
Engineering Cryptographic Software
The Jasmin Framework

Peter Schwabe

January 2026

1

High-assurance crypto

Reminder:
▶ Traditionally, crypto software often written in C and assembly.
▶ Software is very efficient, but neither (guaranteed to be) correct nor (guaranteed to be)

secure.

Idea:
▶ Use tools/techniques from formal methods to prove

▶ functional correctness (including e.g., safety);
▶ certain implementation security properties; (and
▶ cryptographic security through reductions)

▶ Crypto software is a special here in multiple ways:
▶ Usually fairly little code (+)
▶ Has precise formal specification (+)
▶ Inherently security-critical (+)

▶ Highly performance critical (–)

We want formal guarantees without giving up on performance.

1

High-assurance crypto

Reminder:
▶ Traditionally, crypto software often written in C and assembly.
▶ Software is very efficient, but neither (guaranteed to be) correct nor (guaranteed to be)

secure.
Idea:
▶ Use tools/techniques from formal methods to prove

▶ functional correctness (including e.g., safety);
▶ certain implementation security properties; (and
▶ cryptographic security through reductions)

▶ Crypto software is a special here in multiple ways:
▶ Usually fairly little code (+)
▶ Has precise formal specification (+)
▶ Inherently security-critical (+)

▶ Highly performance critical (–)

We want formal guarantees without giving up on performance.

1

High-assurance crypto

Reminder:
▶ Traditionally, crypto software often written in C and assembly.
▶ Software is very efficient, but neither (guaranteed to be) correct nor (guaranteed to be)

secure.
Idea:
▶ Use tools/techniques from formal methods to prove

▶ functional correctness (including e.g., safety);
▶ certain implementation security properties; (and
▶ cryptographic security through reductions)

▶ Crypto software is a special here in multiple ways:
▶ Usually fairly little code (+)
▶ Has precise formal specification (+)
▶ Inherently security-critical (+)

▶ Highly performance critical (–)

We want formal guarantees without giving up on performance.

1

High-assurance crypto

Reminder:
▶ Traditionally, crypto software often written in C and assembly.
▶ Software is very efficient, but neither (guaranteed to be) correct nor (guaranteed to be)

secure.
Idea:
▶ Use tools/techniques from formal methods to prove

▶ functional correctness (including e.g., safety);
▶ certain implementation security properties; (and
▶ cryptographic security through reductions)

▶ Crypto software is a special here in multiple ways:
▶ Usually fairly little code (+)
▶ Has precise formal specification (+)
▶ Inherently security-critical (+)
▶ Highly performance critical (–)

We want formal guarantees without giving up on performance.

1

High-assurance crypto

Reminder:
▶ Traditionally, crypto software often written in C and assembly.
▶ Software is very efficient, but neither (guaranteed to be) correct nor (guaranteed to be)

secure.
Idea:
▶ Use tools/techniques from formal methods to prove

▶ functional correctness (including e.g., safety);
▶ certain implementation security properties; (and
▶ cryptographic security through reductions)

▶ Crypto software is a special here in multiple ways:
▶ Usually fairly little code (+)
▶ Has precise formal specification (+)
▶ Inherently security-critical (+)
▶ Highly performance critical (–)

We want formal guarantees without giving up on performance.

2

Formosa Crypto

▶ Effort to build formally verified crypto
software

▶ Currently three main projects:
▶ EasyCrypt proof assistant
▶ jasmin programming language
▶ Libjade (PQ-)crypto library

▶ Core team of ≈ 30–40 people
▶ Discussion forum with >350 people

2

Formosa Crypto

https://en.wikipedia.org/wiki/Formosan_black_bear

https://en.wikipedia.org/wiki/Formosan_black_bear

3

The toolchain and workflow

3

The toolchain and workflow

4

Jasmin – assembly in your head

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, Pierre-Yves Strub: Jasmin:
High-Assurance and High-Speed Cryptography. ACM CCS 2017

▶ Language with “C-like” syntax
▶ Programming in jasmin is much closer to assembly:

▶ Generally: 1 line in jasmin → 1 line in asm
▶ A few exceptions, but highly predictable
▶ Compiler does not schedule code
▶ Compiler does not spill registers

▶ Compiler is formally proven to preserve semantics
▶ Compiler is formally proven to preserve constant-time property
▶ Many new features since 2017 paper!

