
Engineering Cryptographic Software
Introduction

Peter Schwabe

January 2026



1

What got us here?

▶ First time in Mauritius in 2017
▶ Met Logan Velvindron in 2024
▶ Learned about Cyberstorm
▶ Got in contact with Anwar Chutoo
▶ Gave a talk at MoU
▶ External examiner for BA program since 2025
▶ Idea of block lecture came up
▶ Convinced Hien and Amin to join
▶ Convinced them to do most of the work ;-)



1

What got us here?

▶ First time in Mauritius in 2017

▶ Met Logan Velvindron in 2024
▶ Learned about Cyberstorm
▶ Got in contact with Anwar Chutoo
▶ Gave a talk at MoU
▶ External examiner for BA program since 2025
▶ Idea of block lecture came up
▶ Convinced Hien and Amin to join
▶ Convinced them to do most of the work ;-)



1

What got us here?

▶ First time in Mauritius in 2017
▶ Met Logan Velvindron in 2024
▶ Learned about Cyberstorm
▶ Got in contact with Anwar Chutoo
▶ Gave a talk at MoU
▶ External examiner for BA program since 2025
▶ Idea of block lecture came up

▶ Convinced Hien and Amin to join
▶ Convinced them to do most of the work ;-)



1

What got us here?

▶ First time in Mauritius in 2017
▶ Met Logan Velvindron in 2024
▶ Learned about Cyberstorm
▶ Got in contact with Anwar Chutoo
▶ Gave a talk at MoU
▶ External examiner for BA program since 2025
▶ Idea of block lecture came up
▶ Convinced Hien and Amin to join
▶ Convinced them to do most of the work ;-)



2

Hien, Amin, and Peter

Hien Pham
PhD student @ MPI-SP

nguyenhien.phamhoang@gmail.com

Amin Abdulrahman
PhD student @ MPI-SP

amin@abdulrahman.de

Peter Schwabe
Scientific Director @ MPI-SP

peter@cryptojedi.org

mailto:nguyenhien.phamhoang@gmail.com
mailto:amin@abdulrahman.de
mailto:peter@cryptojedi.org


3

MPI-SP

▶ Located in Bochum
▶ Founded in 2019
▶ Currently 13 PIs

▶ Aim to have
▶ 6 Departments
▶ 12 Research Groups
▶ Around 250 people total



3

MPI-SP



4

The Cryptographic Engineering (EPOQUE) Department



5

Cryptographic Engineering

“Cryptography [. . . ] is the practice and study of techniques for secure communication in
the presence of adversarial behavior. [. . . ]Modern cryptography exists at the intersection
of the disciplines of mathematics, computer science, information security, electrical engi-
neering, digital signal processing, physics, and others.”

—Wikipedia on Cryptography

Motivation from real-world problems – aim to make real-world impact



5

Cryptographic Engineering

The traditional approach

Cryptography

Mathematics

Algorithms

Scheme

Implementation

Software

Hardware

System

Motivation from real-world problems – aim to make real-world impact



5

Cryptographic Engineering

A holistic approach

Cryptographic Engineering

Mathematics

Algorithms

Software

Hardware

Scheme +
(prototype)

System

Motivation from real-world problems – aim to make real-world impact



5

Cryptographic Engineering

A holistic approach

Cryptographic Engineering

Mathematics

Algorithms

Software

Hardware

Scheme +
(prototype)

System

Motivation from real-world problems – aim to make real-world impact



6

Real-world impact: PQC deployment

[A very quick demo]



6

Real-world impact: PQC deployment

https://radar.cloudflare.com/adoption-and-usage#post-quantum-encryption-adoption

▶ Hundreds of billions of connections per day at Cloudflare alone
▶ Also used in secure messaging (Signal, iMessage)
▶ Also in cloud infrastructure (AWS)

https://radar.cloudflare.com/adoption-and-usage#post-quantum-encryption-adoption


7

Cryptographic software

Is cryptographic software special?

In some sense it’s not. . .
▶ We can implement crypto in pretty much any language
▶ We expect typical properties like correctness, efficiency, maintainability. . .

. . . but in many ways it is
▶ Code is typically very small

▶ Even small performance improvements matter
▶ We typically have a full functional specification
▶ Bugs are essentially always security critical
▶ Crypto operates on secret data, must not leak this!



7

Cryptographic software

Is cryptographic software special?

