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» For scalar multiplication, we assumed a group G
» of finite order ¢,
» that is commutative (Abelian),
> that is cyclic with generator P, and
» in which the discrete-logarithm problem is hard.

» Today: make this group concrete
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A set S together with two operations (+, -) is called a field K = (S, +, -) if
> (S,+) is an Abelian group
> (S\ {0},-) is an Abelian group, where 0 is the neutral element of (.S, +)
> Foralla,b,c € Sitholdsthata- (b+c¢)=a-b+a-c (distributivity)

» Consider n-fold additionof1,soon-1=14+14+14+---+1

n times
> If there is no n such that n - 1 = 0, then the characterisic of K is char(K) =0
> Otherwise, char(K) = p for the smallest p such thatp-1=10
» If char(K) = p # 0, then pis prime
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» The rationals (Q, +, -) are a field

» The integers (Z, +, -) are not a field
» Remember, we don't have multiplicative inverses

» Thereals (R, +,-) are a field

> {0,...,q — 1} together with addition and multiplication modulo q is a field if ¢ is prime
> We typically denote this field F,
> The characteristic of Fy is g

> The smallest field is {0, 1} with addition and multiplication modulo 2

> Addition is XOR
» Multiplication is AND
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Suitable/common groups

Groups with hard DLP

> Traditional answer (DH76 paper): Z: with large prime-order subgroup
> Let (G, o) be a group
> |et H by a subset of G
> Then (H, o) is a subgroup of G if it is a group
» Modern answer: Elliptic curve over F,, with large prime-order subgroup
> Sophisticated answer (not in this lecture): hyperelliptic curves of genus 2




Typical view on elliptic curves @\

Ny

Let K be a field with char(K) ¢ {2,3} and let a,b € K. Then the following equation defines an
elliptic curve FE:

E:y =2+ az+0,

if the discriminant A = —64a® — 432b% of E is not equal to zero. This equation is called the short
Weierstrass form of an elliptic curve.
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Rational points N

Setup for cryptography

» Choose K =TF,
» Consider the set of F,-rational points:
E(F,) = {(z,y) €Fy x Fy : y* = 2 + ax + b} U {O}

> The element O is the “point at infinity”
> This set forms a group (together with addition law)
» Order of this group: |E(F,)| = |F,|

.
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The group law

Example curve: y2 = 2% — x over R

Addition of points Graph of E over R

» Add points
P =(-0,9;-0,4135) and 2 +
Q = (—0,1;0,3146)

» Compute line through the two
points

» Determine third intersection
T = (z7,yr) With the elliptic
curve

> Result of the addition:
P+ Q= (o1, ~yr)




The group law

Example curve: y2 = 2% — x over R




The group law

Example curve: y2 = 2% — x over R

Point doubling

» Double the point
P = (-0.7,0.5975) 2 1T




The group law

Example curve: y2 = 2% — x over R

Point doubling

» Double the point
P = (-0.7,0.5975)

» Compute the tangent on P

2 +




The group law

Example curve: y2 = 2% — x over R

Point doubling
» Double the point

P = (-0.7,0.5975) 2 +
» Compute the tangent on P
» Determine second intersection 14
T = (z7,yr) With the elliptic
curve




The group law

Example curve: y2 = 2% — x over R

Point doubling

» Double the point
P = (-0.7,0.5975) 2 1T
» Compute the tangent on P
> Determine second intersection 14 [
T = (z7,yr) With the elliptic I
curve :
> Result of the addition: . 4 :
P +Q = (or, ~yr) IR |
14 :
—92 1
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Curve equation: 42 = 2% + azx + b

Point addition

> P:(vayP)aQ:(anyQ)%P'i_Q:R:(xRayR) with

2
- (yQ—yp> —zp — 10

rQ—xTp

> yp = <—yQ7yP) (rp —xR) —yp

TQ—TP
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Curve equation: y%2 = 2% +azx + b

Point addition

> P:(xP»yP)aQ:(anyQ)_)P'i-Q:R:(xRayR) with

2
- (yQ—yp> —zp — 10

rQ—xTp

> yp = <—yQ7yP) (rp —xR) —yp
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> P = (zp,yp),2P = (xr,yr) With




Group law in formulas g@)

Ay

Curve equation: y%2 = 2% +azx + b

Point addition

> P:(xP»yP)aQ:(anyQ)_)P'i-Q:R:(xRayR) with

2
- (ZIQ_?JP> —zp — 10

rQ—xTp

> yp = <—yQ7yP) (rp —xR) —yp

TQ—TP

Point doubling

> P = (zp,yp),2P = (xr,yr) With

2
322 +a
> TR = (23}3—1)) —2.1713

32
> yr = (—ngpﬂ) (xp —zR) —yP
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More Weierstrass curve group law