4

Jasmin – assembly in your head

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, Pierre-Yves Strub: Jasmin:
High-Assurance and High-Speed Cryptography. ACM CCS 2017

▶ Language with “C-like” syntax
▶ Programming in jasmin is much closer to assembly:

▶ Generally: 1 line in jasmin → 1 line in asm
▶ A few exceptions, but highly predictable
▶ Compiler does not schedule code
▶ Compiler does not spill registers

▶ Compiler is formally proven to preserve semantics
▶ Compiler is formally proven to preserve constant-time property

▶ Many new features since 2017 paper!

4

Jasmin – assembly in your head

José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, Pierre-Yves Strub: Jasmin:
High-Assurance and High-Speed Cryptography. ACM CCS 2017

▶ Language with “C-like” syntax
▶ Programming in jasmin is much closer to assembly:

▶ Generally: 1 line in jasmin → 1 line in asm
▶ A few exceptions, but highly predictable
▶ Compiler does not schedule code
▶ Compiler does not spill registers

▶ Compiler is formally proven to preserve semantics
▶ Compiler is formally proven to preserve constant-time property
▶ Many new features since 2017 paper!

5

Jasmin – first steps

C code
#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

Jasmin code

▶ On Nucleo board all the problems we
discussed already

▶ We don’t implement main in Jasmin
▶ We don’t have I/O in Jasmin

5

Jasmin – first steps

C code
#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

Jasmin code
▶ On Nucleo board all the problems we

discussed already
▶ We don’t implement main in Jasmin
▶ We don’t have I/O in Jasmin

5

Our first Jasmin program: add 42

export fn add42(reg u32 x) -> reg u32 {
x += 42;
return x;

}

.thumb

.syntax unified

.global add42

.thumb_func

.type add42, %function
add42:

push {lr}
ADD r0, r0, #42
pop {pc}
.section ".note.GNU-stack", "", %progbits

▶ Save in file, say add42.jazz
▶ Compile with jasminc -arch arm-m4 add42.jazz -o add42.s

5

Our first Jasmin program: add 42

export fn add42(reg u32 x) -> reg u32 {
x += 42;
return x;

}

.thumb

.syntax unified

.global add42

.thumb_func

.type add42, %function
add42:

push {lr}
ADD r0, r0, #42
pop {pc}
.section ".note.GNU-stack", "", %progbits

▶ Save in file, say add42.jazz
▶ Compile with jasminc -arch arm-m4 add42.jazz -o add42.s

5

Our first Jasmin program: add 42

export fn add42(reg u32 x) -> reg u32 {
x += 42;
return x;

}

.thumb

.syntax unified

.global add42

.thumb_func

.type add42, %function
add42:

push {lr}
ADD r0, r0, #42
pop {pc}
.section ".note.GNU-stack", "", %progbits

▶ Save in file, say add42.jazz
▶ Compile with jasminc -arch arm-m4 add42.jazz -o add42.s

6

Registers, stack, and arrays

▶ For each variable you need to decide if it is
▶ living in a register: reg,
▶ living on the stack: stack, or
▶ replaced by immediates during compilation: inline int

▶ Integer types are called u32, u16 etc.
▶ Jasmin supports arrays of reg and stack variables:

▶ reg u32[10] a;
▶ stack u64[100] b;

▶ Arrays have fixed length (known at compile time)
▶ Jasmin supports sub-arrays with fixed offsets and lengths, e.g.

b[16:32] is the subarray of length 32 starting at index 16

7

Loops and conditionals

▶ Conditionals (if, else) like in C

▶ Two kinds of loops: for and while
▶ for loops are automatically unrolled
▶ for iterate over an inline int
▶ while loops are real loops with branch

7

Loops and conditionals

▶ Conditionals (if, else) like in C
▶ Two kinds of loops: for and while

▶ for loops are automatically unrolled
▶ for iterate over an inline int
▶ while loops are real loops with branch

7

Loops and conditionals

▶ Conditionals (if, else) like in C
▶ Two kinds of loops: for and while
▶ for loops are automatically unrolled
▶ for iterate over an inline int

▶ while loops are real loops with branch

7

Loops and conditionals

▶ Conditionals (if, else) like in C
▶ Two kinds of loops: for and while
▶ for loops are automatically unrolled
▶ for iterate over an inline int
▶ while loops are real loops with branch

