Engineering Cryptographic Software
Cryptography on the Arm Cortex-M4

Peter Schwabe

January 2026

Optimizing cryptographic software

> Primary goal: Make software as fast as possible
» Main constraint: don't leak secrets (more later)

Optimizing cryptographic software

> Primary goal: Make software as fast as possible
» Main constraint: don't leak secrets (more later)
> Optimization involves:

> High-level algorithmics
» Data representation and low-level algorithmics
» Assembly-level optimization for target platform

Optimizing cryptographic software @@

Ny

> Primary goal: Make software as fast as possible
» Main constraint: don't leak secrets (more later)
> Optimization involves:
> High-level algorithmics
» Data representation and low-level algorithmics
» Assembly-level optimization for target platform
Levels of optimization are typically not independent
> For this course we want
> Predictable and easy target platform
> Still somewhat “interesting” for low-level optimization
» Consider limited, but not trivial, attacker/leakage

v

Our target platform

> Arm Cortex-M4 on STM32Nucleo-L4R5ZI board
> Implements the ARMV7E-M architecture

> 640 KB RAM, 2 MB Flash (ROM)

» Maximum CPU frequency of 120 MHz

https://www2.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-L4R5ZI?qs=j%252B1pi9TdxUYHwRjgL7zLGg%3D%3D
https://www2.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-L4R5ZI?qs=j%252B1pi9TdxUYHwRjgL7zLGg%3D%3D
https://www2.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-L4R5ZI?qs=j%252B1pi9TdxUYHwRjgL7zLGg%3D%3D

Our target platform

> Arm Cortex-M4 on STM32Nucleo-L4R5ZI board

> Implements the ARMV7E-M architecture

> 640 KB RAM, 2 MB Flash (ROM)

» Maximum CPU frequency of 120 MHz

» Available for ~USD 20 (<1000 MUR) from, e.g.,
Mouser:
https://www2.mouser.com/ProductDetail/

STMicroelectronics/NUCLEO-L4R5ZI?gs=j%
252B1pi9TdxUYHwWRjgL7zLGg%3D%3D

» Additionally need micro-USB cable

https://www2.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-L4R5ZI?qs=j%252B1pi9TdxUYHwRjgL7zLGg%3D%3D
https://www2.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-L4R5ZI?qs=j%252B1pi9TdxUYHwRjgL7zLGg%3D%3D
https://www2.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-L4R5ZI?qs=j%252B1pi9TdxUYHwRjgL7zLGg%3D%3D

Getting started: Hello world!

#!/usr/bin/env python3

print("Hello world!")

Getting started: Hello world!

» This would need a Python interpreter

! i hon3
#!/usr/bin/env python (we dont’ have that)

print("Hello world!")

Getting started: Hello world!

» This would need a Python interpreter
(we dont’ have that)

print ("Hello world!") » Probably would also need an operating system
(we don't have that, either)

#!/usr/bin/env python3

Getting started: Hello world! (next attempt)

#include <stdio.h>

int main(void) {
printf ("Hello World!\n");
return 0O;

}

Getting started: Hello world! (next attempt)

» gcc hello.c is going to produce an x86
#include <stdio.h> ELF file

int main(void) {
printf ("Hello World!\n");
return 0O;

}

Getting started: Hello world! (next attempt)

» gcc hello.c is going to produce an x86
#include <stdio.h> ELF file

> Given an ARM ELF file, how do we get it to

int main(void) { the board?

printf ("Hello World!\n");
return 0O;

}

Getting started: Hello world! (next attempt)

» gcc hello.c is going to produce an x86
#include <stdio.h> ELF file

])) > Given an ARM ELF file, how do we get it to
int main(void) {

the board?
printf ("Hello World!\n");
return 0; » How would the ELF file get run?

}

Getting started: Hello world! (next attempt)

#include <stdio.h>

int main(void) {

}

printf ("Hello World!\n");
return 0O;

» gcc hello.c is going to produce an x86
ELF file

> Given an ARM ELF file, how do we get it to
the board?

» How would the ELF file get run?
» What is printf supposed to do?