» Neutral elementis O

> Inverse of a point (z,y) is (z, —y)

> Note: Formulas don't work for P + (—P), also don't work for O
» Implementations need to distinguish these cases!
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Finding a suitable curve

Security requirements for ECC

> ( =|E(F,)| must have large prime-order subgroup (Pohlig-Hellman)
> For n bits of security we need 2n-bit prime-order subgroup (Pollard’s p)

» Impossible to transfer DLP to less secure groups:

> ¢ must not be equal to ¢
> We need £ { p* — 1 for small k

Finding a curve
> Fix finite field IF, of suitable size
> Fix curve parameter a (quite common: a = —3)
> Pick curve parameter b until £ fulfills desired properties
> This requires efficient “point counting”
> This requires efficient factorization or primality proving

v
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Standardized curves 6@@

“The nice thing about standards is that you have so many to choose from. ” — Andrew S.
Tanenbaum

» Various standardized curves, most well-known: NIST curves:

> Big-prime field curves with 192, 224, 256, 384, and 521 bits
> Binary curves with 163, 233, 283, 409, and 571 bits
> Binary Koblitz curves with 163, 233, 283, 409, and 571 bits

SECG curves (Certicom), prime-field and binary curves
Brainpool curves (BSI), only prime-field curves
FRP256v1 (ANSSI), one prime-field curve (256 bits)
SM2 (China), one prime-field curve (256 bits)

vvyyvyy
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Putting it together
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Choose security level (e.g., 128 bits)

Pick standard curve, e.g., NIST-P256

Implement field arithmetic (more tomorrow)
Implement ECC addition and doubling

Implement scalar multiplication

Maybe implement fixed-basepoint scalar multiplication
You're done with BAD (!) ECDH software
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Problem [: inversions

» Adding P = (zp,yp) and Q = (zq, yg) needs an inversion in F,
» |nversions are expensive
» Constant-time inversions are even more expensive

.

Solution: projective coordinates
> Store fractions of elements of Fy, invert only once at the end
> Represent points in projective coordinates: P = (Xp : Yp : Zp) withzp = Xp/Zp and
yp =Yp/Zp
> The point (1 :1:0) is the point at infinity
» Also possible: weighted projective coordinates:
> Jacobian coordinates: P = (Xp : Yp : Zp) Withzp = Xp/Z% andyp = Yr/Z3
> Important: Never send projective representation, always convert to affine!




Problem II: group-law special cases

> Addition of P + @ needs to distinguish different cases:
> If P=0OretunQ

Elseif @ = Oreturn P

Else if P = @ call doubling routine

Elseif P = —Q return O

Else use addition formulas
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Problem II: group-law special cases @

> Addition of P + @ needs to distinguish different cases:

> If P=0OretunQ

» Elseif @ = Oreturn P

> Elseif P = Q call doubling routine
> Elseif P = —Qreturn O

Else use addition formulas

» Similar for doubling P:

> If P=Oreturn P
> Elseifyp = 0return O
> Else use doubling formulas

» Constant-time implementations of this are horrible

» Good news: Can avoid the checks when computing k- P and k < |E(F,)|
» Bad news: Side-channel countermeasures use k > |E(F,)|
>
>

v

More bad news: Doesn’t work for multi-scalar multiplication
Baseline: simple implementations are likely to be wrong or insecure
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Solution I: Montgomery curves

» Consider elliptic curves of the form By? = 2% + Az? + z.
» Montgomery in 1987 showed how to perform z-coordinate-based arithmetic:

» Given the z-coordinate zp of P, and

> given the z-coordinate z¢ of @, and

> given the z-coordinate zp_g of P — Q

» compute the z-coordinate zgr of R = P + Q

This is called differential addition

Less efficient differential-addition formulas for other curve shapes

Use to efficiently compute the z-coordinate of kP given only the z-coordinate of P
For this, let's use projective representation (X : Z) withx = (X /Z)



One Montgomery “ladder step”

const a24 = (A + 2)/4 (A from the curve equation)
function LADDERSTEP(zq—p, Xp, Zp, X, Z()

ti1 < Xp+2p
te < t2

to<— Xp—Zp
tr < t3

ts < tg — 17
t3<—XQ—|—ZQ
t4<—XQ—ZQ
tg —t4 11

tg <—t3 1o

Xpyq ¢+ (ts +19)?

Zpiq + wq-p - (ts —19)?

