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Optimizing cryptographic software

▶ Primary goal: Make software as fast as possible
▶ Main constraint: don’t leak secrets (more later)

▶ Optimization involves:
▶ High-level algorithmics
▶ Data representation and low-level algorithmics
▶ Assembly-level optimization for target platform

▶ Levels of optimization are typically not independent
▶ For this course we want

▶ Predictable and easy target platform
▶ Still somewhat “interesting” for low-level optimization
▶ Consider limited, but not trivial, attacker/leakage
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Our target platform

▶ Arm Cortex-M4 on STM32Nucleo-L4R5ZI board
▶ Implements the ARMv7E-M architecture
▶ 640 KB RAM, 2 MB Flash (ROM)
▶ Maximum CPU frequency of 120 MHz

▶ Available for ≈USD 20 (<1000 MUR) from, e.g.,
Mouser:
https://www2.mouser.com/ProductDetail/
STMicroelectronics/NUCLEO-L4R5ZI?qs=j%
252B1pi9TdxUYHwRjgL7zLGg%3D%3D

▶ Additionally need micro-USB cable

https://www2.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-L4R5ZI?qs=j%252B1pi9TdxUYHwRjgL7zLGg%3D%3D
https://www2.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-L4R5ZI?qs=j%252B1pi9TdxUYHwRjgL7zLGg%3D%3D
https://www2.mouser.com/ProductDetail/STMicroelectronics/NUCLEO-L4R5ZI?qs=j%252B1pi9TdxUYHwRjgL7zLGg%3D%3D
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Getting started: Hello world!

#!/usr/bin/env python3

print("Hello world!")

▶ This would need a Python interpreter
(we dont’ have that)

▶ Probably would also need an operating system
(we don’t have that, either)
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Getting started: Hello world! (next attempt)

#include <stdio.h>

int main(void) {
printf("Hello World!\n");
return 0;

}

▶ gcc hello.c is going to produce an x86
ELF file

▶ Given an ARM ELF file, how do we get it to
the board?

▶ How would the ELF file get run?
▶ What is printf supposed to do?
▶ Should we even expect printf to work?
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Fixing all of those issues: the idea

1. Install a cross compiler: gcc-arm-none-eabi

2. Install openocd to communicate with the board
3. Extend hello.c with some setup boilerplate code

▶ Initialize CPU and set clock frequency
▶ Set up serial port (USART) through USB

4. Replace printf with code that sends "Hello World!" through serial
5. Compile to ARM binary (not ELF) file, say hello.bin
6. Connect board through micro-USB cable
7. On the host side (your laptop), start serial-port listener
8. Flash bin file to the board over mini-USB:

openocd -f $(OPENOCD_CFG) \
-c "init" \
-c "reset init" \
-c "flash write_image erase hello.bin 0x08000000" \
-c "reset run" \
-c "shutdown"

9. Push “Reset” button to re-run the program
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Getting started

Good news! Most of that work is already done.

https://github.com/dop-amin/2026-cryptoeng-assignments-pub

▶ Includes examples for
▶ Unidirectional communication (“Hello World!”): playground0-print
▶ Performance benchmarking: playground1-bench
▶ Calling a function written in Jasmin, compiled to assembly: playground2-jasmin

▶ In each of the subdirectories, simply run make && make test-board
▶ Requires openocd and gcc-arm-none-eabi
▶ All pre-installed in the virtual machine at https://tinyurl.com/mru2026

(redirect to https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD7)

https://github.com/dop-amin/2026-cryptoeng-assignments-pub
https://tinyurl.com/mru2026
https://nce.mpi-sp.org/index.php/s/y4ddz4cwYgxjKD7
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Before we optimize: how do we benchmark?

▶ Want to optimize “down to the last CPU cycle”
▶ Need high-resolution, cycle-accurate measurements
▶ All modern CPUs include cycle counters

▶ Getting reliable measurements is hard in general
▶ Fairly easy on embedded microcontrollers:

▶ Fixed clock frequency (no scaling)
▶ No interference from other processes or OS

▶ See example in playground1-bench/src/main.c
▶ Caveats:

▶ At >20 MHz wait cycles introduced by memory controller
▶ Cycle counter overflows after ≈3 min (20 MHz)
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Exercises in this course

▶ Extensive build, testing, and benchmarking framework is given
▶ Tasks in the assignments:

▶ Implement (or modify) functions in Jasmin (more this afternoon)
▶ Compile from Jasmin to assembly (by invoking make)
▶ Run given tests to check functionality
▶ Run given benchmarks to measure performance

▶ You will not have to write assembly
▶ Jasmin is “assembly in your head”
▶ We need to conceptually understand programs on assembly level
▶ It is useful to be able to read (a bit of) assembly
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Computers and computer programs
A highly simplified view

M
em

ory

Branch Unit

ALU

Registers

L/S Unit

implicit

explicit

CPU

▶ A program is a sequence of instructions
▶ Load/Store instructions move data

between memory and registers (processed
by the L/S unit)

▶ Branch instructions (conditionally) jump to
a position in the program

▶ Arithmetic instructions perform simple
operations on values in registers
(processed by the ALU)

▶ Registers are fast (fixed-size) storage units,
addressed “by name”
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ARMv7-M Registers

▶ 16 registers: r0–r15

▶ Some special registers
▶ r13: sp (stack pointer)
▶ r14: lr (link register)
▶ r15: pc (program counter)

▶ r13 and r15 should be used only for their purpose
▶ There are really only 14 registers freely available
▶ Jasmin will take care of the correct use of registers
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Instructions

▶ Format: Instr Rd, Rn(, Rm)

▶ mov r0, r1 (equivalent to uint32_t r0 = r1;)
▶ mov r0, #18

▶ Sometimes, a constant is too large to fit in an instruction
▶ Put constant in memory (see later) or construct it
▶ movw for bottom 16 bits, movt for top 16 bits

▶ add, but also adds, adc, and adcs
▶ Many instructions have a variant that sets flags by appending s
▶ Flags record carry, negative, zero, and overflow

▶ Bitwise operations: eor, and, orr, mvn
▶ Shifts/rotates: ror, lsl, lsr, asr
▶ All have variants with registers as operands and with a constant (‘immediate’)
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Branching and labels

▶ After every 32-bit instruction, pc += 4
▶ By writing to the pc, we can jump to arbitrary locations (and continue execution from there)

▶ While programming, addresses of instructions are not known
▶ Solution: define a label and use b to branch to labels
▶ Assembler and linker later resolve the address

mov r0, #42
b somelabel
mov r0, #37
somelabel:
...
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Conditional branches

▶ How to do a while loop?

▶ Need to do a test and branch depending on the outcome
▶ cmp r0, r1 (r1 can also be shifted/rotated!)
▶ cmp r0, #5

▶ Really: subtract, set status flags, discard result
▶ Instead of b, use a conditional branch

▶ beq label (r0 == r1)
▶ bne label (r0 != r1)
▶ bhi label (r0 > r1, unsigned)
▶ bls label (r0 <= r1, unsigned)
▶ bgt label (r0 > r1, signed)
▶ bge label (r0 >= r1, signed)
▶ bmi label (result is negative)
▶ And many more
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Conditional branches (example)

▶ In C:
uint32_t a, b = 100;

for (a = 0; a <= 50; a++) {
b += a;

}

▶ In assembly:
mov r0, #0 // a
mov r1, #100 // b

loop:
add r1, r0 // b += a

add r0, #1 // a++
cmp r0, #50 // compare a and 50
bls loop // loop if <=
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A simple example

uint32_t accumulate(uint32_t *array, size_t arraylen) {
size_t i;
uint32_t r=0;
for(i=0; i < arraylen; i++) {

r += array[i];
}
return r;

}
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accumulate in assembly

.syntax unified

.cpu cortex-m4

.global accumulate

.type accumulate, %function
accumulate:

mov r2, #0
loop:

cmp r1, #0
beq done
ldr r3,[r0]
add r2,r3
add r0,#4
sub r1,#1
b loop

done:
mov r0,r2
bx lr



17

How fast is it?

▶ Arithmetic instructions cost 1 cycle
▶ (Single) loads cost 2 cycles
▶ Branches cost 1 instruction if branch is not taken
▶ Branches cost at least 2 cycles if branch is taken

▶ The loop body should cost at least 9 cycles
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Speeding it up, part I

.syntax unified

.cpu cortex-m4

.global accumulate

.type accumulate, %function
accumulate:

mov r2, #0
loop:

subs r1,#1
bmi done
ldr r3,[r0],#4
add r2,r3
b loop

done:
mov r0,r2
bx lr
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What did we do?

