

Engineering Cryptographic Software

Elliptic-Curve Arithmetic

Peter Schwabe

January 2026

- ▶ For scalar multiplication, we assumed a group G
 - ▶ of finite order ℓ ,
 - ▶ that is commutative (Abelian),
 - ▶ that is cyclic with generator P , and
 - ▶ in which the **discrete-logarithm** problem is hard.

- ▶ For scalar multiplication, we assumed a group G
 - ▶ of finite order ℓ ,
 - ▶ that is commutative (Abelian),
 - ▶ that is cyclic with generator P , and
 - ▶ in which the **discrete-logarithm problem** is hard.
- ▶ Today: make this group concrete

Definition

A set S together with two operations $(+, \cdot)$ is called a *field* $K = (S, +, \cdot)$ if

- ▶ $(S, +)$ is an Abelian group
- ▶ $(S \setminus \{0\}, \cdot)$ is an Abelian group, where 0 is the neutral element of $(S, +)$
- ▶ For all $a, b, c \in S$ it holds that $a \cdot (b + c) = a \cdot b + a \cdot c$ (distributivity)

Definition

A set S together with two operations $(+, \cdot)$ is called a *field* $K = (S, +, \cdot)$ if

- ▶ $(S, +)$ is an Abelian group
- ▶ $(S \setminus \{0\}, \cdot)$ is an Abelian group, where 0 is the neutral element of $(S, +)$
- ▶ For all $a, b, c \in S$ it holds that $a \cdot (b + c) = a \cdot b + a \cdot c$ (distributivity)
- ▶ Consider n -fold addition of 1 , so, $n \cdot 1 = \underbrace{1 + 1 + 1 + \cdots + 1}_{n \text{ times}}$

Definition

A set S together with two operations $(+, \cdot)$ is called a *field* $K = (S, +, \cdot)$ if

- ▶ $(S, +)$ is an Abelian group
- ▶ $(S \setminus \{0\}, \cdot)$ is an Abelian group, where 0 is the neutral element of $(S, +)$
- ▶ For all $a, b, c \in S$ it holds that $a \cdot (b + c) = a \cdot b + a \cdot c$ (distributivity)
- ▶ Consider n -fold addition of 1 , so, $n \cdot 1 = \underbrace{1 + 1 + 1 + \cdots + 1}_{n \text{ times}}$
 - ▶ If there is no n such that $n \cdot 1 = 0$, then the characteristic of K is $\text{char}(K) = 0$

Definition

A set S together with two operations $(+, \cdot)$ is called a *field* $K = (S, +, \cdot)$ if

- ▶ $(S, +)$ is an Abelian group
- ▶ $(S \setminus \{0\}, \cdot)$ is an Abelian group, where 0 is the neutral element of $(S, +)$
- ▶ For all $a, b, c \in S$ it holds that $a \cdot (b + c) = a \cdot b + a \cdot c$ (distributivity)
- ▶ Consider n -fold addition of 1 , so, $n \cdot 1 = \underbrace{1 + 1 + 1 + \cdots + 1}_{n \text{ times}}$
 - ▶ If there is no n such that $n \cdot 1 = 0$, then the characteristic of K is $\text{char}(K) = 0$
 - ▶ Otherwise, $\text{char}(K) = p$ for the smallest p such that $p \cdot 1 = 0$

Definition

A set S together with two operations $(+, \cdot)$ is called a *field* $K = (S, +, \cdot)$ if

- ▶ $(S, +)$ is an Abelian group
- ▶ $(S \setminus \{0\}, \cdot)$ is an Abelian group, where 0 is the neutral element of $(S, +)$
- ▶ For all $a, b, c \in S$ it holds that $a \cdot (b + c) = a \cdot b + a \cdot c$ (distributivity)
- ▶ Consider n -fold addition of 1 , so, $n \cdot 1 = \underbrace{1 + 1 + 1 + \cdots + 1}_{n \text{ times}}$
 - ▶ If there is no n such that $n \cdot 1 = 0$, then the characteristic of K is $\text{char}(K) = 0$
 - ▶ Otherwise, $\text{char}(K) = p$ for the smallest p such that $p \cdot 1 = 0$
 - ▶ If $\text{char}(K) = p \neq 0$, then p is prime

Examples

- The rationals $(\mathbb{Q}, +, \cdot)$ are a field

Examples

- ▶ The rationals $(\mathbb{Q}, +, \cdot)$ are a field
- ▶ The integers $(\mathbb{Z}, +, \cdot)$ are *not* a field
 - ▶ Remember, we don't have multiplicative inverses

Examples

- ▶ The rationals $(\mathbb{Q}, +, \cdot)$ are a field
- ▶ The integers $(\mathbb{Z}, +, \cdot)$ are *not* a field
 - ▶ Remember, we don't have multiplicative inverses
- ▶ The reals $(\mathbb{R}, +, \cdot)$ are a field

- ▶ The rationals $(\mathbb{Q}, +, \cdot)$ are a field
- ▶ The integers $(\mathbb{Z}, +, \cdot)$ are *not* a field
 - ▶ Remember, we don't have multiplicative inverses
- ▶ The reals $(\mathbb{R}, +, \cdot)$ are a field
- ▶ $\{0, \dots, q-1\}$ together with addition and multiplication modulo q is a field **if q is prime**
 - ▶ We typically denote this field \mathbb{F}_q
 - ▶ The characteristic of \mathbb{F}_q is q

Examples

- ▶ The rationals $(\mathbb{Q}, +, \cdot)$ are a field
- ▶ The integers $(\mathbb{Z}, +, \cdot)$ are *not* a field
 - ▶ Remember, we don't have multiplicative inverses
- ▶ The reals $(\mathbb{R}, +, \cdot)$ are a field
- ▶ $\{0, \dots, q-1\}$ together with addition and multiplication modulo q is a field if q is prime
 - ▶ We typically denote this field \mathbb{F}_q
 - ▶ The characteristic of \mathbb{F}_q is q
- ▶ The smallest field is $\{0, 1\}$ with addition and multiplication modulo 2
 - ▶ Addition is XOR
 - ▶ Multiplication is AND

Groups with hard DLP

- ▶ Traditional answer (DH76 paper): \mathbb{Z}_p^* with large prime-order subgroup

Groups with hard DLP

- ▶ Traditional answer (DH76 paper): \mathbb{Z}_p^* with large prime-order subgroup
 - ▶ Let (G, \circ) be a group
 - ▶ Let H by a subset of G
 - ▶ Then (H, \circ) is a *subgroup* of G if it is a group

Groups with hard DLP

- ▶ Traditional answer (DH76 paper): \mathbb{Z}_p^* with large prime-order subgroup
 - ▶ Let (G, \circ) be a group
 - ▶ Let H be a subset of G
 - ▶ Then (H, \circ) is a *subgroup* of G if it is a group
- ▶ Modern answer: Elliptic curve over \mathbb{F}_q with large prime-order subgroup

Groups with hard DLP

- ▶ Traditional answer (DH76 paper): \mathbb{Z}_p^* with large prime-order subgroup
 - ▶ Let (G, \circ) be a group
 - ▶ Let H be a subset of G
 - ▶ Then (H, \circ) is a *subgroup* of G if it is a group
- ▶ Modern answer: Elliptic curve over \mathbb{F}_q with large prime-order subgroup
- ▶ Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2

Groups with hard DLP

- ▶ Traditional answer (DH76 paper): \mathbb{Z}_p^* with large prime-order subgroup
 - ▶ Let (G, \circ) be a group
 - ▶ Let H be a subset of G
 - ▶ Then (H, \circ) is a *subgroup* of G if it is a group
- ▶ Modern answer: Elliptic curve over \mathbb{F}_q with large prime-order subgroup
- ▶ Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2

Definition

Let K be a field with $\text{char}(K) \notin \{2, 3\}$ and let $a, b \in K$. Then the following equation defines an elliptic curve E :

$$E : y^2 = x^3 + ax + b,$$

if the discriminant $\Delta = -64a^3 - 432b^2$ of E is not equal to zero. This equation is called the *short Weierstrass form* of an elliptic curve.

