Engineering Cryptographic Software

Introduction

Peter Schwabe

January 2026



What got us here? @ :

Ay




What got us here? @ :

Ay

» First time in Mauritius in 2017




What got us here? @ :

Ay

First time in Mauritius in 2017

Met Logan Velvindron in 2024

Learned about Cyberstorm

Got in contact with Anwar Chutoo

Gave a talk at MoU

External examiner for BA program since 2025
Idea of block lecture came up

vVVvyVvyVvyVvyYyvyy




What got us here? @ :

Ay

First time in Mauritius in 2017

Met Logan Velvindron in 2024

Learned about Cyberstorm

Got in contact with Anwar Chutoo

Gave a talk at MoU

External examiner for BA program since 2025
Idea of block lecture came up

Convinced Hien and Amin to join

Convinced them to do most of the work ;-)

VVvyVvyVvyVvyVYyVYYVYyyYy




@2

Ny

Hien Pham Amin Abdulrahman Peter Schwabe
PhD student @ MPI-SP PhD student @ MPI-SP Scientific Director @ MPI-SP
nguyenhien.phamhoang@gmail.com amin@abdulrahman.de peter@cryptojedi.org


mailto:nguyenhien.phamhoang@gmail.com
mailto:amin@abdulrahman.de
mailto:peter@cryptojedi.org

ioi

» Located in Bochum > Aim to have

» Foundedin 2019 > 6 Departments
> C v 13 Pl » 12 Research Groups
urrently S » Around 250 people total









Cryptographic Engineering @@\\

“Cryptography [...] is the practice and study of techniques for secure communication in
the presence of adversarial behavior. [...] Modern cryptography exists at the intersection
of the disciplines of mathematics, computer science, information security, electrical engi-
neering, digital signal processing, physics, and others.”
—Wikipedia on Cryptography



Cryptographic Engineering

The traditional approach

Cryptography Implementation

( Software

Hardware

( Mathematics | Scheme

Algorithms




Cryptographic Engineering @\

Ny

A holistic approach

Cryptographic Engineering

S ——

Hardware

Mathematics |
Algorithms

Scheme +

(prototype)
System




Cryptographic Engineering @\

Ny

A holistic approach

Cryptographic Engineering

Mathematics | Scheme +

(prototype)

decions

Motivation from real-world problems — aim to make real-world impact



Real-world impact: PQC deployment

|A very quick demo]



Real-world impact: PQC deployment

Post-quantum encryption adoption

Traffictype  Exclude bots v
Post-quantum encrypted share of HTTPS request traffic (2) @ o

= Post-quantum encrypted

58.5%

100

Wed, Dec3 Thu, Jan1 P Jan2 sat,Jan3 Sun, Jan4 Mon, Jan5 Tue, Jan &

https://radar.cloudflare.com/adoption-and-usage#post-quantum-encryption-adoption

» Hundreds of billions of connections per day at Cloudflare alone
> Also used in secure messaging (Signal, iMessage)
> Also in cloud infrastructure (AWS)


https://radar.cloudflare.com/adoption-and-usage#post-quantum-encryption-adoption

Cryptographic software

Is cryptographic software special?



Cryptographic software

Is cryptographic software special?

In some sense it's not. . .

» We can implement crypto in pretty much any language
> We expect typical properties like correctness, efficiency, maintainability. . .




Cryptographic software 5@?\

Ay

Is cryptographic software special?

In some sense it's not. ..

» We can implement crypto in pretty much any language
> We expect typical properties like correctness, efficiency, maintainability. . .

...butin many ways itis
> Code is typically very small




Cryptographic software 5@?\

Ay

Is cryptographic software special?

In some sense it's not. ..

» We can implement crypto in pretty much any language
> We expect typical properties like correctness, efficiency, maintainability. . .

...butin many ways itis

> Code is typically very small
» Even small performance improvements matter




Cryptographic software 5@?\

Ay

Is cryptographic software special?

In some sense it's not. ..

» We can implement crypto in pretty much any language
> We expect typical properties like correctness, efficiency, maintainability. . .

...butin many ways itis
> Code is typically very small
» Even small performance improvements matter
> We typically have a full functional specification




Cryptographic software 5@?

Ay

Is cryptographic software special?

In some sense it's not. ..

» We can implement crypto in pretty much any language
> We expect typical properties like correctness, efficiency, maintainability. . .

...butin many ways itis
» Code is typically very small
» Even small performance improvements matter
> We typically have a full functional specification
> Bugs are essentially always security critical




Cryptographic software 5@?

Ay

Is cryptographic software special?

In some sense it's not. ..

» We can implement crypto in pretty much any language
> We expect typical properties like correctness, efficiency, maintainability. . .