Xop +tg -ty

ZQP $— t5 . (t7 —+ a24 - t5)

return (XQP, ZQP, XP+Q, ZP+Q)
end function



The Montgomery ladder @@2

Require: A scalar 0 < k € Z and the xz-coordinate zp of some point P
Ensure: (ka, ka) fulﬂlllng Tpp = ka/ka
1 =ap, Xo=1,Z,=0,X3=2p; Z3 =1
fori < n — 1 downto 0 do
if bit ¢ of kis 1 then
(X3, Z3, X2, Z3) <+ LADDERSTEP(x1, X3, Z3, X2, Z2)
else
(X2, Zs, X3, Z3) < LADDERSTEP(x1, X2, Z2, X3, Z3)
end if
end for
return X /725



The Montgomery ladder (ctd.)

Require: A scalar 0 < k € Z and the z-coordinate x p of some point P
Ensure: (ka, ka) fuIﬂIIlng Tpp = ka/ka
Xi=ap, Xo=1,2 =0, Xz =2xp, Z3 =1
fori + n — 1 downto 0 do
b« bitiofs
c+—bdp
p+b
(X3, X3) < CSWAP(X3, X3, ¢)
(Za, Z3) < CSWAP(Zs, Z3, ¢)
(X27 Zy, X3, Z3) — LADDERSTEP(xl, Xs, Zy, X3, Zg)
end for
return X5/ Zs
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» Works on all inputs, no special cases
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(Dis-)advantages of the Montgomery ladder

Advantages:
» Works on all inputs, no special cases

> Very regular structure, easy to protect against timing attacks

> Replace the if statement by conditional swap
» Be careful with constant-time swaps

> Point compression/decompression for free

» Easy to implement, harder to screw up in hard-to-detect ways

» Simple implementations are likely to be correct and secure
Disadvantages:

> Not all curves can be converted to Montgomery shape

> Always have a cofactor of at least 4

» | adders on general Weierstrass curves are much less efficient

» We only get the z coordinate of the result, tricky for signatures

» Can reconstruct y, but that involves some additional cost



Solution II: (twisted) Edwards curves

» Edwards, 2007: New form for elliptic curves (“Edwards curves”)
> Bernstein, Lange, 2007: very fast addition and doubling on these curves

» Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to “twisted Edwards
curves”



Solution II: (twisted) Edwards curves @@2

» Edwards, 2007: New form for elliptic curves (“Edwards curves”)
Bernstein, Lange, 2007: very fast addition and doubling on these curves

» Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to “twisted Edwards
curves”

> Core advantage of (twisted) Edwards curves: complete group law
No need to handle special cases
> No “point at infinity” to work with

v

v



Solution II: (twisted) Edwards curves

vy

vvyyvyy

Edwards, 2007: New form for elliptic curves (“Edwards curves”)
Bernstein, Lange, 2007: very fast addition and doubling on these curves

Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to “twisted Edwards
curves”

Core advantage of (twisted) Edwards curves: complete group law
No need to handle special cases

No “point at infinity” to work with

Can speed up doubling, but addition formulas work for P + P



Solution II: (twisted) Edwards curves

vy

vVvyVYyVvVvyy

Edwards, 2007: New form for elliptic curves (“Edwards curves”)
Bernstein, Lange, 2007: very fast addition and doubling on these curves

Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to “twisted Edwards
curves”

Core advantage of (twisted) Edwards curves: complete group law
No need to handle special cases

No “point at infinity” to work with

Can speed up doubling, but addition formulas work for P + P

Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for
some curves



Solution II: (twisted) Edwards curves

vy

vVvyVYyVvVvyy

v

Edwards, 2007: New form for elliptic curves (“Edwards curves”)
Bernstein, Lange, 2007: very fast addition and doubling on these curves

Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to “twisted Edwards
curves”

Core advantage of (twisted) Edwards curves: complete group law
No need to handle special cases

No “point at infinity” to work with

Can speed up doubling, but addition formulas work for P + P

Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for
some curves

Always efficient: transformation between Montgomery curves and twisted Edwards curves



Solution II: (twisted) Edwards curves

vy

vVvyVYyVvVvyy

vy

Edwards, 2007: New form for elliptic curves (“Edwards curves”)
Bernstein, Lange, 2007: very fast addition and doubling on these curves

Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to “twisted Edwards
curves”

Core advantage of (twisted) Edwards curves: complete group law
No need to handle special cases

No “point at infinity” to work with

Can speed up doubling, but addition formulas work for P + P

Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for
some curves

Always efficient: transformation between Montgomery curves and twisted Edwards curves
Again: simple implementations are likely to be correct and secure