Setup for cryptography

- ▶ Choose $K = \mathbb{F}_q$
- ▶ Consider the set of \mathbb{F}_q -rational points:

$$E(\mathbb{F}_q) = \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

Setup for cryptography

- ▶ Choose $K = \mathbb{F}_q$
- ▶ Consider the set of \mathbb{F}_q -rational points:

$$E(\mathbb{F}_q) = \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

- ▶ The element \mathcal{O} is the “point at infinity”

Setup for cryptography

- ▶ Choose $K = \mathbb{F}_q$
- ▶ Consider the set of \mathbb{F}_q -rational points:

$$E(\mathbb{F}_q) = \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

- ▶ The element \mathcal{O} is the “point at infinity”
- ▶ This set forms a group (together with addition law)

Setup for cryptography

- ▶ Choose $K = \mathbb{F}_q$
- ▶ Consider the set of \mathbb{F}_q -rational points:

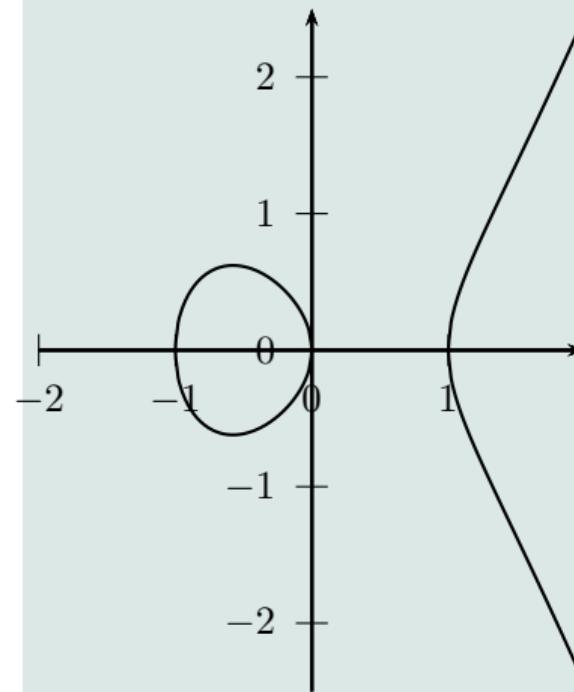
$$E(\mathbb{F}_q) = \{(x, y) \in \mathbb{F}_q \times \mathbb{F}_q : y^2 = x^3 + ax + b\} \cup \{\mathcal{O}\}$$

- ▶ The element \mathcal{O} is the “point at infinity”
- ▶ This set forms a group (together with addition law)
- ▶ Order of this group: $|E(\mathbb{F}_q)| \approx |\mathbb{F}_q|$

The group law

Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Graph of E over \mathbb{R}



The group law

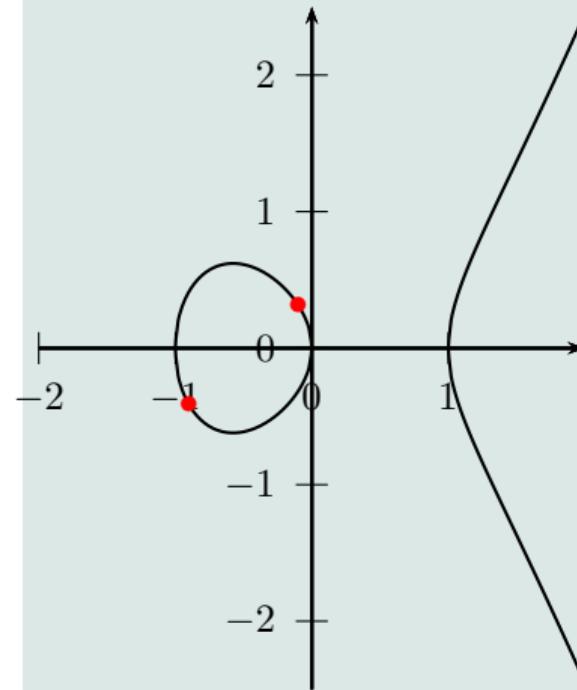
Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Addition of points

► Add points

$P = (-0, 9; -0, 4135)$ and
 $Q = (-0, 1; 0, 3146)$

Graph of E over \mathbb{R}



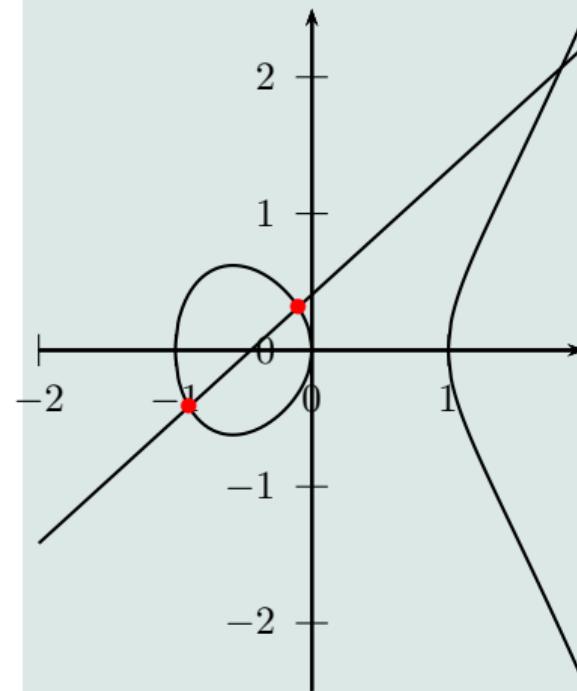
The group law

Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Addition of points

- ▶ Add points
 $P = (-0, 9; -0, 4135)$ and
 $Q = (-0, 1; 0, 3146)$
- ▶ Compute line through the two points

Graph of E over \mathbb{R}



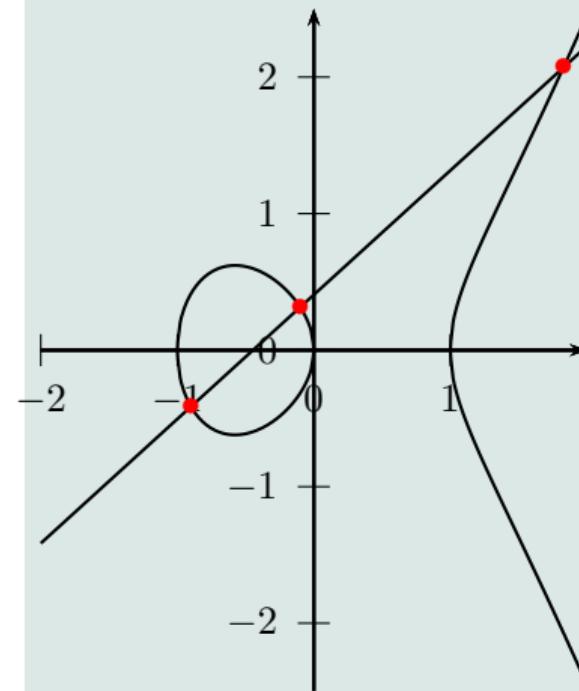
The group law

Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Addition of points

- ▶ Add points
 $P = (-0, 9; -0, 4135)$ and
 $Q = (-0, 1; 0, 3146)$
- ▶ Compute line through the two points
- ▶ Determine third intersection
 $T = (x_T, y_T)$ with the elliptic curve