Getting started: Hello world! (next attempt)

» gcc hello.c is going to produce an x86

#include <stdio.h> ELF file
])) > Given an ARM ELF file, how do we get it to
int main(void) {
i the board?
printf ("Hello World!\n");
return 0; » How would the ELF file get run?
} » What is printf supposed to do?

> Should we even expect printf to work?

Fixing all of those issues: the idea

1. Install a cross compiler: gcc-arm-none-eabi

Fixing all of those issues: the idea

1. Install a cross compiler: gcc-arm-none-eabi
2. Install openocd to communicate with the board

Fixing all of those issues: the idea

1. Install a cross compiler: gcc-arm-none-eabi

2. Install openocd to communicate with the board

3. Extend hello.c with some setup boilerplate code
> Initialize CPU and set clock frequency
> Set up serial port (USART) through USB

Fixing all of those issues: the idea

1. Install a cross compiler: gcc-arm-none-eabi
2. Install openocd to communicate with the board
3. Extend hello.c with some setup boilerplate code
> Initialize CPU and set clock frequency
> Set up serial port (USART) through USB
4. Replace printf with code that sends "Hello World!" through serial

Fixing all of those issues: the idea @@\

1. Install a cross compiler: gcc-arm-none-eabi
2. Install openocd to communicate with the board
3. Extend hello.c with some setup boilerplate code
> Initialize CPU and set clock frequency
> Set up serial port (USART) through USB
4. Replace printf with code that sends "Hello World!" through serial
5. Compile to ARM binary (not ELF) file, say hello.bin

15

Fixing all of those issues: the idea @@\

—

. Install a cross compiler: gcc-arm-none-eabi
Install openocd to communicate with the board
Extend hello.c with some setup boilerplate code
> Initialize CPU and set clock frequency
> Set up serial port (USART) through USB
Replace printf with code that sends "Hello World!" through serial
Compile to ARM binary (not ELF) file, say hello.bin
Connect board through micro-USB cable
On the host side (your laptop), start serial-port listener

w N

No gk

Fixing all of those issues: the idea @\

1. Install a cross compiler: gcc-arm-none-eabi
2. Install openocd to communicate with the board
3. Extend hello.c with some setup boilerplate code
> Initialize CPU and set clock frequency
> Set up serial port (USART) through USB
Replace printf with code that sends "Hello World!" through serial
Compile to ARM binary (not ELF) file, say hello.bin
Connect board through micro-USB cable
On the host side (your laptop), start serial-port listener
Flash bin file to the board over mini-USB:
openocd -f $(OPENOCD_CFG) \
-C "init" \
-c "reset init" \
-c "flash write_image erase hello.bin 0x08000000" \
-c "reset run" \
-c "shutdown"

© oo~

Fixing all of those issues: the idea @\

1. Install a cross compiler: gcc-arm-none-eabi
2. Install openocd to communicate with the board
3. Extend hello.c with some setup boilerplate code
> Initialize CPU and set clock frequency
> Set up serial port (USART) through USB
Replace printf with code that sends "Hello World!" through serial
Compile to ARM binary (not ELF) file, say hello.bin
Connect board through micro-USB cable
On the host side (your laptop), start serial-port listener
Flash bin file to the board over mini-USB:
openocd -f $(OPENOCD_CFG) \
-C "init" \
-c "reset init" \
-c "flash write_image erase hello.bin 0x08000000" \
-c "reset run" \
-c "shutdown"

© oo~

9. Push “Reset” button to re-run the program

Getting started

Good news! Most of that work is already done.

https://github.com/dop-amin/2026-cryptoeng-assignments-pub

https://github.com/dop-amin/2026-cryptoeng-assignments-pub
https://tinyurl.com/mru2026
https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD7

@6

Ny

Good news! Most of that work is already done.
https://github.com/dop-amin/2026-cryptoeng-assignments-pub

» Includes examples for

» Unidirectional communication (“Hello World!""): playground0-print
> Performance benchmarking: playgroundi-bench
» Calling a function written in Jasmin, compiled to assembly: playground2-jasmin

https://github.com/dop-amin/2026-cryptoeng-assignments-pub
https://tinyurl.com/mru2026
https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD7