In some sense it’s not. . .
▶ We can implement crypto in pretty much any language
▶ We expect typical properties like correctness, efficiency, maintainability. . .

. . . but in many ways it is
▶ Code is typically very small

▶ Even small performance improvements matter
▶ We typically have a full functional specification
▶ Bugs are essentially always security critical
▶ Crypto operates on secret data, must not leak this!



7

Cryptographic software

Is cryptographic software special?

In some sense it’s not. . .
▶ We can implement crypto in pretty much any language
▶ We expect typical properties like correctness, efficiency, maintainability. . .

. . . but in many ways it is
▶ Code is typically very small

▶ Even small performance improvements matter
▶ We typically have a full functional specification
▶ Bugs are essentially always security critical
▶ Crypto operates on secret data, must not leak this!



7

Cryptographic software

Is cryptographic software special?

In some sense it’s not. . .
▶ We can implement crypto in pretty much any language
▶ We expect typical properties like correctness, efficiency, maintainability. . .

. . . but in many ways it is
▶ Code is typically very small
▶ Even small performance improvements matter

▶ We typically have a full functional specification
▶ Bugs are essentially always security critical
▶ Crypto operates on secret data, must not leak this!



7

Cryptographic software

Is cryptographic software special?

In some sense it’s not. . .
▶ We can implement crypto in pretty much any language
▶ We expect typical properties like correctness, efficiency, maintainability. . .

. . . but in many ways it is
▶ Code is typically very small
▶ Even small performance improvements matter
▶ We typically have a full functional specification

▶ Bugs are essentially always security critical
▶ Crypto operates on secret data, must not leak this!



7

Cryptographic software

Is cryptographic software special?

In some sense it’s not. . .
▶ We can implement crypto in pretty much any language
▶ We expect typical properties like correctness, efficiency, maintainability. . .

. . . but in many ways it is
▶ Code is typically very small
▶ Even small performance improvements matter
▶ We typically have a full functional specification
▶ Bugs are essentially always security critical

▶ Crypto operates on secret data, must not leak this!



7

Cryptographic software

Is cryptographic software special?

In some sense it’s not. . .
▶ We can implement crypto in pretty much any language
▶ We expect typical properties like correctness, efficiency, maintainability. . .

. . . but in many ways it is
▶ Code is typically very small
▶ Even small performance improvements matter
▶ We typically have a full functional specification
▶ Bugs are essentially always security critical
▶ Crypto operates on secret data, must not leak this!



7

Cryptographic software

Cryptographic software is small, highly performance critical, highly security
critical, and typically operates in adversarial environments.



8

“Don’t roll your own crypto”

▶ Crypto is hard to get right
▶ Crypto software is hard to get right
▶ Need extensive independent review

before being
used

My take:
▶ Roll your own crypto!
▶ Write your own crypto software!

▶ Get it wrong, be told, learn
▶ Get better, keep learning

Just don’t use your own crypto (software).

From A Stick Figure Guide to the Advanced
Encryption Standard (AES)
https://www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html

https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html


8

“Don’t roll your own crypto”

▶ Crypto is hard to get right
▶ Crypto software is hard to get right
▶ Need extensive independent review before being

used

My take:
▶ Roll your own crypto!
▶ Write your own crypto software!

▶ Get it wrong, be told, learn
▶ Get better, keep learning

Just don’t use your own crypto (software).

From A Stick Figure Guide to the Advanced
Encryption Standard (AES)
https://www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html

https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html


8

“Don’t roll your own crypto”

▶ Crypto is hard to get right
▶ Crypto software is hard to get right
▶ Need extensive independent review before being

used
My take:
▶ Roll your own crypto!
▶ Write your own crypto software!

▶ Get it wrong, be told, learn
▶ Get better, keep learning

Just don’t use your own crypto (software).

From A Stick Figure Guide to the Advanced
Encryption Standard (AES)
https://www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html

https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html


8

“Don’t roll your own crypto”

▶ Crypto is hard to get right
▶ Crypto software is hard to get right
▶ Need extensive independent review before being

used
My take:
▶ Roll your own crypto!
▶ Write your own crypto software!
▶ Get it wrong, be told, learn
▶ Get better, keep learning

Just don’t use your own crypto (software).