...butin many ways itis

» Code is typically very small

» Even small performance improvements matter

> We typically have a full functional specification

> Bugs are essentially always security critical

> Crypto operates on secret data, must not leak this!




Cryptographic software %@@

Cryptographic software is small, highly performance critical, highly security
critical, and typically operates in adversarial environments.



“Don't roll your own crypto’

» Crypto is hard to get right
» Crypto software is hard to get right
> Need extensive independent review

Foof"Shoofing

Prevention Agreem ent

I, . Pramise fhaf once
Your Name
T see how simple AES really is, T will
not implement it in production code
even fhoush it would be reo“y fun.

This agreement shall be in effect
until the undersigned creates a
meaningful interpretive dance that
CGmPareS And conftrasts Cﬂtht—bﬂatd,
ﬂming. and other side channel attacks
and their countermeasures.

Signature Dare

From A Stick Figure Guide to the Advanced
Encryption Standard (AES)

https://www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html


https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

“Don't roll your own crypto’

Foof"Shoofing
Prevention Agreem ent
» Crypto is hard to get right — . promise that once
» Crypto software is hard to get right T see how simple AES really is, T will
. . ) . not implement it in production code
> Need extensive independent review before being even though it would be really fun.
used This agreement shall be in effect

until the undersigned creates a
meaningful interpretive dance that
CGmPareS And conftrasts Cﬂtht—bﬂatd,
ﬂming. and other side channel attacks
and their countermeasures.

Signature Dare

From A Stick Figure Guide to the Advanced
Encryption Standard (AES)

https://www.moserware.com/2009/09/

stick-figure-guide-to-advanced.html


https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

“Don't roll your own crypto’

&)

Foof"Shoofing
Prevention Agreem ent
» Crypto is hard to get right 1 e - Promise +that once
> Crypto software is hard to get right T see how simple AES really is, T will
> Need extensive independent review before being :Tfn":ﬁ';?hg?: :anaPl:d::;{f; ff,:f_‘t
used This agreement shall be in effect
My take: :;:lni':_;i’: lni‘:rig::fi: Cdance that
> Roll your own crypto! o, and sther e chomnel arsacks

and their countermeasures.

> Write your own crypto software!

Signature Dare

From A Stick Figure Guide to the Advanced
Encryption Standard (AES)

https://www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html


https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

“Don't roll your own crypto’

&)

Foot—Shootin
9
Prevention Agreem ent
» Crypto is hard to get right T . promise that once
> Crypto software is hard to get right T see how simple AES really is, T will
. . ) . not lmp'emenf it in producfioh codc
> Need extensive independent review before being even though it would be really fun.
used This agreement shall be in effect
. until the undersigned creates a
My take: meaningful interpretive dance that
compares and conftrasts cachc‘baaed,
> RO// your own Cryptol 'r|mir:3. and other side channel attacks

and their countermeasures.

> Write your own crypto software!
> Get it wrong, be told, learn
> Get better, keep learning

Signature Dare

From A Stick Figure Guide to the Advanced
Encryption Standard (AES)

https://www.moserware.com/2009/09/

stick-figure-guide-to-advanced.html


https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

“Don't roll your own crypto’

&)

Foot—Shootin
9
Prevention Agreem ent
» Crypto is hard to get right T . promise that once
> Crypto software is hard to get right T see how simple AES really is, T will
. . ) . not lmp'emenf it in producfioh codc
> Need extensive independent review before being even though it would be really fun.
used This agreement shall be in effect
. until the undersigned creates a
My take: meaningful interpretive dance that
compares and conftrasts cachc‘baaed,
> RO// your own Cryptol 'r|mir:3. and other side channel attacks

and their countermeasures.

> Write your own crypto software!
> Get it wrong, be told, learn
> Get better, keep learning

Slshn\nn't Date
Just don't use your own crypto (software). E;%?}éiig%(g{’%gﬁﬁzgjg) to the Advanced

https://www.moserware.com/2009/09/

stick-figure-guide-to-advanced.html


https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

The traditional approach

Most production crypto software in use today is written in C/assembly



Some downsides of C

» No memory safety
» Finicky semantics

> Undefined behavior
> Implementation-specific behavior
> Context-specific behavior

» No mandatory initialization
» No (optional) runtime checks




The traditional approach @

Ay

Some downsides of C

» No memory safety » Memory safe
» Finicky semantics > More clear semantics (?)
> Undefined behavior » Mandatory variable initialization
> Implementation-specific behavior > (Optional " hecks f
> Context-specific behavior (Optional) runtime checks for, e.g.,
overflows

» No mandatory initialization
» No (optional) runtime checks




The traditional approach

Lack of security features

“Security engineers have been fighting with C compilers for years.”