Graph of E over \mathbb{R}



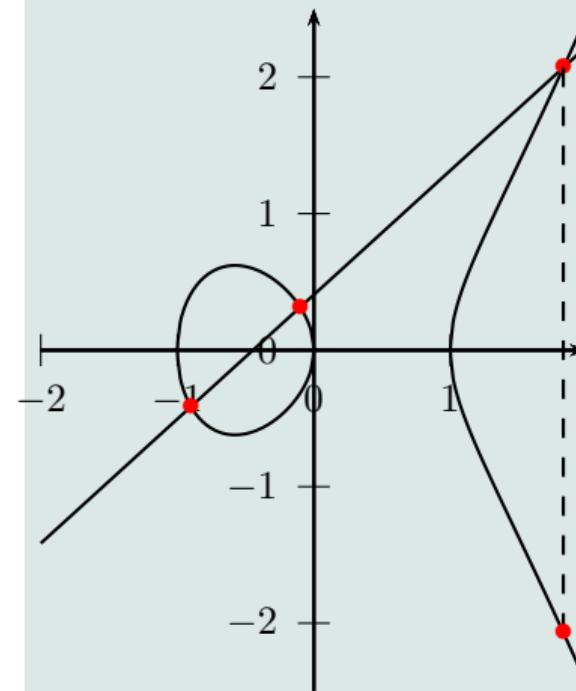
The group law

Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Addition of points

- ▶ Add points
 $P = (-0, 9; -0, 4135)$ and
 $Q = (-0, 1; 0, 3146)$
- ▶ Compute line through the two points
- ▶ Determine third intersection
 $T = (x_T, y_T)$ with the elliptic curve
- ▶ Result of the addition:
 $P + Q = (x_T, -y_T)$

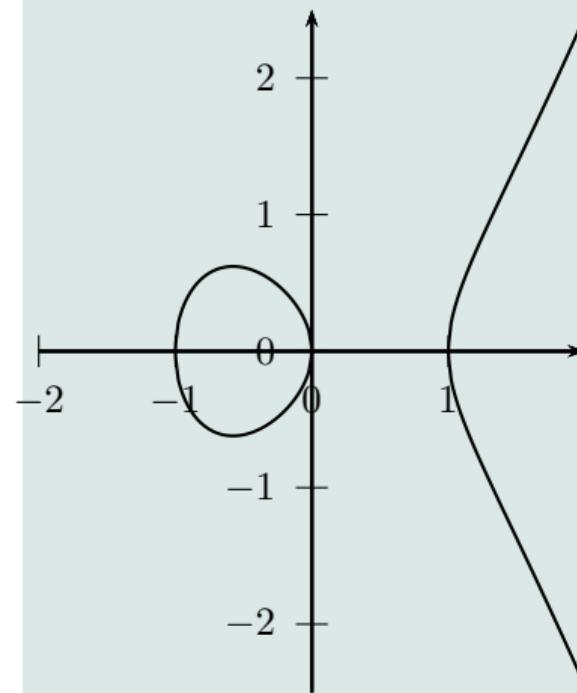
Graph of E over \mathbb{R}



The group law

Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Graph of E over \mathbb{R}



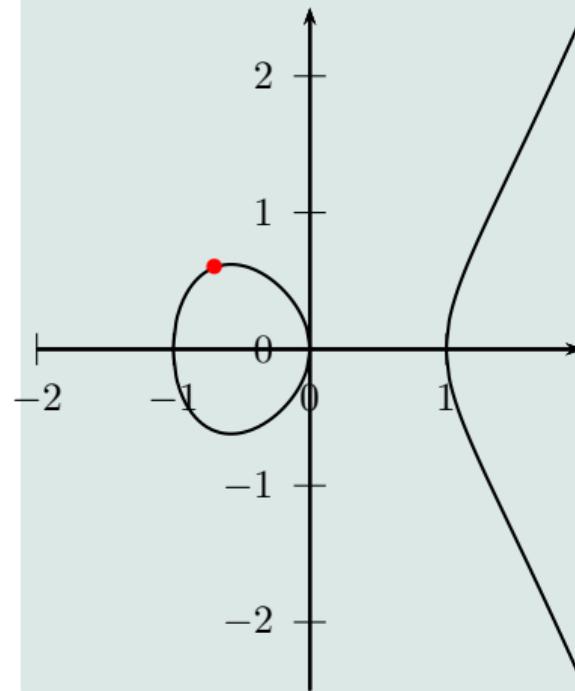
The group law

Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Point doubling

- Double the point
 $P = (-0.7, 0.5975)$

Graph of E over \mathbb{R}



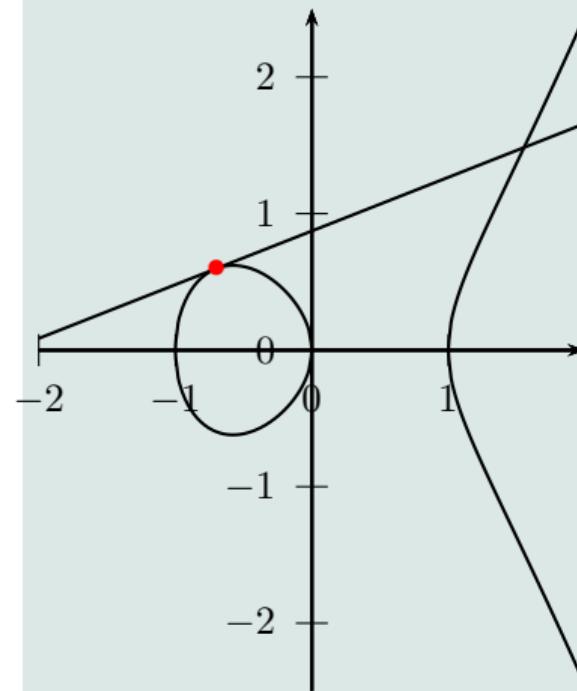
The group law

Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Point doubling

- ▶ Double the point
 $P = (-0.7, 0.5975)$
- ▶ Compute the tangent on P

Graph of E over \mathbb{R}



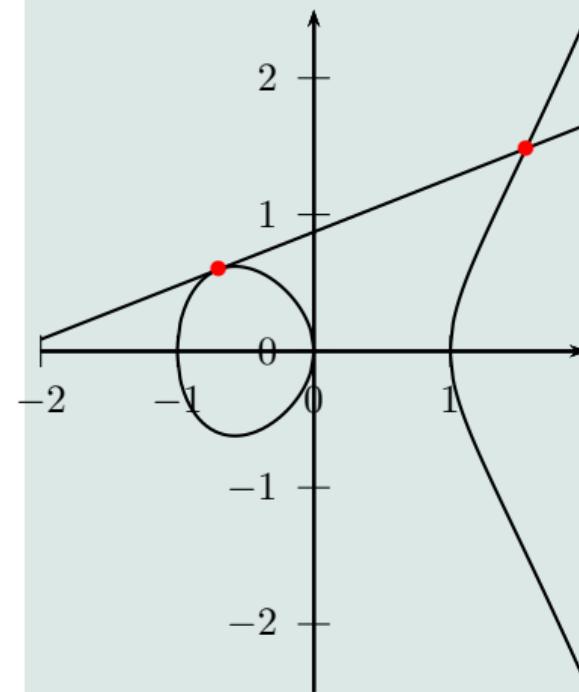
The group law

Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Point doubling

- ▶ Double the point
 $P = (-0.7, 0.5975)$
- ▶ Compute the tangent on P
- ▶ Determine second intersection
 $T = (x_T, y_T)$ with the elliptic curve