8

Loop examples

for loop

T

export fn sum4(reg ptr u32[4] in) -> reg u32 {
inline int i;
reg u32 r, t;
r = 0;
for i = 0 to 4 {

t = in[i];
r += t;

}
return r;

}

sum4:
push {lr}
MOV r1, #0
LDR r2, [r0]
ADD r1, r1, r2
LDR r2, [r0, #4]
ADD r1, r1, r2
LDR r2, [r0, #8]
ADD r1, r1, r2
LDR r2, [r0, #12]
ADD r0, r1, r2
pop {pc}

8

Loop examples

while loop

export fn sum4(reg ptr u32[4] in) -> reg u32 {
reg u32 r, t, i;
r = 0;
i = 0;
while (i < 4) {

t = in[(uint)i];
r += t;
i += 1;

}
return r;

}

sum4:
push {lr}
MOV r1, #0
MOV r2, #0
b Lsum4$1

Lsum4$2:
LDR r3, [r0, r2, lsl #2]
ADD r1, r1, r3
ADD r2, r2, #1

Lsum4$1:
CMP r2, #4
bcc Lsum4$2
MOV r0, r1
pop {pc}

9

Conditional example

if-else statement

export fn cond(reg u32 x) -> reg u32 {
reg u32 r;
if (x == 42) {

r = 0;
}
else {

r = 1;
}
return r;

}

cond:
push {lr}
CMP r0, #42
beq Lcond$1
MOV r0, #1
b Lcond$2

Lcond$1:
MOV r0, #0

Lcond$2:
pop {pc}

10

Three kinds of “functions”

export functions
▶ Entry points into jasmin-generated code
▶ Need at least one export function in a jasmin program
▶ Follows C function-call ABI

inline functions
▶ Historically only non-export functions
▶ Can receive stack-array arguments

“Regular” functions
▶ Array arguments passed through reg ptr
▶ reg ptr cannot be modifed through arithmetic
▶ No fixed function-call ABI (compilation has global view)

10

Three kinds of “functions”

export functions
▶ Entry points into jasmin-generated code
▶ Need at least one export function in a jasmin program
▶ Follows C function-call ABI

inline functions
▶ Historically only non-export functions
▶ Can receive stack-array arguments

“Regular” functions
▶ Array arguments passed through reg ptr
▶ reg ptr cannot be modifed through arithmetic
▶ No fixed function-call ABI (compilation has global view)

10

Three kinds of “functions”

export functions
▶ Entry points into jasmin-generated code
▶ Need at least one export function in a jasmin program
▶ Follows C function-call ABI

inline functions
▶ Historically only non-export functions
▶ Can receive stack-array arguments

“Regular” functions
▶ Array arguments passed through reg ptr
▶ reg ptr cannot be modifed through arithmetic
▶ No fixed function-call ABI (compilation has global view)

11

Register allocation and spilling

▶ Jasmin takes care of register allocation
▶ Assign live variables to registers
▶ Keep track of set of live variables
▶ Automatically handle various constraints (e.g., return value in r0)

▶ Jasmin does not take care of spilling
▶ If there are not enough registers, compilation will fail
▶ If constraints cannot be met, compilation will fail
▶ Need to manually spill to and unspill from the stack

▶ New Jasmin feature (Dec 18, 2025): auto-spill
▶ Compile with -auto-spill-all will spill/unspill all reg variables
▶ Can manually mark a variable as #[nospill] to prevent this

▶ Compile with -auto-spill will spill/unspill reg variables marked as #[spill]
▶ No efficient spilling, no automated optimization!
▶ Also: no automatic spilling for register arrays

11

Register allocation and spilling

▶ Jasmin takes care of register allocation
▶ Assign live variables to registers
▶ Keep track of set of live variables
▶ Automatically handle various constraints (e.g., return value in r0)

▶ Jasmin does not take care of spilling
▶ If there are not enough registers, compilation will fail
▶ If constraints cannot be met, compilation will fail
▶ Need to manually spill to and unspill from the stack

▶ New Jasmin feature (Dec 18, 2025): auto-spill
▶ Compile with -auto-spill-all will spill/unspill all reg variables
▶ Can manually mark a variable as #[nospill] to prevent this