@6

Ny

Good news! Most of that work is already done.
https://github.com/dop-amin/2026-cryptoeng-assignments-pub

» Includes examples for

» Unidirectional communication (“Hello World!""): playground0-print
> Performance benchmarking: playgroundi-bench
» Calling a function written in Jasmin, compiled to assembly: playground2-jasmin

» In each of the subdirectories, simply run make && make test-board

https://github.com/dop-amin/2026-cryptoeng-assignments-pub
https://tinyurl.com/mru2026
https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD7

@6

Ny

Good news! Most of that work is already done.
https://github.com/dop-amin/2026-cryptoeng-assignments-pub

» Includes examples for

» Unidirectional communication (“Hello World!""): playground0-print
> Performance benchmarking: playgroundi-bench
» Calling a function written in Jasmin, compiled to assembly: playground2-jasmin

» In each of the subdirectories, simply run make && make test-board
> Requires openocd and gcc-arm-none-eabi

https://github.com/dop-amin/2026-cryptoeng-assignments-pub
https://tinyurl.com/mru2026
https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD7

@6

Ny

Good news! Most of that work is already done.
https://github.com/dop-amin/2026-cryptoeng-assignments-pub

» Includes examples for

» Unidirectional communication (“Hello World!""): playground0-print
> Performance benchmarking: playgroundi-bench
» Calling a function written in Jasmin, compiled to assembly: playground2-jasmin

» In each of the subdirectories, simply run make && make test-board
> Requires openocd and gcc-arm-none-eabi
> All pre-installed in the virtual machine at https://tinyurl. com/mru2026

(redirect to https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD7)

https://github.com/dop-amin/2026-cryptoeng-assignments-pub
https://tinyurl.com/mru2026
https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD7

Before we optimize: how do we benchmark?

> Want to optimize “down to the last CPU cycle”
> Need high-resolution, cycle-accurate measurements
> All modern CPUs include cycle counters

Before we optimize: how do we benchmark?

> Want to optimize “down to the last CPU cycle”

> Need high-resolution, cycle-accurate measurements
> All modern CPUs include cycle counters

> Getting reliable measurements is hard in general

Before we optimize: how do we benchmark?

> Want to optimize “down to the last CPU cycle”

> Need high-resolution, cycle-accurate measurements
> All modern CPUs include cycle counters

> Getting reliable measurements is hard in general

>

Fairly easy on embedded microcontrollers:

> Fixed clock frequency (no scaling)
» No interference from other processes or 0S

Before we optimize: how do we benchmark?

vvyyvyyVvVyy

v

Want to optimize “down to the last CPU cycle”

Need high-resolution, cycle-accurate measurements
All modern CPUs include cycle counters

Getting reliable measurements is hard in general

Fairly easy on embedded microcontrollers:

> Fixed clock frequency (no scaling)
» No interference from other processes or 0S

See example in playgroundl-bench/src/main.c

Caveats:

> At >20 MHz wait cycles introduced by memory controller
» Cycle counter overflows after ~3 min (20 MHz)

Exercises in this course

» Extensive build, testing, and benchmarking framework is given
» Tasks in the assignments:
> Implement (or modify) functions in Jasmin (more this afternoon)
> Compile from Jasmin to assembly (by invoking make)

> Run given tests to check functionality
> Run given benchmarks to measure performance

Exercises in this course @@

Ny

» Extensive build, testing, and benchmarking framework is given
Tasks in the assignments:

> Implement (or modify) functions in Jasmin (more this afternoon)
> Compile from Jasmin to assembly (by invoking make)

> Run given tests to check functionality

> Run given benchmarks to measure performance

> You will not have to write assembly
> Jasmin is ‘assembly in your head”
>
>

v

We need to conceptually understand programs on assembly level
It is useful to be able to read (a bit of) assembly

Computers and computer programs

A highly simplified view

Branch Unit

> A program is a sequence of instructions

> Load/Store instructions move data
between memory and registers (processed
by the L/S unit)

Registers » Branch instructions (conditionally) jump to
a position in the program

il > Arithmetic instructions perform simple
operations on values in registers
(processed by the ALU)