Graph of E over \mathbb{R}



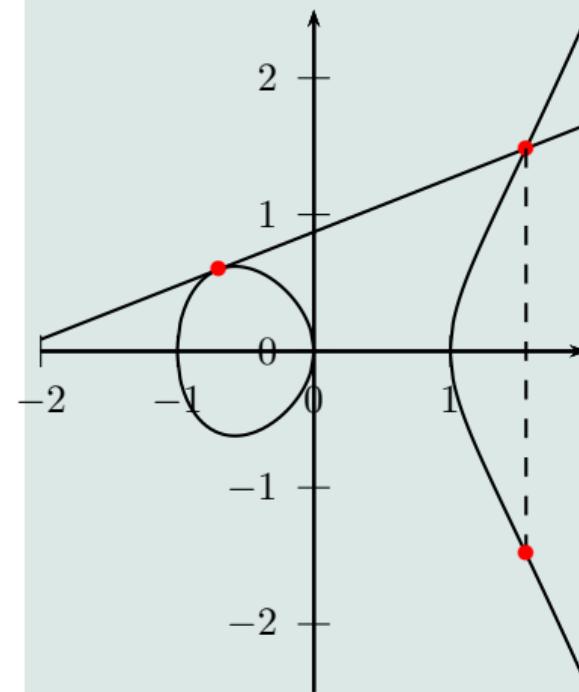
The group law

Example curve: $y^2 = x^3 - x$ over \mathbb{R}

Point doubling

- ▶ Double the point
 $P = (-0.7, 0.5975)$
- ▶ Compute the tangent on P
- ▶ Determine second intersection
 $T = (x_T, y_T)$ with the elliptic curve
- ▶ Result of the addition:
 $P + Q = (x_T, -y_T)$

Graph of E over \mathbb{R}



Group law in formulas

Curve equation: $y^2 = x^3 + ax + b$

Curve equation: $y^2 = x^3 + ax + b$

Point addition

- $P = (x_P, y_P), Q = (x_Q, y_Q) \rightarrow P + Q = R = (x_R, y_R)$ with

Curve equation: $y^2 = x^3 + ax + b$

Point addition

- ▶ $P = (x_P, y_P), Q = (x_Q, y_Q) \rightarrow P + Q = R = (x_R, y_R)$ with
- ▶ $x_R = \left(\frac{y_Q - y_P}{x_Q - x_P} \right)^2 - x_P - x_Q$
- ▶ $y_R = \left(\frac{y_Q - y_P}{x_Q - x_P} \right) (x_P - x_R) - y_P$

Curve equation: $y^2 = x^3 + ax + b$

Point addition

- ▶ $P = (x_P, y_P), Q = (x_Q, y_Q) \rightarrow P + Q = R = (x_R, y_R)$ with
- ▶ $x_R = \left(\frac{y_Q - y_P}{x_Q - x_P} \right)^2 - x_P - x_Q$
- ▶ $y_R = \left(\frac{y_Q - y_P}{x_Q - x_P} \right) (x_P - x_R) - y_P$

Point doubling

- ▶ $P = (x_P, y_P), 2P = (x_R, y_R)$ with

Curve equation: $y^2 = x^3 + ax + b$

Point addition

- ▶ $P = (x_P, y_P), Q = (x_Q, y_Q) \rightarrow P + Q = R = (x_R, y_R)$ with
- ▶ $x_R = \left(\frac{y_Q - y_P}{x_Q - x_P} \right)^2 - x_P - x_Q$
- ▶ $y_R = \left(\frac{y_Q - y_P}{x_Q - x_P} \right) (x_P - x_R) - y_P$

Point doubling

- ▶ $P = (x_P, y_P), 2P = (x_R, y_R)$ with
- ▶ $x_R = \left(\frac{3x_P^2 + a}{2y_P} \right)^2 - 2x_P$
- ▶ $y_R = \left(\frac{3x_P^2 + a}{2y_P} \right) (x_P - x_R) - y_P$

- ▶ Neutral element is \mathcal{O}
- ▶ Inverse of a point (x, y) is $(x, -y)$

- ▶ Neutral element is \mathcal{O}
- ▶ Inverse of a point (x, y) is $(x, -y)$
- ▶ Note: Formulas don't work for $P + (-P)$, also don't work for \mathcal{O}
- ▶ Implementations need to distinguish these cases!

Security requirements for ECC

- ▶ $\ell = |E(\mathbb{F}_q)|$ must have large prime-order subgroup (Pohlig-Hellman)
- ▶ For n bits of security we need $2n$ -bit prime-order subgroup (Pollard's ρ)

Security requirements for ECC

- ▶ $\ell = |E(\mathbb{F}_q)|$ must have large prime-order subgroup (Pohlig-Hellman)
- ▶ For n bits of security we need $2n$ -bit prime-order subgroup (Pollard's ρ)
- ▶ Impossible to transfer DLP to less secure groups:
 - ▶ ℓ must not be equal to q
 - ▶ We need $\ell \nmid p^k - 1$ for small k

Security requirements for ECC

- ▶ $\ell = |E(\mathbb{F}_q)|$ must have large prime-order subgroup (Pohlig-Hellman)
- ▶ For n bits of security we need $2n$ -bit prime-order subgroup (Pollard's ρ)
- ▶ Impossible to transfer DLP to less secure groups:
 - ▶ ℓ must not be equal to q
 - ▶ We need $\ell \nmid p^k - 1$ for small k

Finding a curve

- ▶ Fix finite field \mathbb{F}_q of suitable size
- ▶ Fix curve parameter a (quite common: $a = -3$)
- ▶ Pick curve parameter b until E fulfills desired properties
- ▶ This requires efficient “point counting”
- ▶ This requires efficient factorization or primality proving

Standardized curves

“The nice thing about standards is that you have so many to choose from. ” – Andrew S. Tanenbaum

“The nice thing about standards is that you have so many to choose from. ” – Andrew S. Tanenbaum

- ▶ Various standardized curves, most well-known: NIST curves:
 - ▶ Big-prime field curves with 192, 224, 256, 384, and 521 bits
 - ▶ Binary curves with 163, 233, 283, 409, and 571 bits
 - ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

“The nice thing about standards is that you have so many to choose from. ” – Andrew S. Tanenbaum

- ▶ Various standardized curves, most well-known: NIST curves:
 - ▶ Big-prime field curves with 192, 224, 256, 384, and 521 bits
 - ▶ Binary curves with 163, 233, 283, 409, and 571 bits
 - ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits
- ▶ SECG curves (Certicom), prime-field and binary curves