▶ Compile with -auto-spill will spill/unspill reg variables marked as #[spill]
▶ No efficient spilling, no automated optimization!
▶ Also: no automatic spilling for register arrays

11

Register allocation and spilling

▶ Jasmin takes care of register allocation
▶ Assign live variables to registers
▶ Keep track of set of live variables
▶ Automatically handle various constraints (e.g., return value in r0)

▶ Jasmin does by default not take care of spilling
▶ If there are not enough registers, compilation will fail
▶ If constraints cannot be met, compilation will fail
▶ Need to manually spill to and unspill from the stack

▶ New Jasmin feature (Dec 18, 2025): auto-spill
▶ Compile with -auto-spill-all will spill/unspill all reg variables
▶ Can manually mark a variable as #[nospill] to prevent this

▶ Compile with -auto-spill will spill/unspill reg variables marked as #[spill]
▶ No efficient spilling, no automated optimization!
▶ Also: no automatic spilling for register arrays

11

Register allocation and spilling

▶ Jasmin takes care of register allocation
▶ Assign live variables to registers
▶ Keep track of set of live variables
▶ Automatically handle various constraints (e.g., return value in r0)

▶ Jasmin does by default not take care of spilling
▶ If there are not enough registers, compilation will fail
▶ If constraints cannot be met, compilation will fail
▶ Need to manually spill to and unspill from the stack

▶ New Jasmin feature (Dec 18, 2025): auto-spill
▶ Compile with -auto-spill-all will spill/unspill all reg variables
▶ Can manually mark a variable as #[nospill] to prevent this
▶ Compile with -auto-spill will spill/unspill reg variables marked as #[spill]

▶ No efficient spilling, no automated optimization!
▶ Also: no automatic spilling for register arrays

11

Register allocation and spilling

▶ Jasmin takes care of register allocation
▶ Assign live variables to registers
▶ Keep track of set of live variables
▶ Automatically handle various constraints (e.g., return value in r0)

▶ Jasmin does by default not take care of spilling
▶ If there are not enough registers, compilation will fail
▶ If constraints cannot be met, compilation will fail
▶ Need to manually spill to and unspill from the stack

▶ New Jasmin feature (Dec 18, 2025): auto-spill
▶ Compile with -auto-spill-all will spill/unspill all reg variables
▶ Can manually mark a variable as #[nospill] to prevent this
▶ Compile with -auto-spill will spill/unspill reg variables marked as #[spill]
▶ No efficient spilling, no automated optimization!
▶ Also: no automatic spilling for register arrays

12

Examples

export fn sum20() -> reg u32 {
reg u32 t0, t1, t2, t3, t4;
reg u32 t5, t6, t7, t8, t9;
reg u32 t10, t11, t12, t13, t14;
reg u32 t15, t16, t17, t18, t19;
reg u32 r;

t0 = 0;
t1 = 1;
...
t19 = 19;

r = 0;
r = r + t0;
r = r + t1;
...
r = r + t19;

return r;
}

▶ This will not compile without auto-spilling
▶ This will not compile -auto-spill
▶ This will compile with -auto-spill-all

12

Examples

export fn sum20() -> reg u32 {
#[spill] reg u32 t0, t1, t2, t3, t4;
#[spill] reg u32 t5, t6, t7, t8, t9;
reg u32 t10, t11, t12, t13, t14;
reg u32 t15, t16, t17, t18, t19;
reg u32 r;

t0 = 0;
t1 = 1;
...
t19 = 19;

r = 0;
r = r + t0;
r = r + t1;
...
r = r + t19;

return r;
}

▶ This will not compile without auto-spilling
▶ This will compile -auto-spill
▶ More efficient than with -auto-spill-all

13

Memory and thread safety

The old way
▶ Static safety check:

jasminc -checksafety
▶ Great when it works
▶ Takes a long time (not modular)
▶ Often fails for safe code

The new way
▶ Master’s thesis by Francisca Barros
▶ Modular design
▶ Safety contracts and assertions in Jasmin
▶ Automatic discharge of assertions
▶ Prove remaining assertions in EasyCrypt

fn _gen_matrix_avx2
(reg mut ptr u16[MLKEM_K * MLKEM_K * MLKEM_N] matrix
, reg const ptr u8[32] rho
, #spill_to_mmx reg u64 transposed
) -> reg ptr u16[MLKEM_K * MLKEM_K * MLKEM_N]
requires {is_arr_init(rho,0,32) && 0<= transposed && transposed <= 1}
ensures {is_arr_init(result.0,0,MLKEM_K * MLKEM_K * MLKEM_N * 2)}
{
...

