
Engineering Cryptographic Software
Multiprecision Arithmetic

Peter Schwabe

January 2026



1

Multiprecision arithmetic in crypto

▶ Asymmetric cryptography heavily relies on arithmetic on “big integers”
▶ Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers

▶ Example 2:
▶ Elliptic curves defined over finite fields
▶ Typically use EC over large-characteristic prime fields
▶ Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .

▶ Example 3: Poly1305 needs arithmetic on 130-bit integers
▶ An integer is “big” if it’s not natively supported by the machine architecture
▶ Example: ARMv7E-M supports up to 32-bit integers, multiplication produces 64-bit result,

but not bigger than that.
▶ We call arithmetic on such “big integers” multiprecision arithmetic
▶ For now mainly interested in 160-bit and 256-bit arithmetic



1

Multiprecision arithmetic in crypto

▶ Asymmetric cryptography heavily relies on arithmetic on “big integers”
▶ Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers
▶ Example 2:

▶ Elliptic curves defined over finite fields
▶ Typically use EC over large-characteristic prime fields
▶ Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .

▶ Example 3: Poly1305 needs arithmetic on 130-bit integers
▶ An integer is “big” if it’s not natively supported by the machine architecture
▶ Example: ARMv7E-M supports up to 32-bit integers, multiplication produces 64-bit result,

but not bigger than that.
▶ We call arithmetic on such “big integers” multiprecision arithmetic
▶ For now mainly interested in 160-bit and 256-bit arithmetic



1

Multiprecision arithmetic in crypto

▶ Asymmetric cryptography heavily relies on arithmetic on “big integers”
▶ Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers
▶ Example 2:

▶ Elliptic curves defined over finite fields
▶ Typically use EC over large-characteristic prime fields
▶ Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .

▶ Example 3: Poly1305 needs arithmetic on 130-bit integers

▶ An integer is “big” if it’s not natively supported by the machine architecture
▶ Example: ARMv7E-M supports up to 32-bit integers, multiplication produces 64-bit result,

but not bigger than that.
▶ We call arithmetic on such “big integers” multiprecision arithmetic
▶ For now mainly interested in 160-bit and 256-bit arithmetic



1

Multiprecision arithmetic in crypto

▶ Asymmetric cryptography heavily relies on arithmetic on “big integers”
▶ Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers
▶ Example 2:

▶ Elliptic curves defined over finite fields
▶ Typically use EC over large-characteristic prime fields
▶ Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .

▶ Example 3: Poly1305 needs arithmetic on 130-bit integers
▶ An integer is “big” if it’s not natively supported by the machine architecture
▶ Example: ARMv7E-M supports up to 32-bit integers, multiplication produces 64-bit result,

but not bigger than that.
▶ We call arithmetic on such “big integers” multiprecision arithmetic

▶ For now mainly interested in 160-bit and 256-bit arithmetic



1

Multiprecision arithmetic in crypto

▶ Asymmetric cryptography heavily relies on arithmetic on “big integers”
▶ Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers
▶ Example 2:

▶ Elliptic curves defined over finite fields
▶ Typically use EC over large-characteristic prime fields
▶ Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .

▶ Example 3: Poly1305 needs arithmetic on 130-bit integers
▶ An integer is “big” if it’s not natively supported by the machine architecture
▶ Example: ARMv7E-M supports up to 32-bit integers, multiplication produces 64-bit result,

but not bigger than that.
▶ We call arithmetic on such “big integers” multiprecision arithmetic
▶ For now mainly interested in 160-bit and 256-bit arithmetic



2

The first year of primary school

Available numbers (digits): (0), 1, 2, 3, 4, 5, 6, 7, 8, 9

Addition
3 + 5 = ?
2 + 7 = ?
4 + 3 = ?

Subtraction
7− 5 = ?
5− 1 = ?
9− 3 = ?

▶ All results are in the set of available numbers
▶ No confusion for first-year school kids



2

The first year of primary school

Available numbers (digits): (0), 1, 2, 3, 4, 5, 6, 7, 8, 9

Addition
3 + 5 = ?
2 + 7 = ?
4 + 3 = ?

Subtraction
7− 5 = ?
5− 1 = ?
9− 3 = ?