—Simon, Chisnall, Anderson, 20182

> No concept of secret vs. public data
» Compilers introduce vulnerabilities!
» Cat-and-mouse game against your own tools!

@What you get is what you C: Controlling side effects in mainstream C compilers. EuroS&P 2018



https://www.cl.cam.ac.uk/~rja14/Papers/whatyouc.pdf

It's getting worse!

Breaking Bad: How Compilers Break
Constant-Time Implementations

Moritz Schneider Daniele Lain Ivan Puddu
morit; th daniele lain@inf ethz.ch n th:
ETH Zurich ETH Zurich ETH Zurich
Zurich, Switzerland Zurich, Switzerland Zurich, Switzerland
Nicolas Dutly Srdjan Capkun
ndutly@student.ethz.ch srdjan.capkun@inf.ethz.ch
ETH Zurich ETH Zurich
Zurich, Switzerland Zurich, Switzerland
Abstract Keywords
The of most hardened libraries Constant time code, cryptographic implementations, compilers

use defensive programming techniques for side-channel resistance.
These techniques are usually specified as guidelines to developers
on specific code patterns to use or avoid. Examples include perform-
ing arithmetic operations to choose between two variables instead
of exccuting a secret-dependent branch. However, such techniques
arc only they lation. In this paper,

ACM Reference Form:
Moritz Schneider, Daniele Lain, Ivan Puddu, Nicolas Dutly, and Srdjan
Capkun. 2025. Breaking Bad: How Compilers Break Constant-Time Imple-
mentations. In ACM Asia Conference on Computer and Communications
Security (ASIA CCS '25), August 2529, 2025, Hanoi, Vietnam. ACM, New
York, NY, USA, 17 pages. https://dol org/10.1145/3708521.3733909




It's getting worse!

Breaking Bad: How Compilers Break
Constant-Time Implementations

Moritz Schneider
moritz.schneider@inf ethz.

ETH Zurich Do Compilers Break Constant-time Guarantees?

Zurich, Switzerland

ndu Lukas Gerlach®, Robert Pietsch?, and Michael Schwarz'

a 1 QISPA Helmholtz Center for Information Security, Saarbriicken, Germany
Abstract ? Saarland University, Saarbriicken, Germany

The implementations of most harde:
use defensive programming technique
These techniques are usually specifiec
on specific code patterns to use or avois
ing arithmetic operations to choose be . O e .
of executing a secret-dependent branc Abstract. Side-channel attacks are a significant concern for the im-

plementation of cryptographic algorithms. Data-oblivious programming

is a discipline that helps mitigate side-channel attacks by preventing
data leakage over side channels. However, due to various optimizations in
modern compilers, data-obliviousness cannot be guaranteed in high-level
languages. This work investigates to which extent compiler optimiza-
tions violate data-obliviousness. To this end, we present data-oblivious
compiler checker (DOCC), an automated binary testing pipeline for de-

tecting data-ohlivinneness vinlations inder different cammniler confionra-



It's getting worse!

Breaking Bad: How Compilers Break
Constant-Time Implementations

Moritz Schneider
moritzschneider@infethz.
ETH Zurich
Zurich, Switzerland

ndu Lukas Gerl

Al

Abstract

The implementations of most harde:
use defensive programming technique
These techniques are usually specifiec
on specific code patterns to use or avois
ing arithmetic operations to choose be
of exccuting a secret-dependent branc

are only meaningful if they persist acrc

CISPA Helmholt
? Sa

Abstract. Side-
plementation of ¢
is a discipline th

data leakage over
modern compilers
languages. This -

hout m
tions violate data- oDﬁvmuancss 16 this énd, we preSent de
compiler checker (DOCC), an automated binary testing pipeline for de-

tecting data-ohlivinneness vinlations inder different cammniler confionra-

Do Compilers Break Constant-time Guarantees?

Fun with flags: How Compilers Break and Fix
Constant-Time Code

Antoine Geimer
Univ. Lille, CNRS, Inria
Univ. Rennes, CNRS, IRISA
antoine.geimer@inria.fr

Developers rely

Clémentine Maurice
Univ. Lille, CNRS, Inria
clementine.maurice @inria.fr

Abstract ing to
prevent timing side.channel attacks. But these lforts can be
undone by compilers, whose optimizations may silently reintro-
duce leaks. While recent works have measured the extent of such
leakage, they leave developers without actionable insights: which
asses are responsible, and how to disable them

ing the compiler remains unclear.

can re-impl critical functions in assembly snippets for
each m{gemd architecture — a time-consuming task that risk in-
troducing more bugs. On the other hand they can purposefully
complexify their code to counter the compiler’s optimizations
~ hardly a resilient approach as compilers improve.
Problem. While a mix of both approaches is generally

'ta-oblvious



It's getting worse!