▶ Merge cmp and sub
▶ Need subs to set flags
▶ Have ldr auto-increase r0
▶ Total saving should be 2 cycles
▶ Also, code is (marginally) smaller
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Speeding it up, part II

accumulate:
push {r4-r12}

mov r2, #0

loop1:
subs r1,#8
bmi done1
ldm r0!,{r3-r10}

add r2,r3
...
add r2,r10

b loop1

done1:
add r1,#8

loop2:
subs r1,#1
bmi done2
ldr r3,[r0],#4
add r2,r3
b loop2

done2:

pop {r4-r12}
mov r0,r2
bx lr
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What did we do?

▶ Use ldm (“load multiple”) instruction
▶ Loading N items costs only N + 1 cycles
▶ Need more registers; need to push “caller registers” to the stack (push)
▶ Restore caller registers at the end of the function (pop)

▶ Partially unroll to reduce loop-control overhead
▶ Makes code somewhat larger, various tradeoffs possible
▶ Lower limit is slightly above 2000 cycles
▶ Ideas for further speedups?
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Some general lessons to learn

▶ Some loop unrolling helps:
▶ Less loop-control overhead per computation
▶ Can merge operations across iterations

▶ Full unrolling can be problematic:
▶ Code size can increase massively
▶ Loop length may be known only at runtime

▶ Make best use of architectural features:
▶ Merge cmp and sub
▶ Merge counter increase into ldr

▶ Pay attention to microarchitecture:
▶ Loads and stores are faster when grouped

▶ Optimized code may require more registers



22

Some general lessons to learn

▶ Some loop unrolling helps:
▶ Less loop-control overhead per computation
▶ Can merge operations across iterations

▶ Full unrolling can be problematic:
▶ Code size can increase massively
▶ Loop length may be known only at runtime

▶ Make best use of architectural features:
▶ Merge cmp and sub
▶ Merge counter increase into ldr

▶ Pay attention to microarchitecture:
▶ Loads and stores are faster when grouped

▶ Optimized code may require more registers



22

Some general lessons to learn

▶ Some loop unrolling helps:
▶ Less loop-control overhead per computation
▶ Can merge operations across iterations

▶ Full unrolling can be problematic:
▶ Code size can increase massively
▶ Loop length may be known only at runtime

▶ Make best use of architectural features:
▶ Merge cmp and sub
▶ Merge counter increase into ldr

▶ Pay attention to microarchitecture:
▶ Loads and stores are faster when grouped

▶ Optimized code may require more registers



22

Some general lessons to learn

▶ Some loop unrolling helps:
▶ Less loop-control overhead per computation
▶ Can merge operations across iterations

▶ Full unrolling can be problematic:
▶ Code size can increase massively
▶ Loop length may be known only at runtime

▶ Make best use of architectural features:
▶ Merge cmp and sub
▶ Merge counter increase into ldr

▶ Pay attention to microarchitecture:
▶ Loads and stores are faster when grouped

▶ Optimized code may require more registers



22

Some general lessons to learn

▶ Some loop unrolling helps:
▶ Less loop-control overhead per computation
▶ Can merge operations across iterations

▶ Full unrolling can be problematic:
▶ Code size can increase massively
▶ Loop length may be known only at runtime

▶ Make best use of architectural features:
▶ Merge cmp and sub
▶ Merge counter increase into ldr

▶ Pay attention to microarchitecture:
▶ Loads and stores are faster when grouped

▶ Optimized code may require more registers



23

Optimizing “something” vs. optimizing crypto

▶ So far there was nothing crypto-specific in this lecture
▶ We did not yet talk about “leaking secrets”
▶ Need to think about our attacker!
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Implementation Security

▶ Attackers see more than input/output:
▶ Power consumption
▶ Electromagnetic radiation
▶ Timing

▶ Side-channel attacks:
▶ Measure information
▶ Use to obtain secret data

▶ Timing attacks can be done remotely
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Timing attacks and “constant-time” programming

Timing attacks
▶ Attacker obtains fine-granular timing information
▶ Not just overall execution time!
▶ Essentially time of each individual instruction

▶ Timing attacks are practical:
Osvik, Tromer, Shamir, 2006: 65 ms to steal a 256-bit AES key used for Linux hard-disk
encryption

▶ Remote timing attacks are practical:
Brumley, Tuveri, 2011: A few minutes to steal ECDSA signing key from OpenSSL
implementation

“Constant-time” programming
▶ Misnomer: timing is only indendent of secret data
▶ Idea: No data flow from secrets into variable-time operations
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Timing leakage part I