}

13

Memory and thread safety

The old way
▶ Static safety check:

jasminc -checksafety
▶ Great when it works
▶ Takes a long time (not modular)
▶ Often fails for safe code

The new way
▶ Master’s thesis by Francisca Barros
▶ Modular design
▶ Safety contracts and assertions in Jasmin
▶ Automatic discharge of assertions
▶ Prove remaining assertions in EasyCrypt

fn _gen_matrix_avx2
(reg mut ptr u16[MLKEM_K * MLKEM_K * MLKEM_N] matrix
, reg const ptr u8[32] rho
, #spill_to_mmx reg u64 transposed
) -> reg ptr u16[MLKEM_K * MLKEM_K * MLKEM_N]
requires {is_arr_init(rho,0,32) && 0<= transposed && transposed <= 1}
ensures {is_arr_init(result.0,0,MLKEM_K * MLKEM_K * MLKEM_N * 2)}
{

...
}

14

Safety checking for this course

▶ Assignment framework as check-safety target in Makefile:
make check-safety

▶ This uses the old safety checker
▶ Feel free to run and try it but:

▶ be prepared for it to fail on safe code
▶ be prepared for it to take quite some time

15

So, where are we?

Correctness
▶ Functional correctness through EasyCrypt proofs
▶ Thread and memory safety guaranteed by jasmin

▶ Still need to check that EC specification is correct!
▶ Could be addressed by machine-readable standards

Efficiency

▶ Some limitations compared to assembly for memory safety
▶ No limitations that (majorly) impact performance

Security

▶ ???

15

So, where are we?

Correctness
▶ Functional correctness through EasyCrypt proofs
▶ Thread and memory safety guaranteed by jasmin
▶ Still need to check that EC specification is correct!
▶ Could be addressed by machine-readable standards

Efficiency

▶ Some limitations compared to assembly for memory safety
▶ No limitations that (majorly) impact performance

Security

▶ ???

15

So, where are we?

Correctness
▶ Functional correctness through EasyCrypt proofs
▶ Thread and memory safety guaranteed by jasmin
▶ Still need to check that EC specification is correct!
▶ Could be addressed by machine-readable standards

Efficiency
▶ Some limitations compared to assembly for memory safety
▶ No limitations that (majorly) impact performance

Security

▶ ???

15

So, where are we?

Correctness
▶ Functional correctness through EasyCrypt proofs
▶ Thread and memory safety guaranteed by jasmin
▶ Still need to check that EC specification is correct!
▶ Could be addressed by machine-readable standards

Efficiency
▶ Some limitations compared to assembly for memory safety
▶ No limitations that (majorly) impact performance

Security
▶ ???

16

Information-flow type system

▶ Enforce constant-time on jasmin source level
▶ Every piece of data is either secret or public
▶ Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”

▶ Branch conditions and memory indices need to be public
▶ In principle can do this also in, e.g., Rust (secret_integers crate)
▶ Jasmin compiler has been verified to preserve constant-time!
▶ Explicit #declassify primitive to move from secret to public
▶ #declassify creates a proof obligation!

Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn Priya. Structured Leakage and Applications to
Cryptographic Constant-Time and Cost. CCS 2021. https://eprint.iacr.org/2021/650

https://eprint.iacr.org/2021/650

16

Information-flow type system

▶ Enforce constant-time on jasmin source level
▶ Every piece of data is either secret or public
▶ Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”
▶ Branch conditions and memory indices need to be public

▶ In principle can do this also in, e.g., Rust (secret_integers crate)
▶ Jasmin compiler has been verified to preserve constant-time!
▶ Explicit #declassify primitive to move from secret to public
▶ #declassify creates a proof obligation!

Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn Priya. Structured Leakage and Applications to
Cryptographic Constant-Time and Cost. CCS 2021. https://eprint.iacr.org/2021/650

https://eprint.iacr.org/2021/650

16

Information-flow type system

▶ Enforce constant-time on jasmin source level
▶ Every piece of data is either secret or public
▶ Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”
▶ Branch conditions and memory indices need to be public
▶ In principle can do this also in, e.g., Rust (secret_integers crate)

▶ Jasmin compiler has been verified to preserve constant-time!
▶ Explicit #declassify primitive to move from secret to public
▶ #declassify creates a proof obligation!

Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn Priya. Structured Leakage and Applications to
Cryptographic Constant-Time and Cost. CCS 2021. https://eprint.iacr.org/2021/650

https://eprint.iacr.org/2021/650

16

Information-flow type system

▶ Enforce constant-time on jasmin source level
▶ Every piece of data is either secret or public
▶ Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”
▶ Branch conditions and memory indices need to be public
▶ In principle can do this also in, e.g., Rust (secret_integers crate)
▶ Jasmin compiler has been verified to preserve constant-time!

▶ Explicit #declassify primitive to move from secret to public
▶ #declassify creates a proof obligation!

Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn Priya. Structured Leakage and Applications to
Cryptographic Constant-Time and Cost. CCS 2021. https://eprint.iacr.org/2021/650

https://eprint.iacr.org/2021/650

16

Information-flow type system

▶ Enforce constant-time on jasmin source level
▶ Every piece of data is either secret or public
▶ Flow of secret information is traced by type system

“Any operation with a secret input produces a secret output”
▶ Branch conditions and memory indices need to be public
▶ In principle can do this also in, e.g., Rust (secret_integers crate)
▶ Jasmin compiler has been verified to preserve constant-time!
▶ Explicit #declassify primitive to move from secret to public
▶ #declassify creates a proof obligation!

Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn Priya. Structured Leakage and Applications to
Cryptographic Constant-Time and Cost. CCS 2021. https://eprint.iacr.org/2021/650

https://eprint.iacr.org/2021/650

17

Example

export fn cmov256(#[public] reg ptr u32[8] pr px,
#[secret] reg u32 b)
-> #[public] reg ptr u32[8]

{
if (b == 1) {

pr = #copy(px);
}
pr = pr;
return pr;

}

▶ Check this program with jasmin-ct --arch arm-m4 FILENAME.jazz:

constant type checker: b has type secret it needs to be public

18

Example

export fn cmov256(#[public] reg ptr u32[8] pr px,
#[secret] reg u32 b)
-> #[public] reg ptr u32[8]

{
() = #declassify(b);
if (b == 1) {

pr = #copy(px);
}
pr = pr;
return pr;

}

▶ This program will pass the constant-time checker

19

Hints and possible pitfalls

▶ Start writing (or modifying) a simple export function
▶ Make sure that it compiles, behaves like you expect
▶ See, e.g., playground2-jasmin/src/myjasmin.jazz
▶ Then move to assignment0-sum

19

Hints and possible pitfalls

Careful with pointer arguments, there are two kinds:

▶ Pointers to memory of fixed length (treated like arrays):
▶ Argument type, e.g., reg ptr u32[8] x
▶ Load second element into reg u32 a:

a = x[1];
▶ Pointers to memory of variable length

▶ Argument type is reg u32 p, typically second argument reg u32 plen
▶ Load second 4-byte word into reg u32 a:

a = (32u)[p + 4];

19

Hints and possible pitfalls

Jasmin requires explicit casts, syntax is unexpected:

reg u32 a;
reg u8 b;
a = 42;
b = (8u)a;
b += 23;
a = (32u)b;

20

Jasmin resources

Jasmin documentation:

https://jasmin-lang.readthedocs.io/en/stable/

Examples of Jasmin Cortex-M4 code:

https://github.com/jasmin-lang/jasmin/tree/main/compiler/tests/success/arm-m4

Chapter 4 of Ph.D. thesis by Tiago Oliveira (focused on x86_64):

https://repositorio-aberto.up.pt/bitstream/10216/144015/2/580364.pdf

Formosa Crypto Zulipchat:

https://formosa-crypto.zulipchat.com

https://jasmin-lang.readthedocs.io/en/stable/
https://github.com/jasmin-lang/jasmin/tree/main/compiler/tests/success/arm-m4
https://repositorio-aberto.up.pt/bitstream/10216/144015/2/580364.pdf
https://formosa-crypto.zulipchat.com

