the state (as previously shown)

2. Compute 20 rounds

3. Add (mod 232) initial state to newly obtained state
. Obtain 64 bytes of keystream

5. XOR keystream onto plaintext

Ultimate goal:

export fn crypto_stream_chacha20_ietf (
reg u32 ct_ptr, reg ptr u8[12] nonce_ptr,
reg ptr u8[32] sk_ptr, reg u32 ct_len)

~



Implementing ChaCha20 on Cortex-M4

> Strategy for optimizing on the M4

> Write quarterround function in Jasmin

(Merge 4 quarterround functions into a full round)
Implement loop over 20 rounds in Jasmin
Implement loop over message length in Jasmin
Optimize inner loop over 20 rounds:

> Keep data in registers as much as possible (reduce loads/stores)
> Eliminate ROR instructions

vvyyvyy



Useful features of the M4

> 16 state words won't fit into registers, you need the stack
» -auto-spill(-all)
> Use () = #spill(X); and 0 = #unspill(X);



Useful features of the M4

> 16 state words won't fit into registers, you need the stack
» -auto-spill(-all)
> Use () = #spill(X); and () = #unspill(X);
» Second input of arithmetic instructions goes through barrel shifter
» Can shift/rotate one input for free
» Examples:

> a =Db " (c << 2): left-shift c by 2, xor to b, store result in a
> c = a + (b >r 5):rightrotate b by 5, add to a, store resultin ¢
> Note: Ordering is important! Can only shift latter argument



Assignment 2

ECDH on Curve25519



Before we start

Please run:

git stash

git pull --rebase
git stash apply



Overview of this exercise

» |Implement constant-time conditional move



Overview of this exercise

» |Implement constant-time conditional move
> Implement scalar multiplication on Ed25519 using double-and-add



Overview of this exercise

» |Implement constant-time conditional move
> Implement scalar multiplication on Ed25519 using double-and-add
» Implement scalar multiplication on Ed25519 using double-and-add-always



Overview of this exercise @@—\\

» |Implement constant-time conditional move

> Implement scalar multiplication on Ed25519 using double-and-add

» Implement scalar multiplication on Ed25519 using double-and-add-always
> Verify correctness against the Python reference implementation



Ny

Overview of this exercise @@—\\

» |Implement constant-time conditional move

> Implement scalar multiplication on Ed25519 using double-and-add

» Implement scalar multiplication on Ed25519 using double-and-add-always

> Verify correctness against the Python reference implementation

> Verify if the implementations are constant-time (CT) using Jasmin's CT checker



Structure of Assignment 2

The scalar multiplication is k - Q, where:
» kisthe scalar, i.e., aninteger



Structure of Assignment 2

The scalar multiplication is & - @, where:
» kisthe scalar, i.e., aninteger

> (Qis apoint on the twisted Edwards curve —z2 + y? = 1 + dx?y?

> d = —121665/121666 over the field F,, with p = 22%° — 19, i.e,
d = 37095705934669439343138083508754565189542113879843219016388785533085940283555



Structure of Assignment 2

The scalar multiplication is & - @, where:
» kisthe scalar, i.e., aninteger

> (Qis apoint on the twisted Edwards curve —z2 + y? = 1 + dx?y?

> d = —121665/121666 over the field F,, with p = 22%° — 19, i.e,
d = 37095705934669439343138083508754565189542113879843219016388785533085940283555
> Its coordinates arein I,



Structure of Assignment 2

The scalar multiplication depends on two things: field arithmetic and group arithmetic.
» Field arithmetic over IF,;:

» Modular addition, modular subtraction, modular multiplication, inversion
» Provided in src/fe25519. jazz



Structure of Assignment 2

The scalar multiplication depends on two things: field arithmetic and group arithmetic.
» Field arithmetic over IF,;:

» Modular addition, modular subtraction, modular multiplication, inversion
» Provided in src/fe25519. jazz

» Group arithmetic:

> Point addition, point doubling
» Provided in src/ge25519. jazz



Structure of Assignment 2

The scalar multiplication depends on two things: field arithmetic and group arithmetic.
» Field arithmetic over IF,;:

» Modular addition, modular subtraction, modular multiplication, inversion
» Provided in src/fe25519. jazz

» Group arithmetic:

> Point addition, point doubling
» Provided in src/ge25519. jazz

» Scalar multiplication is provided in src/smult. jazz and src/smult_ct.jazz



Structure of Assignment 2

Available test targets:

>

>
>
>
>
>

make
make
make
make
make

make

TARGET=fe25519 test-board
TARGET=ge25519 test-board
test-board

CT=no test-board

TARGET=all test-board
TARGET=fe25519_rd32 test-board



Constant-time conditional move @

The non-constant-time version in
src/fe25519. jazz:

fn fe25519_cmov(reg ptr u32[N] pr px,
reg u32 b)
-> reg ptr u32[N] {
if (b ==1) {
pr = #copy(px);

}
pr = pr;
return pr;

}

To check if your implementation is correct, run

To make it constant-time:

> pr = b*px + (1 - b)*pr

> Expand b to all-one/all-zero mask
> Use AND as multiplication

> Use XOR as addition

. make TARGET=fe25519 test-board



Jasmin's Constant-time Checker

Annotate your function’s arguments with public or secret types:
» public: data may be allowed to leak
> secret: must not leak
> Example: #[ct = "secret * public -> secret"]
> Reference:
https://jasmin-lang.readthedocs.io/en/stable/tools/ct.html#type-system


https://jasmin-lang.readthedocs.io/en/stable/tools/ct.html#type-system

Jasmin's Constant-time Checker @

Annotate your function’s arguments with public or secret types:
» public: data may be allowed to leak
> secret: must not leak
> Example: #[ct = "secret * public -> secret"]

> Reference:
https://jasmin-lang.readthedocs.io/en/stable/tools/ct.html#type-system

Run Jasmin's CT checker on £e25519_cmov with:

jasmin-ct --arch arm-m4 src/fe25519.jazz --slice=fe25519_cmov

» --arch: target architecture
» —-slice: function to check CT property


https://jasmin-lang.readthedocs.io/en/stable/tools/ct.html#type-system

Scalar Multiplication on Ed25519 @@@?

Double-and-add: Double-and-add-always:
R+ Q@ R+ Q
fori < n — 2 downto 0 do fori + n — 2 downto 0 do
R+ 2Q R+ 2R
if (k)2[¢] = 1then if (k)2[¢] = 1then
R+ R+Q R+ R+Q
end if else
end for R+~ R+0O
return R end if
end for

return R



Scalar Multiplication on Ed25519

In the scalar multiplication:
» Addition and doubling are point addition and doubling (in ge25519. jazz)



Scalar Multiplication on Ed25519

In the scalar multiplication:
» Addition and doubling are point addition and doubling (in ge25519. jazz)
> -auto-spill is used



Scalar Multiplication on Ed25519

In the scalar multiplication:
» Addition and doubling are point addition and doubling (in ge25519. jazz)
> -auto-spill is used
> To avoid register allocation errors, you may need to use #[spill] when introducing a new
register.



Ny

Scalar Multiplication on Ed25519 6@5

In the scalar multiplication:
» Addition and doubling are point addition and doubling (in ge25519. jazz)
> -auto-spill is used
> To avoid register allocation errors, you may need to use #[spill] when introducing a new
register.
Once you are done, do:
> make CT=no test-board to test the double-and-add implementation
> make test-board to test the double-and-add-always implementation
» Annotate and run Jasmin's CT checker on the function crypto_scalarmult



Some Jasmin notations that may help you for this exercise:
> #copy (X): copy the content of an array to another array

> #[spill] reg u32 X:tell the Jasmin compiler to automatically spill register X onto the
stack

> IX:bit negation of X (i.e,, 1101 = 010)



