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Where were we?

▶ For scalar multiplication, we assumed a group G
▶ of finite order ℓ,
▶ that is commutative (Abelian),
▶ that is cyclic with generator P , and
▶ in which the discrete-logarithm problem is hard.

▶ Today: make this group concrete
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Fields

Definition
A set S together with two operations (+, ·) is called a field K = (S,+, ·) if
▶ (S,+) is an Abelian group
▶ (S \ {0}, ·) is an Abelian group, where 0 is the neutral element of (S,+)

▶ For all a, b, c ∈ S it holds that a · (b+ c) = a · b+ a · c (distributivity)

▶ Consider n-fold addition of 1, so, n · 1 = 1 + 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

▶ If there is no n such that n · 1 = 0, then the characterisic of K is char(K) = 0
▶ Otherwise, char(K) = p for the smallest p such that p · 1 = 0
▶ If char(K) = p ̸= 0, then p is prime
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Examples

▶ The rationals (Q,+, ·) are a field

▶ The integers (Z,+, ·) are not a field
▶ Remember, we don’t have multiplicative inverses

▶ The reals (R,+, ·) are a field
▶ {0, . . . , q − 1} together with addition and multiplication modulo q is a field if q is prime

▶ We typically denote this field Fq

▶ The characteristic of Fq is q

▶ The smallest field is {0, 1} with addition and multiplication modulo 2
▶ Addition is XOR
▶ Multiplication is AND
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Suitable/common groups

Groups with hard DLP
▶ Traditional answer (DH76 paper): Z∗

p with large prime-order subgroup

▶ Let (G, ◦) be a group
▶ Let H by a subset of G
▶ Then (H, ◦) is a subgroup of G if it is a group

▶ Modern answer: Elliptic curve over Fq with large prime-order subgroup
▶ Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2
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Typical view on elliptic curves

Definition
Let K be a field with char(K) ̸∈ {2, 3} and let a, b ∈ K . Then the following equation defines an
elliptic curve E:

E : y2 = x3 + ax+ b,

if the discriminant ∆ = −64a3 − 432b2 of E is not equal to zero. This equation is called the short
Weierstrass form of an elliptic curve.
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Rational points

Setup for cryptography
▶ Choose K = Fq

▶ Consider the set of Fq-rational points:

E(Fq) = {(x, y) ∈ Fq × Fq : y2 = x3 + ax+ b} ∪ {O}

▶ The element O is the “point at infinity”
▶ This set forms a group (together with addition law)
▶ Order of this group: |E(Fq)| ≈ |Fq|
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The group law
Example curve: y2 = x3 − x over R

Addition of points

▶ Add points
P = (−0, 9;−0, 4135) and
Q = (−0, 1; 0, 3146)

▶ Compute line through the two
points

▶ Determine third intersection
T = (xT , yT ) with the elliptic
curve

▶ Result of the addition:
P +Q = (xT ,−yT )

Graph of E over R

0 1−1−2
0

−1

−2

1

2

•

•

•

•
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The group law
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▶ Double the point
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Group law in formulas

Curve equation: y2 = x3 + ax+ b

Point addition

▶ P = (xP , yP ), Q = (xQ, yQ)→ P +Q = R = (xR, yR) with

▶ xR =
(

yQ−yP

xQ−xP

)2

− xP − xQ

▶ yR =
(

yQ−yP

xQ−xP

)
(xP − xR)− yP

Point doubling

▶ P = (xP , yP ), 2P = (xR, yR) with

▶ xR =
(

3x2
P+a
2yP

)2

− 2xP

▶ yR =
(

3x2
P+a
2yP

)
(xP − xR)− yP
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More Weierstrass curve group law

▶ Neutral element is O
▶ Inverse of a point (x, y) is (x,−y)

▶ Note: Formulas don’t work for P + (−P ), also don’t work for O
▶ Implementations need to distinguish these cases!
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Finding a suitable curve

Security requirements for ECC
▶ ℓ = |E(Fq)|must have large prime-order subgroup (Pohlig-Hellman)
▶ For n bits of security we need 2n-bit prime-order subgroup (Pollard’s ρ)

▶ Impossible to transfer DLP to less secure groups:
▶ ℓ must not be equal to q
▶ We need ℓ ∤ pk − 1 for small k

Finding a curve
▶ Fix finite field Fq of suitable size
▶ Fix curve parameter a (quite common: a = −3)
▶ Pick curve parameter b until E fulfills desired properties

▶ This requires efficient “point counting”
▶ This requires efficient factorization or primality proving
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Standardized curves

“The nice thing about standards is that you have so many to choose from. ” – Andrew S.
Tanenbaum