> Registers are fast (fixed-size) storage units,
addressed "by name”

ARMv/-M Registers

> 16 registers: r0—ri15

ARMv/-M Registers

> 16 registers: r0—ri15
> Some special registers

> r13: sp (stack pointer)
» ri14: 1r (link register)
> r15: pc (program counter)

ARMv/-M Registers

> 16 registers: r0—ri15
> Some special registers

> r13: sp (stack pointer)
» ri14: 1r (link register)
> r15: pc (program counter)

» ri13 and r15 should be used only for their purpose
> There are really only 14 registers freely available
> Jasmin will take care of the correct use of registers

Instructions

» Format: Instr Rd, Rn(, Rm)

Instructions

» Format: Instr Rd, Rn(, Rm)
> mov r0, ri(equivalenttouint32_t r0 = ri;)

Instructions

» Format: Instr Rd, Rn(, Rm)
> mov r0, ri(equivalenttouint32_t r0 = ri;)
» mov rO, #18

Instructions

» Format: Instr Rd, Rn(, Rm)
> mov r0, ri(equivalenttouint32_t r0 = ri;)
» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction

> Put constant in memory (see later) or construct it
movw for bottom 16 bits, movt for top 16 bits

v

Instructions

» Format: Instr Rd, Rn(, Rm)
> mov r0, ri(equivalenttouint32_t r0 = ri;)

» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction
> Put constant in memory (see later) or construct it
» movw for bottom 16 bits, movt for top 16 bits

» add, but also adds, adc, and adcs

@11

» Format: Instr Rd, Rn(, Rm)
> mov r0, ri(equivalenttouint32_t r0 = ri;)

» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction
> Put constant in memory (see later) or construct it
» movw for bottom 16 bits, movt for top 16 bits
» add, but also adds, adc, and adcs
> Many instructions have a variant that sets flags by appending s
> Flags record carry, negative, zero, and overflow

@11

» Format: Instr Rd, Rn(, Rm)
> mov r0, ri(equivalenttouint32_t r0 = ri;)
» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction

> Put constant in memory (see later) or construct it
» movw for bottom 16 bits, movt for top 16 bits

» add, but also adds, adc, and adcs

> Many instructions have a variant that sets flags by appending s
> Flags record carry, negative, zero, and overflow

» Bitwise operations: eor, and, orr, mvn

@11

» Format: Instr Rd, Rn(, Rm)
> mov r0, ri(equivalenttouint32_t r0 = ri;)
» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction

> Put constant in memory (see later) or construct it
» movw for bottom 16 bits, movt for top 16 bits

» add, but also adds, adc, and adcs
> Many instructions have a variant that sets flags by appending s
> Flags record carry, negative, zero, and overflow

» Bitwise operations: eor, and, orr, mvn
» Shifts/rotates: ror, 1s1, 1sr, asr

@11

» Format: Instr Rd, Rn(, Rm)
> mov r0, ri(equivalenttouint32_t r0 = ri;)

» mov rO, #18
» Sometimes, a constant is too large to fit in an instruction
> Put constant in memory (see later) or construct it
» movw for bottom 16 bits, movt for top 16 bits

» add, but also adds, adc, and adcs

> Many instructions have a variant that sets flags by appending s
> Flags record carry, negative, zero, and overflow

v

Bitwise operations: eor, and, orr, mvn
Shifts/rotates: ror, 1s1, 1sr, asr
All have variants with registers as operands and with a constant ('immediate’)

vy

Branching and labels

> After every 32-bit instruction, pc += 4
> By writing to the pc, we can jump to arbitrary locations (and continue execution from there)

Branching and labels

> After every 32-bit instruction, pc += 4
> By writing to the pc, we can jump to arbitrary locations (and continue execution from there)
» While programming, addresses of instructions are not known

Branching and labels

> After every 32-bit instruction, pc += 4

> By writing to the pc, we can jump to arbitrary locations (and continue execution from there)
» While programming, addresses of instructions are not known

» Solution: define a label and use b to branch to labels

Branching and labels @

After every 32-bit instruction, pc += 4

By writing to the pc, we can jump to arbitrary locations (and continue execution from there)
While programming, addresses of instructions are not known