“The nice thing about standards is that you have so many to choose from. ” – Andrew S. Tanenbaum

- ▶ Various standardized curves, most well-known: NIST curves:
 - ▶ Big-prime field curves with 192, 224, 256, 384, and 521 bits
 - ▶ Binary curves with 163, 233, 283, 409, and 571 bits
 - ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits
- ▶ SECG curves (Certicom), prime-field and binary curves
- ▶ Brainpool curves (BSI), only prime-field curves

“The nice thing about standards is that you have so many to choose from. ” – Andrew S. Tanenbaum

- ▶ Various standardized curves, most well-known: NIST curves:
 - ▶ Big-prime field curves with 192, 224, 256, 384, and 521 bits
 - ▶ Binary curves with 163, 233, 283, 409, and 571 bits
 - ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits
- ▶ SECG curves (Certicom), prime-field and binary curves
- ▶ Brainpool curves (BSI), only prime-field curves
- ▶ FRP256v1 (ANSSI), one prime-field curve (256 bits)

“The nice thing about standards is that you have so many to choose from. ” – Andrew S. Tanenbaum

- ▶ Various standardized curves, most well-known: NIST curves:
 - ▶ Big-prime field curves with 192, 224, 256, 384, and 521 bits
 - ▶ Binary curves with 163, 233, 283, 409, and 571 bits
 - ▶ Binary Koblitz curves with 163, 233, 283, 409, and 571 bits
- ▶ SECG curves (Certicom), prime-field and binary curves
- ▶ Brainpool curves (BSI), only prime-field curves
- ▶ FRP256v1 (ANSSI), one prime-field curve (256 bits)
- ▶ SM2 (China), one prime-field curve (256 bits)

Putting it together

- ▶ Choose security level (e.g., 128 bits)

Putting it together

- ▶ Choose security level (e.g., 128 bits)
- ▶ Pick standard curve, e.g., NIST-P256

- ▶ Choose security level (e.g., 128 bits)
- ▶ Pick standard curve, e.g., NIST-P256
- ▶ Implement field arithmetic (more tomorrow)

- ▶ Choose security level (e.g., 128 bits)
- ▶ Pick standard curve, e.g., NIST-P256
- ▶ Implement field arithmetic (more tomorrow)
- ▶ Implement ECC addition and doubling

- ▶ Choose security level (e.g., 128 bits)
- ▶ Pick standard curve, e.g., NIST-P256
- ▶ Implement field arithmetic (more tomorrow)
- ▶ Implement ECC addition and doubling
- ▶ Implement scalar multiplication

- ▶ Choose security level (e.g., 128 bits)
- ▶ Pick standard curve, e.g., NIST-P256
- ▶ Implement field arithmetic (more tomorrow)
- ▶ Implement ECC addition and doubling
- ▶ Implement scalar multiplication
- ▶ Maybe implement fixed-basepoint scalar multiplication

- ▶ Choose security level (e.g., 128 bits)
- ▶ Pick standard curve, e.g., NIST-P256
- ▶ Implement field arithmetic (more tomorrow)
- ▶ Implement ECC addition and doubling
- ▶ Implement scalar multiplication
- ▶ Maybe implement fixed-basepoint scalar multiplication
- ▶ You're done with ECDH software

- ▶ Choose security level (e.g., 128 bits)
- ▶ Pick standard curve, e.g., NIST-P256
- ▶ Implement field arithmetic (more tomorrow)
- ▶ Implement ECC addition and doubling
- ▶ Implement scalar multiplication
- ▶ Maybe implement fixed-basepoint scalar multiplication
- ▶ You're done with **BAD (!)** ECDH software

Inversions

- ▶ Adding $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ needs an inversion in \mathbb{F}_q
- ▶ Inversions are expensive
- ▶ Constant-time inversions are even more expensive

Inversions

- ▶ Adding $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ needs an inversion in \mathbb{F}_q
- ▶ Inversions are expensive
- ▶ Constant-time inversions are even more expensive

Solution: projective coordinates

- ▶ Store fractions of elements of \mathbb{F}_q , invert only once at the end

Inversions

- ▶ Adding $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ needs an inversion in \mathbb{F}_q
- ▶ Inversions are expensive
- ▶ Constant-time inversions are even more expensive

Solution: projective coordinates

- ▶ Store fractions of elements of \mathbb{F}_q , invert only once at the end
- ▶ Represent points in *projective coordinates*: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P$ and $y_P = Y_P/Z_P$
- ▶ The point $(1 : 1 : 0)$ is the point at infinity

Inversions

- ▶ Adding $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ needs an inversion in \mathbb{F}_q
- ▶ Inversions are expensive
- ▶ Constant-time inversions are even more expensive

Solution: projective coordinates

- ▶ Store fractions of elements of \mathbb{F}_q , invert only once at the end
- ▶ Represent points in *projective coordinates*: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P$ and $y_P = Y_P/Z_P$
- ▶ The point $(1 : 1 : 0)$ is the point at infinity
- ▶ Also possible: weighted projective coordinates:
 - ▶ Jacobian coordinates: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P^2$ and $y_P = Y_P/Z_P^3$

Inversions

- ▶ Adding $P = (x_P, y_P)$ and $Q = (x_Q, y_Q)$ needs an inversion in \mathbb{F}_q
- ▶ Inversions are expensive
- ▶ Constant-time inversions are even more expensive

Solution: projective coordinates

- ▶ Store fractions of elements of \mathbb{F}_q , invert only once at the end
- ▶ Represent points in *projective coordinates*: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P$ and $y_P = Y_P/Z_P$
- ▶ The point $(1 : 1 : 0)$ is the point at infinity
- ▶ Also possible: weighted projective coordinates:
 - ▶ Jacobian coordinates: $P = (X_P : Y_P : Z_P)$ with $x_P = X_P/Z_P^2$ and $y_P = Y_P/Z_P^3$
- ▶ Important: Never send projective representation, always convert to affine!

Problem II: group-law special cases

- ▶ Addition of $P + Q$ needs to distinguish different cases:

- ▶ If $P = \mathcal{O}$ return Q
- ▶ Else if $Q = \mathcal{O}$ return P
- ▶ Else if $P = Q$ call doubling routine
- ▶ Else if $P = -Q$ return \mathcal{O}
- ▶ Else use addition formulas

- ▶ Addition of $P + Q$ needs to distinguish different cases:
 - ▶ If $P = \mathcal{O}$ return Q
 - ▶ Else if $Q = \mathcal{O}$ return P
 - ▶ Else if $P = Q$ call doubling routine
 - ▶ Else if $P = -Q$ return \mathcal{O}
 - ▶ Else use addition formulas
- ▶ Similar for doubling P :
 - ▶ If $P = \mathcal{O}$ return P
 - ▶ Else if $y_P = 0$ return \mathcal{O}
 - ▶ Else use doubling formulas

Problem II: group-law special cases

- ▶ Addition of $P + Q$ needs to distinguish different cases:
 - ▶ If $P = \mathcal{O}$ return Q
 - ▶ Else if $Q = \mathcal{O}$ return P
 - ▶ Else if $P = Q$ call doubling routine
 - ▶ Else if $P = -Q$ return \mathcal{O}
 - ▶ Else use addition formulas
- ▶ Similar for doubling P :
 - ▶ If $P = \mathcal{O}$ return P
 - ▶ Else if $y_P = 0$ return \mathcal{O}
 - ▶ Else use doubling formulas
- ▶ Constant-time implementations of this are horrible

