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What got us here?

▶ First time in Mauritius in 2017
▶ Met Logan Velvindron in 2024
▶ Learned about Cyberstorm
▶ Got in contact with Anwar Chutoo
▶ Gave a talk at MoU
▶ External examiner for BA program since 2025
▶ Idea of block lecture came up
▶ Convinced Hien and Amin to join
▶ Convinced them to do most of the work ;-)
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PhD student @ MPI-SP
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Scientific Director @ MPI-SP
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MPI-SP

▶ Located in Bochum
▶ Founded in 2019
▶ Currently 13 PIs

▶ Aim to have
▶ 6 Departments
▶ 12 Research Groups
▶ Around 250 people total
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MPI-SP
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The Cryptographic Engineering (EPOQUE) Department
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Cryptographic Engineering

“Cryptography [. . . ] is the practice and study of techniques for secure communication in
the presence of adversarial behavior. [. . . ]Modern cryptography exists at the intersection
of the disciplines of mathematics, computer science, information security, electrical engi-
neering, digital signal processing, physics, and others.”

—Wikipedia on Cryptography

Motivation from real-world problems – aim to make real-world impact
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Cryptographic Engineering

The traditional approach

Cryptography
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Hardware

System

Motivation from real-world problems – aim to make real-world impact
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Real-world impact: PQC deployment

[A very quick demo]
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Real-world impact: PQC deployment

https://radar.cloudflare.com/adoption-and-usage#post-quantum-encryption-adoption

▶ Hundreds of billions of connections per day at Cloudflare alone
▶ Also used in secure messaging (Signal, iMessage)
▶ Also in cloud infrastructure (AWS)

https://radar.cloudflare.com/adoption-and-usage#post-quantum-encryption-adoption
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Cryptographic software

Is cryptographic software special?

In some sense it’s not. . .
▶ We can implement crypto in pretty much any language
▶ We expect typical properties like correctness, efficiency, maintainability. . .

. . . but in many ways it is
▶ Code is typically very small

▶ Even small performance improvements matter
▶ We typically have a full functional specification
▶ Bugs are essentially always security critical
▶ Crypto operates on secret data, must not leak this!
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Cryptographic software

Cryptographic software is small, highly performance critical, highly security
critical, and typically operates in adversarial environments.
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“Don’t roll your own crypto”

▶ Crypto is hard to get right
▶ Crypto software is hard to get right
▶ Need extensive independent review

before being
used

My take:
▶ Roll your own crypto!
▶ Write your own crypto software!

▶ Get it wrong, be told, learn
▶ Get better, keep learning

Just don’t use your own crypto (software).

From A Stick Figure Guide to the Advanced
Encryption Standard (AES)
https://www.moserware.com/2009/09/
stick-figure-guide-to-advanced.html

https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
https://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
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The traditional approach

Most production crypto software in use today is written in C/assembly
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The traditional approach

Some downsides of C
▶ No memory safety
▶ Finicky semantics

▶ Undefined behavior
▶ Implementation-specific behavior
▶ Context-specific behavior

▶ No mandatory initialization
▶ No (optional) runtime checks
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Some downsides of C
▶ No memory safety
▶ Finicky semantics

▶ Undefined behavior
▶ Implementation-specific behavior
▶ Context-specific behavior

▶ No mandatory initialization
▶ No (optional) runtime checks

but. . . Rust!
▶ Memory safe
▶ More clear semantics (?)
▶ Mandatory variable initialization
▶ (Optional) runtime checks for, e.g.,

overflows
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The traditional approach

Lack of security features

“Security engineers have been fighting with C compilers for years.”
—Simon, Chisnall, Anderson, 2018a

▶ No concept of secret vs. public data
▶ Compilers introduce vulnerabilities!
▶ Cat-and-mouse game against your own tools!
aWhat you get is what you C: Controlling side effects in mainstream C compilers. EuroS&P 2018

https://www.cl.cam.ac.uk/~rja14/Papers/whatyouc.pdf


10

It’s getting worse!
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Origins and idea for this course

Origins
“Engineering Cryptographic Software” course at
Radboud University (NL) since 2014
▶ Fundamentals of crypto software
▶ Symmetric crypto examples
▶ Elliptic-curve crypto
▶ Assignments in C/assembly
▶ Optimize on embedded microcontroller

Idea
▶ Modernize this course
▶ Get rid of C/assembly
▶ Move to dedicated crypto toolchain
▶ Teaching close to ongoing research
▶ Incorporate post-quantum crypto
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Plan for this one-week course

6 Lectures
▶ Cryptography on the Arm Cortex-M4
▶ The Jasmin Framework
▶ Scalar Multiplication
▶ Elliptic-curve Arithmetic
▶ Multiprecision Arithmetic
▶ More Cryptographic Software

4 “Assignments”
▶ Getting set up
▶ Adding up 1000 integers
▶ ChaCha20
▶ Elliptic-curve Diffie-Hellman

It’s all flexible – we’re all learning here!
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Course website

https://cryptojedi.org/peter/teaching/
engineering-crypto-software-mru2026.shtml

https://cryptojedi.org/peter/teaching/engineering-crypto-software-mru2026.shtml
https://cryptojedi.org/peter/teaching/engineering-crypto-software-mru2026.shtml