Solution II: (twisted) Edwards curves

vy

vVvyVYyVvVvyy

vy

Edwards, 2007: New form for elliptic curves (“Edwards curves”)
Bernstein, Lange, 2007: very fast addition and doubling on these curves

Bernstein, Birkner, Joye, Lange, Peters, 2008: generalize the idea to “twisted Edwards
curves”

Core advantage of (twisted) Edwards curves: complete group law
No need to handle special cases

No “point at infinity” to work with

Can speed up doubling, but addition formulas work for P + P

Efficient (for cryptography) transformation from Weierstrass to (twisted) Edwards only for
some curves

Always efficient: transformation between Montgomery curves and twisted Edwards curves
Again: simple implementations are likely to be correct and secure
Disadvantage: always have a cofactor of at least 4



So, what's the deal with the cofactor?

M.| MONERO Forum Funding System  Vulnerability Response  The Monero Project  English ~

Get Started - Downloads Recent News - Community - Resources-
Disclosure of a Major Bug in CryptoNote Based Recent Posts
Currencies

Logs for the Community Meeting
Held on 2019-02-16

Logs for the Community Meeting

Overview Held on 2019-02-02

In Monero we've discovered and patched a critical bug that affects all CryptoNote- Monero Adds Blockchain Pruning and

. . - PN Improves Transaction Efficien
based cryptocurrencies, and allows for the creation of an unlimited number of coins in P Y

away that is undetectable to an observer unless they know about the fatal flaw and Logs for the Community Meeting

can search forit. Held on 2019-01-19



So, what's the deal with the cofactor?

» Protocols need to be careful to avoid subgroup attacks
» Monero screwed this up, which allowed double-spending

> Elegant solution: “Decaf” and "Ristretto” encoding by Hamburg, see:

> https://eprint.iacr.org/2015/673.pdf
> https://ristretto.group
> https://github.com/otrv4/libgoldilocks

> Thisis also used in the code of assignment2-ecdh25519


https://eprint.iacr.org/2015/673.pdf
https://ristretto.group
https://github.com/otrv4/libgoldilocks
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Solution Ill: Complete group law on Weierstrass curves

Bosma, Lenstra, 1995: complete group law for Weierstrass curves

Problem: Extremely inefficient

Renes, Costello, Batina, 2016: Much faster complete group law for Weierstrass curves
Less efficient than (twisted) Edwards

Overhead quite architecture-dependent (Schwabe, Sprenkels, 2019)

Covers all curves

@@@
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Problem Ill: Wrong-curve attacks

ECDH attack scenario
> Alice sends point on different (insecure) curve with small subgroup
» Bob computes “shared key” in that small subgroup
> Alice obtains “shared key” through brute force
> Alice learns Bob's secret scalar modulo the order of the small subgroup

Countermeasures
> Check that input point is on the curve (functional tests will miss this!)
» Send compressed points (z, parity(y)); decompression returns (z, y) on the curve or fails
» Send only z (Montgomery ladder); but: z could still be on the “twist” of £
> Make sure that the twist is also secure (“twist security”)

.
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“I no longer trust the [NIST Elliptic Curves] constants. | believe the NSA has manipulated
them through their relationships with industry.” — Bruce Schneier, 2013.

It is pretty clear that NSA put a backdoor in Dual_EC_DRBG
Constants of NIST curves have been obtained by hashing random values
No-backdoor claim: We know the preimages

Possible attack if you know a class of vulnerable curves: Generate random seeds until you
have found a vulnerable (and seemingly secure) curve

Fact: There are no known insecurities of NIST curves
Fact: There is no proof that there are no intentional vulnerabilities in NIST curves
Question for ECC: who do you trust to pick the curve?



Point representation and arithmetic

Collection of elliptic-curve shapes, point representations and group-operation formulas by
Bernstein and Lange:

https://www.hyperelliptic.org/EFD/
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> If you have to use WeierstraB (e.g., NIST) curves:

» Use complete formulas by Renes-Costello-Batina
> (Alternative: make sure that you don't trigger special cases)

» |f you can use Montgomery or twisted Edwards curves:

» For ECDH, typically use Mongomery curve and ladder

> For signatures, typically use twisted Edwards curve

» assignment2-ecdh25519 does ECDH on twisted Edwards curve!
» |f you can choose encoding for twisted Edwards points, use Decaf/Ristretto
» Most common Montgomery / twisted Edwards curve: Curve25519

> Defined over finite field Fy2s5 _1¢
» Used in Montgomery form in X25519 ECDH
» Used in twisted Edwards form in Ed25519 signatures