Problem II: group-law special cases

- ▶ Addition of $P + Q$ needs to distinguish different cases:
 - ▶ If $P = \mathcal{O}$ return Q
 - ▶ Else if $Q = \mathcal{O}$ return P
 - ▶ Else if $P = Q$ call doubling routine
 - ▶ Else if $P = -Q$ return \mathcal{O}
 - ▶ Else use addition formulas
- ▶ Similar for doubling P :
 - ▶ If $P = \mathcal{O}$ return P
 - ▶ Else if $y_P = 0$ return \mathcal{O}
 - ▶ Else use doubling formulas
- ▶ Constant-time implementations of this are horrible
- ▶ Good news: Can avoid the checks when computing $k \cdot P$ and $k < |E(\mathbb{F}_q)|$

- ▶ Addition of $P + Q$ needs to distinguish different cases:
 - ▶ If $P = \mathcal{O}$ return Q
 - ▶ Else if $Q = \mathcal{O}$ return P
 - ▶ Else if $P = Q$ call doubling routine
 - ▶ Else if $P = -Q$ return \mathcal{O}
 - ▶ Else use addition formulas
- ▶ Similar for doubling P :
 - ▶ If $P = \mathcal{O}$ return P
 - ▶ Else if $y_P = 0$ return \mathcal{O}
 - ▶ Else use doubling formulas
- ▶ Constant-time implementations of this are horrible
- ▶ Good news: Can avoid the checks when computing $k \cdot P$ and $k < |E(\mathbb{F}_q)|$
- ▶ Bad news: Side-channel countermeasures use $k > |E(\mathbb{F}_q)|$

- ▶ Addition of $P + Q$ needs to distinguish different cases:
 - ▶ If $P = \mathcal{O}$ return Q
 - ▶ Else if $Q = \mathcal{O}$ return P
 - ▶ Else if $P = Q$ call doubling routine
 - ▶ Else if $P = -Q$ return \mathcal{O}
 - ▶ Else use addition formulas
- ▶ Similar for doubling P :
 - ▶ If $P = \mathcal{O}$ return P
 - ▶ Else if $y_P = 0$ return \mathcal{O}
 - ▶ Else use doubling formulas
- ▶ Constant-time implementations of this are horrible
- ▶ Good news: Can avoid the checks when computing $k \cdot P$ and $k < |E(\mathbb{F}_q)|$
- ▶ Bad news: Side-channel countermeasures use $k > |E(\mathbb{F}_q)|$
- ▶ More bad news: Doesn't work for multi-scalar multiplication

- ▶ Addition of $P + Q$ needs to distinguish different cases:
 - ▶ If $P = \mathcal{O}$ return Q
 - ▶ Else if $Q = \mathcal{O}$ return P
 - ▶ Else if $P = Q$ call doubling routine
 - ▶ Else if $P = -Q$ return \mathcal{O}
 - ▶ Else use addition formulas
- ▶ Similar for doubling P :
 - ▶ If $P = \mathcal{O}$ return P
 - ▶ Else if $y_P = 0$ return \mathcal{O}
 - ▶ Else use doubling formulas
- ▶ Constant-time implementations of this are horrible
- ▶ Good news: Can avoid the checks when computing $k \cdot P$ and $k < |E(\mathbb{F}_q)|$
- ▶ Bad news: Side-channel countermeasures use $k > |E(\mathbb{F}_q)|$
- ▶ More bad news: Doesn't work for multi-scalar multiplication
- ▶ Baseline: *simple* implementations are likely to be wrong or insecure

- ▶ Consider elliptic curves of the form $By^2 = x^3 + Ax^2 + x$.
- ▶ Montgomery in 1987 showed how to perform x -coordinate-based arithmetic:
 - ▶ Given the x -coordinate x_P of P , and
 - ▶ given the x -coordinate x_Q of Q , and
 - ▶ given the x -coordinate x_{P-Q} of $P - Q$

- ▶ Consider elliptic curves of the form $By^2 = x^3 + Ax^2 + x$.
- ▶ Montgomery in 1987 showed how to perform x -coordinate-based arithmetic:
 - ▶ Given the x -coordinate x_P of P , and
 - ▶ given the x -coordinate x_Q of Q , and
 - ▶ given the x -coordinate x_{P-Q} of $P - Q$
 - ▶ compute the x -coordinate x_R of $R = P + Q$

- ▶ Consider elliptic curves of the form $By^2 = x^3 + Ax^2 + x$.
- ▶ Montgomery in 1987 showed how to perform x -coordinate-based arithmetic:
 - ▶ Given the x -coordinate x_P of P , and
 - ▶ given the x -coordinate x_Q of Q , and
 - ▶ given the x -coordinate x_{P-Q} of $P - Q$
 - ▶ compute the x -coordinate x_R of $R = P + Q$
- ▶ This is called *differential addition*

- ▶ Consider elliptic curves of the form $By^2 = x^3 + Ax^2 + x$.
- ▶ Montgomery in 1987 showed how to perform x -coordinate-based arithmetic:
 - ▶ Given the x -coordinate x_P of P , and
 - ▶ given the x -coordinate x_Q of Q , and
 - ▶ given the x -coordinate x_{P-Q} of $P - Q$
 - ▶ compute the x -coordinate x_R of $R = P + Q$
- ▶ This is called *differential addition*
- ▶ Less efficient differential-addition formulas for other curve shapes

- ▶ Consider elliptic curves of the form $By^2 = x^3 + Ax^2 + x$.
- ▶ Montgomery in 1987 showed how to perform x -coordinate-based arithmetic:
 - ▶ Given the x -coordinate x_P of P , and
 - ▶ given the x -coordinate x_Q of Q , and
 - ▶ given the x -coordinate x_{P-Q} of $P - Q$
 - ▶ compute the x -coordinate x_R of $R = P + Q$
- ▶ This is called *differential addition*
- ▶ Less efficient differential-addition formulas for other curve shapes
- ▶ Use to efficiently compute the x -coordinate of kP given only the x -coordinate of P
- ▶ For this, let's use projective representation $(X : Z)$ with $x = (X/Z)$

One Montgomery “ladder step”

const $a24 = (A + 2)/4$ (A from the curve equation)

function LADDERSTEP($x_{Q-P}, X_P, Z_P, X_Q, Z_Q$)

$t_1 \leftarrow X_P + Z_P$

$t_6 \leftarrow t_1^2$

$t_2 \leftarrow X_P - Z_P$

$t_7 \leftarrow t_2^2$

$t_5 \leftarrow t_6 - t_7$

$t_3 \leftarrow X_Q + Z_Q$

$t_4 \leftarrow X_Q - Z_Q$

$t_8 \leftarrow t_4 \cdot t_1$

$t_9 \leftarrow t_3 \cdot t_2$

$X_{P+Q} \leftarrow (t_8 + t_9)^2$

$Z_{P+Q} \leftarrow x_{Q-P} \cdot (t_8 - t_9)^2$

$X_{2P} \leftarrow t_6 \cdot t_7$

$Z_{2P} \leftarrow t_5 \cdot (t_7 + a24 \cdot t_5)$

return ($X_{2P}, Z_{2P}, X_{P+Q}, Z_{P+Q}$)

end function

The Montgomery ladder

Require: A scalar $0 \leq k \in \mathbb{Z}$ and the x -coordinate x_P of some point P

Ensure: (X_{kP}, Z_{kP}) fulfilling $x_{kP} = X_{kP}/Z_{kP}$

$x_1 = x_P; X_2 = 1; Z_2 = 0; X_3 = x_P; Z_3 = 1$

for $i \leftarrow n - 1$ **downto** 0 **do**

if bit i of k is 1 **then**

$(X_3, Z_3, X_2, Z_2) \leftarrow \text{LADDERSTEP}(x_1, X_3, Z_3, X_2, Z_2)$

else

$(X_2, Z_2, X_3, Z_3) \leftarrow \text{LADDERSTEP}(x_1, X_2, Z_2, X_3, Z_3)$

end if

end for

return X_2/Z_2

The Montgomery ladder (ctd.)