▶ Various standardized curves, most well-known: NIST curves:
▶ Big-prime field curves with 192, 224, 256, 384, and 521 bits
▶ Binary curves with 163, 233, 283, 409, and 571 bits
▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

▶ SECG curves (Certicom), prime-field and binary curves
▶ Brainpool curves (BSI), only prime-field curves
▶ FRP256v1 (ANSSI), one prime-field curve (256 bits)
▶ SM2 (China), one prime-field curve (256 bits)
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Putting it together

▶ Choose security level (e.g., 128 bits)

▶ Pick standard curve, e.g., NIST-P256
▶ Implement field arithmetic (more tomorrow)
▶ Implement ECC addition and doubling
▶ Implement scalar multiplication
▶ Maybe implement fixed-basepoint scalar multiplication
▶ You’re done with ECDH software
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Problem I: inversions

Inversions
▶ Adding P = (xP , yP ) and Q = (xQ, yQ) needs an inversion in Fq

▶ Inversions are expensive
▶ Constant-time inversions are even more expensive

Solution: projective coordinates
▶ Store fractions of elements of Fq , invert only once at the end

▶ Represent points in projective coordinates: P = (XP : YP : ZP ) with xP = XP /ZP and
yP = YP /ZP

▶ The point (1 : 1 : 0) is the point at infinity
▶ Also possible: weighted projective coordinates:

▶ Jacobian coordinates: P = (XP : YP : ZP ) with xP = XP /Z
2
P and yP = YP /Z

3
P

▶ Important: Never send projective representation, always convert to affine!
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Problem II: group-law special cases

▶ Addition of P +Q needs to distinguish different cases:
▶ If P = O return Q
▶ Else if Q = O return P
▶ Else if P = Q call doubling routine
▶ Else if P = −Q return O
▶ Else use addition formulas

▶ Similar for doubling P :
▶ If P = O return P
▶ Else if yP = 0 return O
▶ Else use doubling formulas

▶ Constant-time implementations of this are horrible
▶ Good news: Can avoid the checks when computing k · P and k < |E(Fq)|
▶ Bad news: Side-channel countermeasures use k > |E(Fq)|
▶ More bad news: Doesn’t work for multi-scalar multiplication
▶ Baseline: simple implementations are likely to be wrong or insecure
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Solution I: Montgomery curves

▶ Consider elliptic curves of the form By2 = x3 +Ax2 + x.
▶ Montgomery in 1987 showed how to perform x-coordinate-based arithmetic:

▶ Given the x-coordinate xP of P , and
▶ given the x-coordinate xQ of Q, and
▶ given the x-coordinate xP−Q of P −Q

▶ compute the x-coordinate xR of R = P +Q

▶ This is called differential addition
▶ Less efficient differential-addition formulas for other curve shapes
▶ Use to efficiently compute the x-coordinate of kP given only the x-coordinate of P
▶ For this, let’s use projective representation (X : Z) with x = (X/Z)
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One Montgomery “ladder step”

const a24 = (A+ 2)/4 (A from the curve equation)
function LADDERSTEP(xQ−P , XP , ZP , XQ, ZQ)

t1 ← XP + ZP

t6 ← t21
t2 ← XP − ZP

t7 ← t22
t5 ← t6 − t7
t3 ← XQ + ZQ

t4 ← XQ − ZQ

t8 ← t4 · t1
t9 ← t3 · t2
XP+Q ← (t8 + t9)

2

ZP+Q ← xQ−P · (t8 − t9)
2

X2P ← t6 · t7
Z2P ← t5 · (t7 + a24 · t5)
return (X2P , Z2P , XP+Q, ZP+Q)

end function
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The Montgomery ladder

Require: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Ensure: (XkP , ZkP ) fulfilling xkP = XkP /ZkP

x1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← n− 1 downto 0 do

if bit i of k is 1 then
(X3, Z3, X2, Z2)← LADDERSTEP(x1, X3, Z3, X2, Z2)

else
(X2, Z2, X3, Z3)← LADDERSTEP(x1, X2, Z2, X3, Z3)

end if
end for
returnX2/Z2
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The Montgomery ladder (ctd.)