Breaking Bad: How Compilers Break
Constant-Time Implementations

Moritz Schneider
moritzschneider@infethz.
ETH Zurich
Zurich, Switzerland

ndu

Al

Abstract

The implementations of most harde:
use defensive programming technique
These techniques are usually specifiec
on specific code patterns to use or avois
ing arithmetic operations to choose be
of exccuting a secret-dependent branc
are only meaningful if they persist acrc

Lukas Gerl

CISPA Helmholtz
2 g,

Sa Antoinc

Univ. Lille,
Univ. Rennes,
antoine.gei
Abstract. Side-
plementation of ¢
is a discipline th
data leakage over

Abstract—Developers rely on const
prevent timing side-channel attacks.

undone by compilers, whose optimizai
duce leaks. While recent works have m

modern compilers  leakage, they leave developers without
optimi asses are responsible, :

languages. This - (%0 ‘modifying the compiler remai
tions violate data- oDﬁvmuancss 10 this énd.
compiler checker (DOCC), an automated bin

tecting data-ohlivinmeness vinlations inder d

Do Compilers Break Constant-time Guarantees?

Constant-Time Code

Fun with flags: How Compilers Break and Fix

CT-LLVM: Automatic Large-Scale Constant-Time Analysis

Zhiyuan Zhang

, Gilles Barthe © '

MPI-SP, Bochum, Germany
L IMDEA Software Institute, Madrid, Spain

Abstract

Constant-time (CT) i isa popular progmmmmg discipline to
protect tim-
ing attacks. One nppcnl of the CT d.sc.plmc lies in its concep-
tual simplicity: a program is CT iff it has no secret-dependent
data-flow, control-flow or variable-timing operation. Thanks
to its simplicity, the CT discipline is supported by dozens
of analysis tools. However, a recent user study demonstrates
that these tools are seldom used due to poor usability and
maintainability (Jancar et al. [EEE SP 2022).

Problems Identification. We identify two main reasons for
not closing the gap between the CT discipline and the practice.
The first reason is the low adoption of CT analysis tools
in real-world development. A recent study [24] shows that
developers do not routinely use CT analysis tools because of
poor usability. First, most available tools are difficult to install,
due to complex dependencies and reliance on deprecated
software. Second, once installed, the overwhelming majority
of the tools are still hard to use. For instance, they may require
complex setups for each use of the tool. Third, analysis results
mav be difficult to interpret. due to the underlving analvsis



Origins and idea for this course

“Engineering Cryptographic Software” course at
Radboud University (NL) since 2014

» Fundamentals of crypto software

» Symmetric crypto examples

» Elliptic-curve crypto

» Assignments in C/assembly

» Optimize on embedded microcontroller




Origins and idea for this course

@)
:

(= ——
“Engineering Cryptographic Software” course at Modernize this course
Radboud University (NL) since 2014 Get rid of C/assembly
> Fundamentals of crypto software Move to dedicated crypto toolchain
> Symmetric crypto examples Teaching close to ongoing research

> Elliptic-curve crypto Incorporate post-quantum crypto
> Assignments in C/assembly

» Optimize on embedded microcontroller

vVvyYVvyyVvyy




Plan for this one-week course

6 Lectures
» Cryptography on the Arm Cortex-M4
» The Jasmin Framework
» Scalar Multiplication
> Elliptic-curve Arithmetic
» Multiprecision Arithmetic
» More Cryptographic Software



Plan for this one-week course

6 Lectures 4 “Assignments”
» Cryptography on the Arm Cortex-M4 > Getting set up
» The Jasmin Framework > Adding up 1000 integers
» Scalar Multiplication » ChaCha20
» Elliptic-curve Arithmetic > Elliptic-curve Diffie-Hellman
» Multiprecision Arithmetic
» More Cryptographic Software



Plan for this one-week course

6 Lectures 4 “Assignments”
» Cryptography on the Arm Cortex-M4 > Getting set up
» The Jasmin Framework > Adding up 1000 integers
» Scalar Multiplication » ChaCha20
» Elliptic-curve Arithmetic > Elliptic-curve Diffie-Hellman
» Multiprecision Arithmetic
» More Cryptographic Software

It's all flexible — we're all learning here!



Course website

https://cryptojedi.org/peter/teaching/
engineering-crypto-software-mru2026.shtml


https://cryptojedi.org/peter/teaching/engineering-crypto-software-mru2026.shtml
https://cryptojedi.org/peter/teaching/engineering-crypto-software-mru2026.shtml