Require: A scalar $0 \leq k \in \mathbb{Z}$ and the x -coordinate x_P of some point P

Ensure: (X_{kP}, Z_{kP}) fulfilling $x_{kP} = X_{kP}/Z_{kP}$

$X_1 = x_P; X_2 = 1; Z_2 = 0; X_3 = x_P; Z_3 = 1$

for $i \leftarrow n - 1$ **downto** 0 **do**

$b \leftarrow$ bit i of s

$c \leftarrow b \oplus p$

$p \leftarrow b$

$(X_2, X_3) \leftarrow \text{CSWAP}(X_2, X_3, c)$

$(Z_2, Z_3) \leftarrow \text{CSWAP}(Z_2, Z_3, c)$

$(X_2, Z_2, X_3, Z_3) \leftarrow \text{LADDERSTEP}(x_1, X_2, Z_2, X_3, Z_3)$

end for

return X_2/Z_2

Advantages:

- ▶ Works on all inputs, no special cases

Advantages:

- ▶ Works on all inputs, no special cases
- ▶ Very regular structure, easy to protect against timing attacks
 - ▶ Replace the if statement by conditional swap
 - ▶ Be careful with constant-time swaps
- ▶ Point compression/decompression for free

Advantages:

- ▶ Works on all inputs, no special cases
- ▶ Very regular structure, easy to protect against timing attacks
 - ▶ Replace the if statement by conditional swap
 - ▶ Be careful with constant-time swaps
- ▶ Point compression/decompression for free
- ▶ Easy to implement, harder to screw up in hard-to-detect ways
- ▶ Simple implementations are likely to be correct and secure

Advantages:

- ▶ Works on all inputs, no special cases
- ▶ Very regular structure, easy to protect against timing attacks
 - ▶ Replace the if statement by conditional swap
 - ▶ Be careful with constant-time swaps
- ▶ Point compression/decompression for free
- ▶ Easy to implement, harder to screw up in hard-to-detect ways
- ▶ Simple implementations are likely to be correct and secure

Disadvantages:

- ▶ Not all curves can be converted to Montgomery shape
- ▶ Always have a cofactor of at least 4
- ▶ Ladders on general Weierstrass curves are much less efficient

Advantages:

- ▶ Works on all inputs, no special cases
- ▶ Very regular structure, easy to protect against timing attacks
 - ▶ Replace the if statement by conditional swap
 - ▶ Be careful with constant-time swaps
- ▶ Point compression/decompression for free
- ▶ Easy to implement, harder to screw up in hard-to-detect ways
- ▶ Simple implementations are likely to be correct and secure

Disadvantages:

- ▶ Not all curves can be converted to Montgomery shape
- ▶ Always have a cofactor of at least 4
- ▶ Ladders on general Weierstrass curves are much less efficient
- ▶ We only get the x coordinate of the result, tricky for signatures
- ▶ Can reconstruct y , but that involves some additional cost

Solution II: (twisted) Edwards curves

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- ▶ Bernstein, Lange, 2007: very fast addition and doubling on these curves
- ▶ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"

Solution II: (twisted) Edwards curves

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- ▶ Bernstein, Lange, 2007: very fast addition and doubling on these curves
- ▶ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- ▶ Core advantage of (twisted) Edwards curves: **complete group law**
- ▶ No need to handle special cases
- ▶ No "point at infinity" to work with

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- ▶ Bernstein, Lange, 2007: very fast addition and doubling on these curves
- ▶ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- ▶ Core advantage of (twisted) Edwards curves: **complete group law**
- ▶ No need to handle special cases
- ▶ No "point at infinity" to work with
- ▶ Can speed up doubling, but addition formulas work for $P + P$

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- ▶ Bernstein, Lange, 2007: very fast addition and doubling on these curves
- ▶ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- ▶ Core advantage of (twisted) Edwards curves: **complete group law**
- ▶ No need to handle special cases
- ▶ No "point at infinity" to work with
- ▶ Can speed up doubling, but addition formulas work for $P + P$
- ▶ Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- ▶ Bernstein, Lange, 2007: very fast addition and doubling on these curves
- ▶ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- ▶ Core advantage of (twisted) Edwards curves: **complete group law**
- ▶ No need to handle special cases
- ▶ No "point at infinity" to work with
- ▶ Can speed up doubling, but addition formulas work for $P + P$
- ▶ Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- ▶ Always efficient: transformation between Montgomery curves and twisted Edwards curves

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- ▶ Bernstein, Lange, 2007: very fast addition and doubling on these curves
- ▶ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- ▶ Core advantage of (twisted) Edwards curves: **complete group law**
- ▶ No need to handle special cases
- ▶ No "point at infinity" to work with
- ▶ Can speed up doubling, but addition formulas work for $P + P$
- ▶ Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- ▶ Always efficient: transformation between Montgomery curves and twisted Edwards curves
- ▶ Again: simple implementations are likely to be correct and secure

- ▶ Edwards, 2007: New form for elliptic curves ("Edwards curves")
- ▶ Bernstein, Lange, 2007: very fast addition and doubling on these curves
- ▶ Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to "twisted Edwards curves"
- ▶ Core advantage of (twisted) Edwards curves: **complete group law**
- ▶ No need to handle special cases
- ▶ No "point at infinity" to work with
- ▶ Can speed up doubling, but addition formulas work for $P + P$
- ▶ Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for some curves
- ▶ Always efficient: transformation between Montgomery curves and twisted Edwards curves
- ▶ Again: simple implementations are likely to be correct and secure
- ▶ Disadvantage: always have a cofactor of at least 4

So, what's the deal with the cofactor?

MONERO

Forum Funding System Vulnerability Response The Monero Project English ▾

Get Started ▾ Downloads Recent News ▾ Community ▾ Resources ▾

Disclosure of a Major Bug in CryptoNote Based Currencies

Posted by: luigi1111 and Riccardo "fluffypony" Spagni
May 17, 2017

Overview

In Monero we've discovered and patched a critical bug that affects all CryptoNote-based cryptocurrencies, and allows for the creation of an unlimited number of coins in a way that is undetectable to an observer unless they know about the fatal flaw and can search for it.

Recent Posts

[Logs for the Community Meeting](#)
Held on 2019-02-16

[Logs for the Community Meeting](#)
Held on 2019-02-02

[Monero Adds Blockchain Pruning and Improves Transaction Efficiency](#)

[Logs for the Community Meeting](#)
Held on 2019-01-19

So, what's the deal with the cofactor?

