Engineering Cryptographic Software

The Jasmin Framework

Peter Schwabe

January 2026

High-assurance crypto

Reminder:
> Traditionally, crypto software often written in C and assembly.

> Software is very efficient, but neither (quaranteed to be) correct nor (guaranteed to be)
secure.

High-assurance crypto @@

Reminder:
> Traditionally, crypto software often written in C and assembly.
> Software is very efficient, but neither (quaranteed to be) correct nor (guaranteed to be)
secure.
Idea:
> Use tools/techniques from formal methods to prove

» functional correctness (including e.g., safety);
> certain implementation security properties; (and
» cryptographic security through reductions)

Ny

High-assurance crypto @@

Reminder:
> Traditionally, crypto software often written in C and assembly.
> Software is very efficient, but neither (quaranteed to be) correct nor (guaranteed to be)
secure.
Idea:
> Use tools/techniques from formal methods to prove

» functional correctness (including e.g., safety);
> certain implementation security properties; (and
» cryptographic security through reductions)

> Crypto software is a special here in multiple ways:

> Usually fairly little code (+)
» Has precise formal specification (+)
> Inherently security-critical (+)

High-assurance crypto @@

Ny

Reminder:
> Traditionally, crypto software often written in C and assembly.

> Software is very efficient, but neither (quaranteed to be) correct nor (guaranteed to be)
secure.

Idea:

> Use tools/techniques from formal methods to prove

» functional correctness (including e.g., safety);
> certain implementation security properties; (and
» cryptographic security through reductions)
> Crypto software is a special here in multiple ways:
> Usually fairly little code (+)
» Has precise formal specification (+)
> Inherently security-critical (+)
» Highly performance critical (=)

High-assurance crypto @

Ay

Reminder:
> Traditionally, crypto software often written in C and assembly.

> Software is very efficient, but neither (quaranteed to be) correct nor (guaranteed to be)
secure.

Idea:

> Use tools/techniques from formal methods to prove

» functional correctness (including e.g., safety);
> certain implementation security properties; (and
» cryptographic security through reductions)

> Crypto software is a special here in multiple ways:
> Usually fairly little code (+)

Has precise formal specification (+)

Inherently security-critical (+)

Highly performance critical (=)

vvyy

We want formal guarantees without giving up on performance.

FORMOSA
CRYPTO

» Effort to build formally verified crypto
software
» Currently three main projects:

» EasyCrypt proof assistant
> jasmin programming language
» Libjade (PQ-)crypto library

» Core team of =~ 30-40 people
» Discussion forum with >350 people

BOSTON
UNIVERSITY

.% University of
SE] BRISTOL

& INESC
&tua/-
’I N

Universidade do Minho

MAX PLANCK INSTITUTE @‘
FOR SECURITY AND PRIVACY

N/

[APORTO

- FACULDADE DE CiENCiAS
UNIVERSIDADE DO PORTO

Ay

PQSHIELD

Radboud Unlverslty

iﬁ

ROSeNPass
SANDBOX
TU/e &t
B UCLouvain

Formosa Crypto

Formosan black bear ¥a 24 languages v

Article Talk Read Edit View history Tools v

From Wikipedia, the free encyclopedia

The Formosan black bear (%2 % %, Ursus thibetanus formosanus), also known as the
Taiwanese black bear or white-throated bear, is a subspecies of the Asiatic black bear. It was Lommosaniblack befr
first described by Robert Swinhoe in 1864. Formosan black bears are endemic to Taiwan. They are F ‘
also the largest land animals and the only native bears (Ursidae) in Taiwan. They are seen to
represent the Taiwanese nation.

Because of severe exploitation and habitat degradation in recent decades, populations of wild
Formosan black bears have been declining. This species was listed as "endangered" under Taiwan's
Wildlife Conservation Act (Traditional Chinese: ¥f £8)4 & 7 i%) in 1989. Their geographic distribution

is restricted to remote, rugged areas at elevations of 1,000-3,500 metres (3,300-11,500 ft). The
estimated number of individuals is 200 to 600.3]

Physical characteristics [edit]

The Formosan black bear is sturdily built and has a round head, short neck,
small eyes, and long snout. Its head measures 26-35 c¢m (10-14 in) in length
and 40-60 cm (16-24 in) in circumference. Its ears are 8-12 ¢m (3.1-4.7 in)
long. Its snout resembles a dog's, hence its nickname is "dog bear". Its tail is