Solution: define a label and use b to branch to labels

Assembler and linker later resolve the address

vVvyYVvYyVvVvyy

Branching and labels @

After every 32-bit instruction, pc += 4

By writing to the pc, we can jump to arbitrary locations (and continue execution from there)
While programming, addresses of instructions are not known

Solution: define a label and use b to branch to labels

Assembler and linker later resolve the address

vVvyYVvYyVvVvyy

mov rQO, #42
b somelabel
mov rO, #37
somelabel:

Conditional branches

» How to do a while loop?

Conditional branches

» How to do a while loop?
» Need to do a test and branch depending on the outcome

Conditional branches

» How to do a while loop?
» Need to do a test and branch depending on the outcome

» cmp r0, ri(rican also be shifted/rotated!)
> cmp r0, #5

Conditional branches

» How to do a while loop?
» Need to do a test and branch depending on the outcome

» cmp r0, ri(rican also be shifted/rotated!)
> cmp r0, #5

» Really: subtract, set status flags, discard result

Conditional branches

» How to do a while loop?

» Need to do a test and branch depending on the outcome
» cmp r0, ri(rican also be shifted/rotated!)
> cmp r0, #5

» Really: subtract, set status flags, discard result

> Instead of b, use a conditional branch

» beqlabel (r0 == ri)
> bnelabel (r0 !'= rl)

Conditional branches @

» How to do a while loop?

» Need to do a test and branch depending on the outcome
» cmp r0, ri(rican also be shifted/rotated!)
> cmp r0, #5

» Really: subtract, set status flags, discard result

> Instead of b, use a conditional branch
» beqlabel (r0 == ri)

> bnelabel (r0 !'= rl)

> bhilabel (r0 > ri,unsigned)
> blslabel (r0 <= ri,unsigned)
> bgtlabel (r0 > ri, signed)

> bgelabel (r0 >= ri,signed)
> bmilabel (result is negative)

Conditional branches @

» How to do a while loop?

» Need to do a test and branch depending on the outcome
» cmp r0, ri(rican also be shifted/rotated!)
> cmp r0, #5

» Really: subtract, set status flags, discard result

> Instead of b, use a conditional branch
» beqlabel (r0 == ri)

bmi label (result is negative)
And many more

> bnelabel (r0 !'= rl)

> bhilabel (r0 > ri,unsigned)
> blslabel (r0 <= ri,unsigned)
> bgtlabel (r0 > ri, signed)

> bgelabel (r0 >= ri,signed)
>

>

Conditional branches (example)

» InC:

uint32_t a, b = 100;

for (a = 0; a <= 50; a++) {
b += a;

}

> In assembly:

mov r0, #0 // a
mov rl, #100 // b

loop:
add r1, ro // b += a

add r0, #1 // a++
cmp r0O, #50 // compare a and 50
bls loop // loop if <=

A simple example

uint32_t accumulate(uint32_t *array, size_t arraylen) {
size_t 1i;
uint32_t r=0;
for(i=0; i < arraylen; i++) {
r += arrayl[il;
}

return r;

accumulate in assembly

.syntax unified
.cpu cortex-m4

.global accumulate
.type accumulate, %function
accumulate:
mov r2, #0
loop:
cmp rl, #0
beq done
1dr r3, [r0]
add r2,r3
add r0,#4
sub ril,#1
b loop
done:
mov r0,r2
bx 1r

How fast is it?

> Arithmetic instructions cost 1 cycle

> (Single) loads cost 2 cycles

» Branches cost 1 instruction if branch is not taken
> Branches cost at least 2 cycles if branch is taken

How fast is it?

> Arithmetic instructions cost 1 cycle

> (Single) loads cost 2 cycles

» Branches cost 1 instruction if branch is not taken
> Branches cost at least 2 cycles if branch is taken
» The loop body should cost at least 9 cycles

Speeding it up, part |

.syntax unified
.cpu cortex-m4

.global accumulate
.type accumulate, %function
accumulate:
mov r2, #0
loop:
subs ril,#1
bmi done
1ldr r3, [r0],#4
add r2,r3
b loop
done:
mov r0,r2
bx 1r

What did we do?