Require: A scalar 0 ≤ k ∈ Z and the x-coordinate xP of some point P
Ensure: (XkP , ZkP ) fulfilling xkP = XkP /ZkP

X1 = xP ; X2 = 1; Z2 = 0; X3 = xP ; Z3 = 1
for i← n− 1 downto 0 do

b← bit i of s
c← b⊕ p
p← b
(X2, X3)← CSWAP(X2, X3, c)
(Z2, Z3)← CSWAP(Z2, Z3, c)
(X2, Z2, X3, Z3)← LADDERSTEP(x1, X2, Z2, X3, Z3)

end for
returnX2/Z2
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(Dis-)advantages of the Montgomery ladder

Advantages:
▶ Works on all inputs, no special cases

▶ Very regular structure, easy to protect against timing attacks
▶ Replace the if statement by conditional swap
▶ Be careful with constant-time swaps

▶ Point compression/decompression for free
▶ Easy to implement, harder to screw up in hard-to-detect ways
▶ Simple implementations are likely to be correct and secure

Disadvantages:
▶ Not all curves can be converted to Montgomery shape
▶ Always have a cofactor of at least 4
▶ Ladders on general Weierstrass curves are much less efficient

▶ We only get the x coordinate of the result, tricky for signatures
▶ Can reconstruct y, but that involves some additional cost
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Solution II: (twisted) Edwards curves

▶ Edwards, 2007: New form for elliptic curves (“Edwards curves”)
▶ Bernstein, Lange, 2007: very fast addition and doubling on these curves
▶ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to “twisted Edwards

curves”

▶ Core advantage of (twisted) Edwards curves: complete group law
▶ No need to handle special cases
▶ No “point at infinity” to work with
▶ Can speed up doubling, but addition formulas work for P + P

▶ Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for
some curves

▶ Always efficient: transformation between Montgomery curves and twisted Edwards curves
▶ Again: simple implementations are likely to be correct and secure
▶ Disadvantage: always have a cofactor of at least 4
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So, what’s the deal with the cofactor?
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So, what’s the deal with the cofactor?

▶ Protocols need to be careful to avoid subgroup attacks
▶ Monero screwed this up, which allowed double-spending
▶ Elegant solution: “Decaf” and “Ristretto” encoding by Hamburg, see:

▶ https://eprint.iacr.org/2015/673.pdf
▶ https://ristretto.group
▶ https://github.com/otrv4/libgoldilocks

▶ This is also used in the code of assignment2-ecdh25519

https://eprint.iacr.org/2015/673.pdf
https://ristretto.group
https://github.com/otrv4/libgoldilocks
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Solution III: Complete group law on Weierstrass curves

▶ Bosma, Lenstra, 1995: complete group law for Weierstrass curves
▶ Problem: Extremely inefficient

▶ Renes, Costello, Batina, 2016: Much faster complete group law for Weierstrass curves
▶ Less efficient than (twisted) Edwards
▶ Overhead quite architecture-dependent (Schwabe, Sprenkels, 2019)
▶ Covers all curves
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Problem III: Wrong-curve attacks

ECDH attack scenario
▶ Alice sends point on different (insecure) curve with small subgroup
▶ Bob computes “shared key” in that small subgroup
▶ Alice obtains “shared key” through brute force
▶ Alice learns Bob’s secret scalar modulo the order of the small subgroup

Countermeasures
▶ Check that input point is on the curve (functional tests will miss this!)

▶ Send compressed points (x, parity(y)); decompression returns (x, y) on the curve or fails
▶ Send only x (Montgomery ladder); but: x could still be on the “twist” of E
▶ Make sure that the twist is also secure (“twist security”)
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Problem IV: Backdoors in standards?

“”I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated
them through their relationships with industry.” – Bruce Schneier, 2013.

▶ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
▶ Constants of NIST curves have been obtained by hashing random values
▶ No-backdoor claim: We know the preimages
▶ Possible attack if you know a class of vulnerable curves: Generate random seeds until you

have found a vulnerable (and seemingly secure) curve
▶ Fact: There are no known insecurities of NIST curves
▶ Fact: There is no proof that there are no intentional vulnerabilities in NIST curves
▶ Question for ECC: who do you trust to pick the curve?
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Point representation and arithmetic

Collection of elliptic-curve shapes, point representations and group-operation formulas by
Bernstein and Lange:

https://www.hyperelliptic.org/EFD/

https://www.hyperelliptic.org/EFD/


27

Summary

▶ If you have to use Weierstraß (e.g., NIST) curves:
▶ Use complete formulas by Renes-Costello-Batina
▶ (Alternative: make sure that you don’t trigger special cases)

▶ If you can use Montgomery or twisted Edwards curves:
▶ For ECDH, typically use Mongomery curve and ladder
▶ For signatures, typically use twisted Edwards curve

▶ assignment2-ecdh25519 does ECDH on twisted Edwards curve!

▶ If you can choose encoding for twisted Edwards points, use Decaf/Ristretto
▶ Most common Montgomery / twisted Edwards curve: Curve25519

▶ Defined over finite field F2255−19

▶ Used in Montgomery form in X25519 ECDH
▶ Used in twisted Edwards form in Ed25519 signatures
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