Conservation status

L
. . . N Extinct Threatened CDS\a(Se[m

The V-shaped & Inconspicuous and short—usually less than 10 c¢m (3.9 in) long. Its body is I emm— T

white mark on a well covered with rough, glossy, black hair, which can grow over 10 c¢m long \EX) EW) (CR) (EN @ NT) (LS,

bear's chest around the neck. The tip of its chin is white. On the chest, there is a Vulnerable (lUCN 3.1)11

https://en.wikipedia.org/wiki/Formosan_black_bear

https://en.wikipedia.org/wiki/Formosan_black_bear

The toolchain and workflow

Jasmin code
.Jazz, .jinc
various

$ automated
‘/7 checks
Easycrypt Model . .
yeryp D R Jasmin Compiler
-ec flles extracts to

1

: certifiably compiles to
interactive
proofs V

of various
properties

EasyCrypt assembly

The toolchain and workflow

‘

Jasmln codh\\

.Jjazz, .jinc

various
automated
checks

Easycrypt Model .
.ec files extracts

interactive i
proofs C‘

of various
properties

EasyCrypt

Jasmin — assembly in your head @@\\

Ny

José Bacelar Aimeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, Pierre-Yves Strub: Jasmin:
High-Assurance and High-Speed Cryptography. ACM CCS 2017

> Language with “C-like” syntax
» Programming in jasmin is much closer to assembly:
> Generally: 1 linein jasmin — 1 line in asm
> A few exceptions, but highly predictable
» Compiler does not schedule code
» Compiler does not spill registers

Jasmin — assembly in your head @

Ny

José Bacelar Aimeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, Pierre-Yves Strub: Jasmin:
High-Assurance and High-Speed Cryptography. ACM CCS 2017

> Language with “C-like” syntax
» Programming in jasmin is much closer to assembly:

> Generally: 1 linein jasmin — 1 line in asm
> A few exceptions, but highly predictable
» Compiler does not schedule code

» Compiler does not spill registers

» Compiler is formally proven to preserve semantics
» Compiler is formally proven to preserve constant-time property

Jasmin — assembly in your head @

Ny

José Bacelar Aimeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent
Laporte, Tiago Oliveira, Hugo Pacheco, Benedikt Schmidt, Pierre-Yves Strub: Jasmin:
High-Assurance and High-Speed Cryptography. ACM CCS 2017

> Language with “C-like” syntax
» Programming in jasmin is much closer to assembly:

> Generally: 1 linein jasmin — 1 line in asm
> A few exceptions, but highly predictable
» Compiler does not schedule code

» Compiler does not spill registers

» Compiler is formally proven to preserve semantics
» Compiler is formally proven to preserve constant-time property
» Many new features since 2017 paper!

@5

Jasmin code

#include <stdio.h>

int main(void) {
printf ("Hello World!\n");
return 0;

3

Ny

@5

#include <stdio.h> » On Nucleo board all the problems we
discussed already
int main(void) { » We don'timplement main in Jasmin

printf ("Hello World!\n");
return 0;

3

» We don't have I/0 in Jasmin

Our first Jasmin program: add 42

export fn add42(reg u32 x) -> reg u32 {
X += 42;
return x;

}

Our first Jasmin program: add 42

export fn add42(reg u32 x) -> reg u32 {
X += 42;
return x;

}

> Savein file, say add42. jazz
» Compile with jasminc -arch arm-m4 add42.jazz -o add42.s

Our first Jasmin program: add 42 @@

export fn add42(reg u32 x) -> reg u32 { .thumb
X += 42; .syntax unified
return x; .global add42
¥ .thumb_func
.type add42, Yfunction
add42:
push {1r}
ADD 1O, r0O, #42
pop {pc}
.section ".note.GNU-stack", "", Yprogbits

> Savein file, say add42. jazz
» Compile with jasminc -arch arm-m4 add42.jazz -o add42.s

Registers, stack, and arrays @

Ny

» For each variable you need to decide if it is
> living in a register: reg,
> living on the stack: stack, or
» replaced by immediates during compilation: inline int
> Integer types are called u32, u1s6 etc.
> Jasmin supports arrays of reg and stack variables:
»> reg u32[10] a;
» stack u64[100] b;
> Arrays have fixed length (known at compile time)

» Jasmin supports sub-arrays with fixed offsets and lengths, e.g.
b[16:32] is the subarray of length 32 starting at index 16