» Merge cmp and sub

> Need subs to set flags

> Have 1dr auto-increase r0

» Total saving should be 2 cycles
> Also, code is (marginally) smaller

accumulate: donel:
push {r4-ri12} add ril,#8
mov r2, #0 loop2:
subs ril,#1
loopl: bmi done2
subs rl,#8 ldr r3, [r0],#4
bmi donel add r2,r3
1dm rO!,{r3-r10} b loop2
done2:
add r2,r3
e pop {ré4-ri2}
add r2,r10 mov r0,r2
bx 1r

b loopl

What did we do?

> Use 1dm (“load multiple”) instruction

» |oading N items costs only N + 1 cycles

> Need more registers; need to push “caller registers” to the stack (push)
> Restore caller registers at the end of the function (pop)

Use 1dm (“load multiple”) instruction

Loading N items costs only N + 1 cycles

Need more registers; need to push “caller registers” to the stack (push)
Restore caller registers at the end of the function (pop)

Partially unroll to reduce loop-control overhead

Makes code somewhat larger, various tradeoffs possible

Lower limit is slightly above 2000 cycles

vVvVvyVvyVvyVvyYVvyy

Use 1dm (“load multiple”) instruction

Loading N items costs only N + 1 cycles

Need more registers; need to push “caller registers” to the stack (push)
Restore caller registers at the end of the function (pop)

Partially unroll to reduce loop-control overhead

Makes code somewhat larger, various tradeoffs possible

Lower limit is slightly above 2000 cycles

Ideas for further speedups?

VVvyVvyVvVVYyVYYVYYy

Some general lessons to learn

» Some loop unrolling helps:

» |ess loop-control overhead per computation
» Can merge operations across iterations

Some general lessons to learn

» Some loop unrolling helps:

» |ess loop-control overhead per computation
» Can merge operations across iterations

» Full unrolling can be problematic:

» Code size can increase massively
> Loop length may be known only at runtime

Some general lessons to learn

» Some loop unrolling helps:

» |ess loop-control overhead per computation
» Can merge operations across iterations

» Full unrolling can be problematic:

» Code size can increase massively
> Loop length may be known only at runtime

» Make best use of architectural features:

> Merge cmp and sub
» Merge counter increase into 1dr

Some general lessons to learn @@5

» Some loop unrolling helps:

» |ess loop-control overhead per computation
» Can merge operations across iterations

» Full unrolling can be problematic:

» Code size can increase massively
> Loop length may be known only at runtime

» Make best use of architectural features:

> Merge cmp and sub
» Merge counter increase into 1dr

> Pay attention to microarchitecture:
> | oads and stores are faster when grouped

Some general lessons to learn @@@

Ny

» Some loop unrolling helps:

» |ess loop-control overhead per computation
» Can merge operations across iterations

» Full unrolling can be problematic:

» Code size can increase massively
> Loop length may be known only at runtime

» Make best use of architectural features:

> Merge cmp and sub
» Merge counter increase into 1dr

> Pay attention to microarchitecture:
> | oads and stores are faster when grouped

» Optimized code may require more registers

Optimizing “something” vs. optimizing crypto

» So far there was nothing crypto-specific in this lecture
> We did not yet talk about “leaking secrets”
> Need to think about our attacker!

Implementation Security

Implementation Security @

Ay

» Attackers see more than input/output:
> Power consumption
» Electromagnetic radiation
> Timing

Implementation Security @

Ay

B

» Attackers see more than input/output:
> Power consumption
» Electromagnetic radiation
> Timing
» Side-channel attacks:
» Measure information
» Use to obtain secret data

Implementation Security @

Ay

B

» Attackers see more than input/output:
> Power consumption
» Electromagnetic radiation
> Timing
» Side-channel attacks:
» Measure information
» Use to obtain secret data

» Timing attacks can be done remotely

Timing attacks and “constant-time” programming

Timing attacks
> Attacker obtains fine-granular timing information
» Not just overall execution time!
> Essentially time of each individual instruction