From A Stick Figure Guide to the Advanced
Encryption Standard (AES)
https://www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html

https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html


8

“Don’t roll your own crypto”

▶ Crypto is hard to get right
▶ Crypto software is hard to get right
▶ Need extensive independent review before being

used
My take:
▶ Roll your own crypto!
▶ Write your own crypto software!
▶ Get it wrong, be told, learn
▶ Get better, keep learning

Just don’t use your own crypto (software). From A Stick Figure Guide to the Advanced
Encryption Standard (AES)
https://www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html

https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html


9

The traditional approach

Most production crypto software in use today is written in C/assembly



9

The traditional approach

Some downsides of C
▶ No memory safety
▶ Finicky semantics

▶ Undefined behavior
▶ Implementation-specific behavior
▶ Context-specific behavior

▶ No mandatory initialization
▶ No (optional) runtime checks



9

The traditional approach

Some downsides of C
▶ No memory safety
▶ Finicky semantics

▶ Undefined behavior
▶ Implementation-specific behavior
▶ Context-specific behavior

▶ No mandatory initialization
▶ No (optional) runtime checks

but. . . Rust!
▶ Memory safe
▶ More clear semantics (?)
▶ Mandatory variable initialization
▶ (Optional) runtime checks for, e.g.,

overflows



9

The traditional approach

Lack of security features

“Security engineers have been fighting with C compilers for years.”
—Simon, Chisnall, Anderson, 2018a

▶ No concept of secret vs. public data
▶ Compilers introduce vulnerabilities!
▶ Cat-and-mouse game against your own tools!
aWhat you get is what you C: Controlling side effects in mainstream C compilers. EuroS&P 2018

https://www.cl.cam.ac.uk/~rja14/Papers/whatyouc.pdf


10

It’s getting worse!



10

It’s getting worse!



10

It’s getting worse!



10

It’s getting worse!



11

Origins and idea for this course

Origins
“Engineering Cryptographic Software” course at
Radboud University (NL) since 2014
▶ Fundamentals of crypto software
▶ Symmetric crypto examples
▶ Elliptic-curve crypto
▶ Assignments in C/assembly
▶ Optimize on embedded microcontroller

Idea
▶ Modernize this course
▶ Get rid of C/assembly
▶ Move to dedicated crypto toolchain
▶ Teaching close to ongoing research
▶ Incorporate post-quantum crypto



11

Origins and idea for this course

Origins
“Engineering Cryptographic Software” course at
Radboud University (NL) since 2014
▶ Fundamentals of crypto software
▶ Symmetric crypto examples
▶ Elliptic-curve crypto
▶ Assignments in C/assembly
▶ Optimize on embedded microcontroller

Idea
▶ Modernize this course
▶ Get rid of C/assembly
▶ Move to dedicated crypto toolchain
▶ Teaching close to ongoing research
▶ Incorporate post-quantum crypto



12

Plan for this one-week course

6 Lectures
▶ Cryptography on the Arm Cortex-M4
▶ The Jasmin Framework
▶ Scalar Multiplication
▶ Elliptic-curve Arithmetic
▶ Multiprecision Arithmetic
▶ More Cryptographic Software

4 “Assignments”
▶ Getting set up
▶ Adding up 1000 integers
▶ ChaCha20
▶ Elliptic-curve Diffie-Hellman

It’s all flexible – we’re all learning here!



12

Plan for this one-week course

6 Lectures
▶ Cryptography on the Arm Cortex-M4
▶ The Jasmin Framework
▶ Scalar Multiplication
▶ Elliptic-curve Arithmetic
▶ Multiprecision Arithmetic
▶ More Cryptographic Software

4 “Assignments”
▶ Getting set up
▶ Adding up 1000 integers
▶ ChaCha20
▶ Elliptic-curve Diffie-Hellman

It’s all flexible – we’re all learning here!



12

Plan for this one-week course

6 Lectures
▶ Cryptography on the Arm Cortex-M4
▶ The Jasmin Framework
▶ Scalar Multiplication
▶ Elliptic-curve Arithmetic
▶ Multiprecision Arithmetic
▶ More Cryptographic Software

4 “Assignments”
▶ Getting set up
▶ Adding up 1000 integers
▶ ChaCha20
▶ Elliptic-curve Diffie-Hellman

It’s all flexible – we’re all learning here!



13

Course website

https://cryptojedi.org/peter/teaching/
engineering-crypto-software-mru2026.shtml

https://cryptojedi.org/peter/teaching/engineering-crypto-software-mru2026.shtml
https://cryptojedi.org/peter/teaching/engineering-crypto-software-mru2026.shtml