Loops and conditionals

» Conditionals (if, else) like in C

Loops and conditionals

» Conditionals (if, else) like in C
» Two kinds of loops: for and while

Loops and conditionals

» Conditionals (if, else) like in C

» Two kinds of loops: for and while
> for loops are automatically unrolled
» for iterate overan inline int

Loops and conditionals

» Conditionals (if, else) like in C

» Two kinds of loops: for and while

> for loops are automatically unrolled

» for iterate overan inline int

» while loops are real loops with branch

Loop examples

sumé :

export fn sum4(reg ptr u32[4] in) -> reg u32 {
inline int i;
reg u32 r, t;
r = 0;
T for i =20 to 4 {
t = in[il;
T 4= t;
}

return r;

push
MOV
LDR
ADD
LDR
ADD
LDR
ADD
LDR
ADD

12079

{1r}

rl, #0

r2, [ro0]

rl, ri, r2
r2, [r0, #4]
rl, rl, r2
r2, [r0, #8]
rl, rl, r2
r2, [r0, #12]
r0, rl, r2
{pc}

while loop

export fn sumé(reg ptr u32[4] in) -> reg u32 {

reg u32 r, t, i;

r = 0;
i= 0;
while
t =
r +=
i +=
}

return

1< 4){
in[(uint)il;
t;

1;

r;

sumé :
push
MOV
MOV
b

Lsum4$2:
LDR
ADD
ADD

Lsum4$1:
CMP
bcc
MOV

pop

{1r}

rl, #0
r2, #0
Lsum4$1

r3, [r0, r2, 1lsl #2]
rl, ri, r3
r2, r2, #1

r2, #4
Lsum4$2
r0, ril
{pc}

Conditional example

if-else Sstatement

export fn cond(reg u32 x) -> reg u32 {

}

reg u32 r;

if (x == 42) {
r = 0;

}

else {
r =1;

}

return r;

cond:
push
CMP
beq
MOV
b

Lcond$1:
MOV

Lcond$2:

pop

{1r}

r0, #42
Lcond$1
r0, #1
Lcond$2

r0, #0

{pc}

Y
@

Ay

Three kinds of “functions” @

export functions
» Entry points into jasmin-generated code
> Need at least one export function in a jasmin program
> Follows C function-call ABI

Three kinds of “functions” @

Ny

export functions

» Entry points into jasmin-generated code

> Need at least one export function in a jasmin program
> Follows C function-call ABI)
» Historically only non-export functions
» Can receive stack-array arguments

Three kinds of “functions” E@?

T

export functions
» Entry points into jasmin-generated code
> Need at least one export function in a jasmin program
> Follows C function-call ABI

v
» Historically only non-export functions
» Can receive stack-array arguments

A\

“Regular” functions
> Array arguments passed through reg ptr
> reg ptr cannot be modifed through arithmetic
> No fixed function-call ABI (compilation has global view)

Register allocation and spilling

> Jasmin takes care of register allocation
> Assign live variables to registers
> Keep track of set of live variables
» Automatically handle various constraints (e.g., return value in r0)

Register allocation and spilling

» Jasmin takes care of register allocation

> Assign live variables to registers

> Keep track of set of live variables

» Automatically handle various constraints (e.g., return value in r0)
> Jasmin does not take care of spilling

> If there are not enough registers, compilation will fail

» |f constraints cannot be met, compilation will fail

> Need to manually spill to and unspill from the stack

Register allocation and spilling

» Jasmin takes care of register allocation

> Assign live variables to registers

> Keep track of set of live variables

» Automatically handle various constraints (e.g., return value in r0)
> Jasmin does by default not take care of spilling

> If there are not enough registers, compilation will fail

» |f constraints cannot be met, compilation will fail

> Need to manually spill to and unspill from the stack
> New Jasmin feature (Dec 18, 2025): auto-spill

> Compile with —auto-spill-all will spill/unspill all reg variables
» Can manually mark a variable as #[nospill] to prevent this

Register allocation and spilling

» Jasmin takes care of register allocation

> Assign live variables to registers

> Keep track of set of live variables

» Automatically handle various constraints (e.g., return value in r0)
> Jasmin does by default not take care of spilling

> If there are not enough registers, compilation will fail

» |f constraints cannot be met, compilation will fail

> Need to manually spill to and unspill from the stack
> New Jasmin feature (Dec 18, 2025): auto-spill