Timing attacks and “constant-time” programming

Timing attacks
> Attacker obtains fine-granular timing information
» Not just overall execution time!
> Essentially time of each individual instruction

» Timing attacks are practical:
Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk
encryption

Timing attacks and “constant-time” programming @@

Ny

Timing attacks
> Attacker obtains fine-granular timing information
» Not just overall execution time!
> Essentially time of each individual instruction
>

Timing attacks are practical:
Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk
encryption

» Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key from OpenSSL
implementation

Timing attacks and “constant-time” programming @

Ny

Timing attacks
> Attacker obtains fine-granular timing information
» Not just overall execution time!
> Essentially time of each individual instruction
>

Timing attacks are practical:
Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk
encryption

» Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key from OpenSSL
implementation

“Constant-time” programming
» Misnomer: timing is only indendent of secret data
» |dea: No data flow from secrets into variable-time operations

Timing leakage part |

» Consider the following piece of code:
if s then
r— A
else
r<« B
end if

Timing leakage part |

» Consider the following piece of code:
if sthen
r— A
else
r< B
end if
» General structure of any conditional branch

» A and B can be large computations, r can be a large state

Timing leakage part |

» Consider the following piece of code:

if s then
r+ A
else
r< B
end if

» General structure of any conditional branch

» A and B can be large computations, r can be a large state
> This code takes different amount of time, depending on s
> Obvious timing leak if s is secret

Ny

Timing leakage part | @@2

» Consider the following piece of code:

if s then
r+ A
else
r< B
end if

General structure of any conditional branch

A and B can be large computations, r can be a large state

This code takes different amount of time, depending on s

Obvious timing leak if s is secret

Even if A and B take the same amount of cycles this is generally not constant timel!
Reasons: Branch prediction, instruction-caches

Never use secret-data-dependent branch conditions

vVVvyYVvYyvVvyVvyVvyy

Eliminating branches

» So, what do we do with this piece of code?

if s then
r A
else

r<« B
end if

Eliminating branches

» So, what do we do with this piece of code?

if s then
r A
else

r<« B
end if

> Replace by
r«sA+(1-s)B

Eliminating branches

» So, what do we do with this piece of code?
if s then
r A
else

r<« B
end if

> Replace by
r«sA+(1-s)B

> Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of
multiplication

Eliminating branches

» So, what do we do with this piece of code?
if s then
r A
else
r< B

end if
> Replace by
r«sA+(1-s)B
> Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of
multiplication
> For very fast A and B this can even be faster

Cached memory access

Branch Unit

|

» On most CPUs, memory access goes
through a cache

» Small but fast transparent memory for
frequently used data

Cached memory access

Branch Unit

|

On most CPUs, memory access goes
through a cache

Small but fast transparent memory for
frequently used data

A load from memory places data also in
the cache

Data remains in cache until it's replaced by
other data

Cached memory access

Branch Unit

o] |

On most CPUs, memory access goes
through a cache

Small but fast transparent memory for
frequently used data

A load from memory places data also in
the cache

Data remains in cache until it's replaced by
other data

Loading data is fast if data is in the cache
(cache hit)

Loading data is slow if data is not in the
cache (cache miss)

Timing leakage part Il

» Consider lookup table of 32-bit integers
» Assume that Cache lines have 64 bytes

» Crypto and the attacker’s program run on the same
CPU

» Tables are in cache

Timing leakage part Il

» Consider lookup table of 32-bit integers
» Assume that Cache lines have 64 bytes

» Crypto and the attacker’s program run on the same
CPU

Tables are in cache
The attacker's program replaces some cache lines

vy

Timing leakage part Il

» Consider lookup table of 32-bit integers
» Assume that Cache lines have 64 bytes

» Crypto and the attacker’s program run on the same
CPU

Tables are in cache
The attacker's program replaces some cache lines
» Crypto continues, loads from table again

v

v

Timing leakage part Il

v

vvyyvyy

Consider lookup table of 32-bit integers

» Assume that Cache lines have 64 bytes

Crypto and the attacker’s program run on the same
CPU

Tables are in cache

The attacker's program replaces some cache lines
Crypto continues, loads from table again