- ▶ Protocols need to be careful to avoid subgroup attacks
- ▶ Monero screwed this up, which allowed double-spending
- ▶ Elegant solution: "Decaf" and "Ristretto" encoding by Hamburg, see:
 - ▶ <https://eprint.iacr.org/2015/673.pdf>
 - ▶ <https://ristretto.group>
 - ▶ <https://github.com/otrv4/libgoldilocks>
- ▶ This is also used in the code of `assignment2-ecdh25519`

- ▶ Bosma, Lenstra, 1995: complete group law for Weierstrass curves
- ▶ Problem: Extremely inefficient

- ▶ Bosma, Lenstra, 1995: complete group law for Weierstrass curves
- ▶ Problem: Extremely inefficient
- ▶ Renes, Costello, Batina, 2016: Much faster complete group law for Weierstrass curves
- ▶ Less efficient than (twisted) Edwards
- ▶ Overhead quite architecture-dependent (Schwabe, Sprengels, 2019)
- ▶ Covers all curves

ECDH attack scenario

- ▶ Alice sends point on different (insecure) curve with small subgroup
- ▶ Bob computes “shared key” in that small subgroup
- ▶ Alice obtains “shared key” through brute force
- ▶ Alice learns Bob’s secret scalar modulo the order of the small subgroup

ECDH attack scenario

- ▶ Alice sends point on different (insecure) curve with small subgroup
- ▶ Bob computes “shared key” in that small subgroup
- ▶ Alice obtains “shared key” through brute force
- ▶ Alice learns Bob’s secret scalar modulo the order of the small subgroup

Countermeasures

- ▶ Check that input point is on the curve (functional tests will miss this!)

ECDH attack scenario

- ▶ Alice sends point on different (insecure) curve with small subgroup
- ▶ Bob computes “shared key” in that small subgroup
- ▶ Alice obtains “shared key” through brute force
- ▶ Alice learns Bob’s secret scalar modulo the order of the small subgroup

Countermeasures

- ▶ Check that input point is on the curve (functional tests will miss this!)
- ▶ Send compressed points $(x, \text{parity}(y))$; decompression returns (x, y) on the curve or fails

ECDH attack scenario

- ▶ Alice sends point on different (insecure) curve with small subgroup
- ▶ Bob computes “shared key” in that small subgroup
- ▶ Alice obtains “shared key” through brute force
- ▶ Alice learns Bob’s secret scalar modulo the order of the small subgroup

Countermeasures

- ▶ Check that input point is on the curve (functional tests will miss this!)
- ▶ Send compressed points $(x, \text{parity}(y))$; decompression returns (x, y) on the curve or fails
- ▶ Send only x (Montgomery ladder); but: x could still be on the “twist” of E
- ▶ Make sure that the twist is also secure (“twist security”)

Problem IV: Backdoors in standards?

“I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry.” – Bruce Schneier, 2013.

Problem IV: Backdoors in standards?

“I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry.” – Bruce Schneier, 2013.

- ▶ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- ▶ Constants of NIST curves have been obtained by hashing random values
- ▶ No-backdoor claim: We know the preimages

Problem IV: Backdoors in standards?

“I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry.” – Bruce Schneier, 2013.

- ▶ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- ▶ Constants of NIST curves have been obtained by hashing random values
- ▶ No-backdoor claim: We know the preimages
- ▶ Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve

Problem IV: Backdoors in standards?

“I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry.” – Bruce Schneier, 2013.

- ▶ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- ▶ Constants of NIST curves have been obtained by hashing random values
- ▶ No-backdoor claim: We know the preimages
- ▶ Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- ▶ Fact: There are no known insecurities of NIST curves

Problem IV: Backdoors in standards?

“I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry.” – Bruce Schneier, 2013.

- ▶ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- ▶ Constants of NIST curves have been obtained by hashing random values
- ▶ No-backdoor claim: We know the preimages
- ▶ Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- ▶ Fact: There are no known insecurities of NIST curves
- ▶ Fact: There is no proof that there are no intentional vulnerabilities in NIST curves

Problem IV: Backdoors in standards?

“I no longer trust the [NIST Elliptic Curves] constants. I believe the NSA has manipulated them through their relationships with industry.” – Bruce Schneier, 2013.

- ▶ It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
- ▶ Constants of NIST curves have been obtained by hashing random values
- ▶ No-backdoor claim: We know the preimages
- ▶ Possible attack if you know a class of vulnerable curves: Generate random seeds until you have found a vulnerable (and seemingly secure) curve
- ▶ Fact: There are no known insecurities of NIST curves
- ▶ Fact: There is no proof that there are no intentional vulnerabilities in NIST curves
- ▶ Question for ECC: who do you trust to pick the curve?

Collection of elliptic-curve shapes, point representations and group-operation formulas by Bernstein and Lange:

<https://www.hyperelliptic.org/EFD/>

- ▶ If you have to use Weierstraß (e.g., NIST) curves:
 - ▶ Use complete formulas by Renes-Costello-Batina
 - ▶ (Alternative: make sure that you don't trigger special cases)

- ▶ If you have to use Weierstraß (e.g., NIST) curves:
 - ▶ Use complete formulas by Renes-Costello-Batina
 - ▶ (Alternative: make sure that you don't trigger special cases)
- ▶ If you can use Montgomery or twisted Edwards curves:
 - ▶ For ECDH, typically use Montgomery curve and ladder
 - ▶ For signatures, typically use twisted Edwards curve

- ▶ If you have to use Weierstraß (e.g., NIST) curves:
 - ▶ Use complete formulas by Renes-Costello-Batina
 - ▶ (Alternative: make sure that you don't trigger special cases)
- ▶ If you can use Montgomery or twisted Edwards curves:
 - ▶ For ECDH, typically use Montgomery curve and ladder
 - ▶ For signatures, typically use twisted Edwards curve
 - ▶ `assignment2-ecdh25519` does ECDH on twisted Edwards curve!

- ▶ If you have to use Weierstraß (e.g., NIST) curves:
 - ▶ Use complete formulas by Renes-Costello-Batina
 - ▶ (Alternative: make sure that you don't trigger special cases)
- ▶ If you can use Montgomery or twisted Edwards curves:
 - ▶ For ECDH, typically use Montgomery curve and ladder
 - ▶ For signatures, typically use twisted Edwards curve
 - ▶ **assignment2-ecdh25519** does ECDH on twisted Edwards curve!
- ▶ If you can choose encoding for twisted Edwards points, use Decaf/Ristretto

- ▶ If you have to use Weierstraß (e.g., NIST) curves:
 - ▶ Use complete formulas by Renes-Costello-Batina
 - ▶ (Alternative: make sure that you don't trigger special cases)
- ▶ If you can use Montgomery or twisted Edwards curves:
 - ▶ For ECDH, typically use Montgomery curve and ladder
 - ▶ For signatures, typically use twisted Edwards curve
 - ▶ **assignment2-ecdh25519** does ECDH on twisted Edwards curve!
- ▶ If you can choose encoding for twisted Edwards points, use Decaf/Ristretto
- ▶ Most common Montgomery / twisted Edwards curve: Curve25519
 - ▶ Defined over finite field $\mathbb{F}_{2^{255}-19}$
 - ▶ Used in Montgomery form in X25519 ECDH
 - ▶ Used in twisted Edwards form in Ed25519 signatures