> Compile with —auto-spill-all will spill/unspill all reg variables
» Can manually mark a variable as #[nospill] to prevent this
> Compile with ~auto-spill will spill/unspill reg variables marked as #[spill]

Register allocation and spilling

» Jasmin takes care of register allocation
> Assign live variables to registers
> Keep track of set of live variables
» Automatically handle various constraints (e.g., return value in r0)

> Jasmin does by default not take care of spilling

> If there are not enough registers, compilation will fail
» |f constraints cannot be met, compilation will fail
> Need to manually spill to and unspill from the stack

> New Jasmin feature (Dec 18, 2025): auto-spill

> Compile with —auto-spill-all will spill/unspill all reg variables

Can manually mark a variable as #[nospill] to prevent this

Compile with —auto-spill will spill/unspill reg variables marked as #[spill]
No efficient spilling, no automated optimization!

Also: no automatic spilling for register arrays

vVvyvyy

Examples

export fn sum20() -> reg u32 {
reg u32 t0, ti1, t2, t3, t4;
reg u32 t5, t6, t7, t8, t9;
reg u32 t10, ti11, t12, t13, ti14;
reg u32 t15, t16, t17, t18, t19;

reg u32 r;
t0 = 0;
t1 = 1; » This will not compile without auto-spilling
£19 = 19; » This will not compile —auto-spill

o » This will compile with ~auto-spill-all
r=0;
r =r + t0;

r=r + tl;

r=r + tl19;

return r;

Examples

export fn sum20() -> reg u32 {
#[spill] reg u32 tO, t1, t2, t3, t4;
#[spill] reg u32 t5, t6, t7, t8, t9;
reg u32 t10, ti11, t12, t13, ti14;
reg u32 t15, t16, t17, t18, t19;

reg u32 r;
t0 = 0;
t1 = 1; » This will not compile without auto-spilling
£19 = 19; » This will compile ~auto-spill

o > More efficient than with —auto-spill-all
r =05
r =r + t0;

r=r + tl;

r=r + tl19;

return r;

Memory and thread safety

The old way

» Static safety check:
jasminc -checksafety

» Great when it works
> Takes a long time (not modular)
» Often fails for safe code

@\ 13

The old way
> Static safety check: > Master’s thesis by Francisca Barros
jasminc -checksafety » Modular design
> Great when it works > Safety contracts and assertions in Jasmin
> Takes a long time (not modular) > Automatic discharge of assertions
> Often fails for safe code > Prove remaining assertions in EasyCrypt

fn _gen_matrix_avx2

(reg mut ptr ul6[MLKEM_K * MLKEM_K * MLKEM_N] matrix

, reg const ptr u8[32] rho

, #spill_to_mmx reg u64 transposed

) -> reg ptr ul6[MLKEM_K * MLKEM_K * MLKEM_N]

requires {is_arr_init(rho,0,32) &% 0<= transposed && transposed <= 1}
ensures {is_arr_init(result.0,0,MLKEM_K * MLKEM_K * MLKEM_N * 2)}

{

}

Safety checking for this course

> Assignment framework as check-safety target in Makefile:

make check-safety

> This uses the old safety checker
> Feel free to run and try it but:

> be prepared for it to fail on safe code
» be prepared for it to take quite some time

So, where are we? G@@

> Functional correctness through EasyCrypt proofs
» Thread and memory safety guaranteed by jasmin

v

_

So, where are we? G@@

> Functional correctness through EasyCrypt proofs
» Thread and memory safety guaranteed by jasmin
> Still need to check that EC specification is correct!
» Could be addressed by machine-readable standards

v

v

_

So, where are we? G@@

> Functional correctness through EasyCrypt proofs

» Thread and memory safety guaranteed by jasmin

> Still need to check that EC specification is correct!

» Could be addressed by machine-readable standards)
> Some limitations compared to assembly for memory safety
> No limitations that (majorly) impact performance

v

_

So, where are we? G@@

> Functional correctness through EasyCrypt proofs

» Thread and memory safety guaranteed by jasmin

> Still need to check that EC specification is correct!

» Could be addressed by machine-readable standards)
> Some limitations compared to assembly for memory safety
> No limitations that (majorly) impact performance

v

> 27?