Attacker loads his data:

Timing leakage part Il

Consider lookup table of 32-bit integers

» Assume that Cache lines have 64 bytes

v

vvyyvyy

Crypto and the attacker’s program run on the same
CPU

Tables are in cache
The attacker's program replaces some cache lines
Crypto continues, loads from table again

Attacker loads his data:
» Fast: cache hit (crypto did not just load from this line)

Timing leakage part Il

Consider lookup table of 32-bit integers

» Assume that Cache lines have 64 bytes

v

vvyyvyy

Crypto and the attacker’s program run on the same
CPU

Tables are in cache
The attacker's program replaces some cache lines
Crypto continues, loads from table again

Attacker loads his data:

» Fast: cache hit (crypto did not just load from this line)
» Slow: cache miss (crypto just loaded from this line)

Should we care? Does the Cortex-M4 have caches?

“Cortex-MO0, Cortex-M0+, Cortex-M1, Cortex-M3, and Cortex-M4 processors do not have any
internal cache memory.

—ARM Cortex-M Programming Guide to Memory Barrier Instructions

Should we care? Does the Cortex-M4 have caches?

“Cortex-MO0, Cortex-M0+, Cortex-M1, Cortex-M3, and Cortex-M4 processors do not have any
internal cache memory. However, it is possible for a SoC design to integrate a system level cache.”

—ARM Cortex-M Programming Guide to Memory Barrier Instructions

Should we care? Does the Cortex-M4 have caches?

“The memory system is configured during implementation and can include instruction and data
caches of varying sizes.”

—ARM Cortex-M7 TRM

Some comments on timing attacks

» What | just showed is only the most basic cache-timing attack

Some comments on timing attacks 6@@@

» What | just showed is only the most basic cache-timing attack

» Non-secret cache lines are not enough for security

> Generally, load/store addresses influence timing in many different ways
» Do not access memory at secret-data-dependent addresses

Eliminating lookups

> Want to load item at (secret) position p from table of size n

Eliminating lookups

> Want to load item at (secret) position p from table of size n
> Load all items, use arithmetic to pick the right one:
fori from0ton —1do
d « TVi]
if p =i then
r<d
end if
end for

Eliminating lookups

> Want to load item at (secret) position p from table of size n
> Load all items, use arithmetic to pick the right one:
fori from0ton —1do
d « TVi]
if p =i then
r<d
end if
end for

» Problem 1: if-statements are not constant time (see before)

Eliminating lookups 6@@@

> Want to load item at (secret) position p from table of size n
> Load all items, use arithmetic to pick the right one:

fori from0ton —1do
d « TVi]
if p =i then
r<d
end if
end for

» Problem 1: if-statements are not constant time (see before)
» Problem 2: Need to be careful with comparisons (at least in high-level languages)

Is that all? (Timing leakage part IlI)

Lesson so far
> Avoid all data flow from secrets to branch conditions and memory addresses
> This can always be done; cost highly depends on the algorithm
> Jasmin helps with this! (more this afternoon)

Is that all? (Timing leakage part IlI)

Lesson so far
> Avoid all data flow from secrets to branch conditions and memory addresses
> This can always be done; cost highly depends on the algorithm
> Jasmin helps with this! (more this afternoon)

> Good news: On Cortex M4, that is pretty much it

Is that all? (Timing leakage part IlI)

Lesson so far
> Avoid all data flow from secrets to branch conditions and memory addresses
> This can always be done; cost highly depends on the algorithm
> Jasmin helps with this! (more this afternoon)

> Good news: On Cortex M4, that is pretty much it

> Bad news: On other microarchitectures, there may also be variable-time arithmetic, e.g.,

> DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs
» UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3

Is that all? (Timing leakage part IlI)

Lesson so far
> Avoid all data flow from secrets to branch conditions and memory addresses
> This can always be done; cost highly depends on the algorithm
> Jasmin helps with this! (more this afternoon)

> Good news: On Cortex M4, that is pretty much it

> Bad news: On other microarchitectures, there may also be variable-time arithmetic, e.g.,

> DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs
» UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3

» More good news: Jasmin also helps herel!