▶ Consider the following piece of code:
if s then

r ← A
else

r ← B
end if

▶ General structure of any conditional branch
▶ A and B can be large computations, r can be a large state
▶ This code takes different amount of time, depending on s

▶ Obvious timing leak if s is secret
▶ Even if A and B take the same amount of cycles this is generally not constant time!
▶ Reasons: Branch prediction, instruction-caches
▶ Never use secret-data-dependent branch conditions
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Eliminating branches

▶ So, what do we do with this piece of code?
if s then

r ← A
else

r ← B
end if

▶ Replace by
r ← sA+ (1− s)B

▶ Can expand s to all-one/all-zero mask and use XOR instead of addition, AND instead of
multiplication

▶ For very fast A and B this can even be faster
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Cached memory access

M
em

ory

Branch Unit

ALU ALU

Registers

L/S Unit

Cache

implicit

CPU

▶ On most CPUs, memory access goes
through a cache

▶ Small but fast transparent memory for
frequently used data

▶ A load from memory places data also in
the cache

▶ Data remains in cache until it’s replaced by
other data

▶ Loading data is fast if data is in the cache
(cache hit)

▶ Loading data is slow if data is not in the
cache (cache miss)
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Timing leakage part II

T [0] . . . T [15]

T [16] . . . T [31]

T [32] . . . T [47]

T [48] . . . T [63]

T [64] . . . T [79]

T [80] . . . T [95]

T [96] . . . T [111]

T [112] . . . T [127]

T [128] . . . T [143]

T [144] . . . T [159]

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T [223]

T [224] . . . T [239]

T [240] . . . T [255]

▶ Consider lookup table of 32-bit integers
▶ Assume that Cache lines have 64 bytes
▶ Crypto and the attacker’s program run on the same

CPU
▶ Tables are in cache

▶ The attacker’s program replaces some cache lines
▶ Crypto continues, loads from table again
▶ Attacker loads his data:

▶ Fast: cache hit (crypto did not just load from this line)
▶ Slow: cache miss (crypto just loaded from this line)
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T [64] . . . T [79]

T [80] . . . T [95]

???
T [112] . . . T [127]

???
???

T [160] . . . T [175]

T [176] . . . T [191]

T [192] . . . T [207]

T [208] . . . T223]

???
???

▶ Consider lookup table of 32-bit integers
▶ Assume that Cache lines have 64 bytes
▶ Crypto and the attacker’s program run on the same

CPU
▶ Tables are in cache
▶ The attacker’s program replaces some cache lines
▶ Crypto continues, loads from table again
▶ Attacker loads his data:

▶ Fast: cache hit (crypto did not just load from this line)
▶ Slow: cache miss (crypto just loaded from this line)
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Should we care? Does the Cortex-M4 have caches?

“Cortex-M0, Cortex-M0+, Cortex-M1, Cortex-M3, and Cortex-M4 processors do not have any
internal cache memory.

However, it is possible for a SoC design to integrate a system level cache.”

—ARM Cortex-M Programming Guide to Memory Barrier Instructions
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Should we care? Does the Cortex-M4 have caches?

“The memory system is configured during implementation and can include instruction and data
caches of varying sizes.”

—ARM Cortex-M7 TRM
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Some comments on timing attacks

▶ What I just showed is only the most basic cache-timing attack

▶ Non-secret cache lines are not enough for security
▶ Generally, load/store addresses influence timing in many different ways
▶ Do not access memory at secret-data-dependent addresses
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Eliminating lookups

▶ Want to load item at (secret) position p from table of size n

▶ Load all items, use arithmetic to pick the right one:
for i from 0 to n− 1 do

d← T [i]
if p = i then

r ← d
end if

end for
▶ Problem 1: if-statements are not constant time (see before)
▶ Problem 2: Need to be careful with comparisons (at least in high-level languages)
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Is that all? (Timing leakage part III)

Lesson so far
▶ Avoid all data flow from secrets to branch conditions and memory addresses
▶ This can always be done; cost highly depends on the algorithm
▶ Jasmin helps with this! (more this afternoon)

▶ Good news: On Cortex M4, that is pretty much it
▶ Bad news: On other microarchitectures, there may also be variable-time arithmetic, e.g.,

▶ DIV, IDIV, FDIV on pretty much all Intel/AMD CPUs
▶ UMULL, SMULL, UMLAL, and SMLAL on ARM Cortex-M3

▶ More good news: Jasmin also helps here!
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