Information-flow type system

» Enforce constant-time on jasmin source level
> Every piece of data is either secret or public
» Flow of secret information is traced by type system

‘Any operation with a secret input produces a secret output”

https://eprint.iacr.org/2021/650

Information-flow type system

» Enforce constant-time on jasmin source level
> Every piece of data is either secret or public
» Flow of secret information is traced by type system

‘Any operation with a secret input produces a secret output”
» Branch conditions and memory indices need to be public

https://eprint.iacr.org/2021/650

Information-flow type system

» Enforce constant-time on jasmin source level
> Every piece of data is either secret or public
» Flow of secret information is traced by type system

‘Any operation with a secret input produces a secret output”
» Branch conditions and memory indices need to be public
» In principle can do this also in, e.g., Rust (secret_integers crate)

https://eprint.iacr.org/2021/650

» Enforce constant-time on jasmin source level
Every piece of data is either secret or public
» Flow of secret information is traced by type system

v

‘Any operation with a secret input produces a secret output”
» Branch conditions and memory indices need to be public
In principle can do this also in, e.g., Rust (secret_integers crate)
» Jasmin compiler has been verified to preserve constant-time!

v

Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn Priya. Structured Leakage and Applications to
Cryptographic Constant-Time and Cost. CCS 2021. https://eprint.iacr.org/2021/650

https://eprint.iacr.org/2021/650

Information-flow type

vy

vvyyvyy

>

Enforce constant-time on jasmin source level
Every piece of data is either secret or public
Flow of secret information is traced by type system

‘Any operation with a secret input produces a secret output”
Branch conditions and memory indices need to be public

In principle can do this also in, e.g., Rust (secret_integers crate)
Jasmin compiler has been verified to preserve constant-time!
Explicit #declassify primitive to move from secret to public
#declassify creates a proof obligation!

Gilles Barthe, Benjamin Gregoire, Vincent Laporte, and Swarn Priya. Structured Leakage and Applications to
Cryptographic Constant-Time and Cost. CCS 2021. https://eprint.iacr.org/2021/650

https://eprint.iacr.org/2021/650

Ny

export fn cmov256(#[public] reg ptr u32[8] pr px,
#[secret] reg u32 b)
-> #[public] reg ptr u32[8]

if (b == 1) {
pr = #copy(px);

3

pr = pr;

return pr;

» Check this program with jasmin-ct --arch arm-m4 FILENAME.jazz:

constant type checker: b has type secret it needs to be public

Example

export fn cmov256(#[public] reg ptr u32[8] pr px,
#[secret] reg u32 b)
-> #[public] reg ptr u32[8]

() = #declassify(b);
if (b == 1) {
pr = #copy(px);

+

pr = pr;

return pr;
+

» This program will pass the constant-time checker

Hints and possible pitfalls

> Start writing (or modifying) a simple export function
» Make sure that it compiles, behaves like you expect
> See, e.g, playground2-jasmin/src/myjasmin. jazz
» Then move to assignmentO-sum

Hints and possible pitfalls @@2

Ny

Careful with pointer arguments, there are two kinds:

> Pointers to memory of fixed length (treated like arrays):

> Argument type, e.g.,, reg ptr u32[8] x
> Load second element into reg u32 a:

a = x[1];
> Pointers to memory of variable length

> Argument type is reg u32 p, typically second argument reg u32 plen
> | oad second 4-byte word into reg u32 a:

a = (32u)[p + 41;

Hints and possible pitfalls

Jasmin requires explicit casts, syntax is unexpected:

reg u32 a;
reg u8 b;
a = 42;
b = (8uwa;
b += 23;
a = (32u)b;

Jasmin resources @

Ny

Jasmin documentation:

https://jasmin-lang.readthedocs.io/en/stable/

Examples of Jasmin Cortex-M4 code:

https://github.com/jasmin-lang/jasmin/tree/main/compiler/tests/success/arm-mé

Chapter 4 of Ph.D. thesis by Tiago Oliveira (focused on x86_64):
https://repositorio-aberto.up.pt/bitstream/10216/144015/2/580364 .pdf

Formosa Crypto Zulipchat:

https://formosa-crypto.zulipchat.com

https://jasmin-lang.readthedocs.io/en/stable/
https://github.com/jasmin-lang/jasmin/tree/main/compiler/tests/success/arm-m4
https://repositorio-aberto.up.pt/bitstream/10216/144015/2/580364.pdf
https://formosa-crypto.zulipchat.com