▶ All results are in the set of available numbers
▶ No confusion for first-year school kids



2

The first year of primary school

Available numbers (digits): (0), 1, 2, 3, 4, 5, 6, 7, 8, 9

Addition
3 + 5 = ?
2 + 7 = ?
4 + 3 = ?

Subtraction
7− 5 = ?
5− 1 = ?
9− 3 = ?

▶ All results are in the set of available numbers
▶ No confusion for first-year school kids



2

The first year of primary school

Available numbers (digits): (0), 1, 2, 3, 4, 5, 6, 7, 8, 9

Addition
3 + 5 = ?
2 + 7 = ?
4 + 3 = ?

Subtraction
7− 5 = ?
5− 1 = ?
9− 3 = ?

▶ All results are in the set of available numbers
▶ No confusion for first-year school kids



3

Programming today

Available numbers: 0, 1, . . . , 232 − 1

Addition

u32 a b r;
a = 23842;
b = 12390;
r = a + b;

Subtraction

u32 a b r;
a = 874157;
b = 622301;
r = a - b;

▶ All results are in the set of available numbers
▶ On other architectures, may also have u64 available, or maybe only u16 or u8
▶ On Cortex-M4 (ARMv7E-M), working with register-size u32 is natural



3

Programming today

Available numbers: 0, 1, . . . , 232 − 1

Addition

u32 a b r;
a = 23842;
b = 12390;
r = a + b;

Subtraction

u32 a b r;
a = 874157;
b = 622301;
r = a - b;

▶ All results are in the set of available numbers
▶ On other architectures, may also have u64 available, or maybe only u16 or u8
▶ On Cortex-M4 (ARMv7E-M), working with register-size u32 is natural



3

Programming today

Available numbers: 0, 1, . . . , 232 − 1

Addition

u32 a b r;
a = 23842;
b = 12390;
r = a + b;

Subtraction

u32 a b r;
a = 874157;
b = 622301;
r = a - b;

▶ All results are in the set of available numbers
▶ On other architectures, may also have u64 available, or maybe only u16 or u8
▶ On Cortex-M4 (ARMv7E-M), working with register-size u32 is natural



3

Programming today

Available numbers: 0, 1, . . . , 232 − 1

Addition

u32 a b r;
a = 23842;
b = 12390;
r = a + b;

Subtraction

u32 a b r;
a = 874157;
b = 622301;
r = a - b;

▶ All results are in the set of available numbers
▶ On other architectures, may also have u64 available, or maybe only u16 or u8
▶ On Cortex-M4 (ARMv7E-M), working with register-size u32 is natural



4

Still in the first year of primary school

Crossing the ten barrier

6 + 5 = ?
9 + 7 = ?

▶ Inputs to addition are still from the set of available numbers
▶ Results are allowed to be larger than 9

▶ Addition is allowed to produce a carry

What happens with the carry?
▶ Introduce the decimal positional system
▶ Write an integer A in two digits a1a0 with

A = 10 · a1 + a0

▶ Note that at the moment a1 ∈ {0, 1}



4

Still in the first year of primary school

Crossing the ten barrier

6 + 5 = ?
9 + 7 = ?

▶ Inputs to addition are still from the set of available numbers
▶ Results are allowed to be larger than 9

▶ Addition is allowed to produce a carry

What happens with the carry?
▶ Introduce the decimal positional system
▶ Write an integer A in two digits a1a0 with

A = 10 · a1 + a0

▶ Note that at the moment a1 ∈ {0, 1}



4

Still in the first year of primary school

Crossing the ten barrier

6 + 5 = ?
9 + 7 = ?

▶ Inputs to addition are still from the set of available numbers
▶ Results are allowed to be larger than 9

▶ Addition is allowed to produce a carry

What happens with the carry?
▶ Introduce the decimal positional system
▶ Write an integer A in two digits a1a0 with

A = 10 · a1 + a0

▶ Note that at the moment a1 ∈ {0, 1}



4

Still in the first year of primary school

Crossing the ten barrier

6 + 5 = ?
9 + 7 = ?

▶ Inputs to addition are still from the set of available numbers
▶ Results are allowed to be larger than 9

▶ Addition is allowed to produce a carry

What happens with the carry?
▶ Introduce the decimal positional system
▶ Write an integer A in two digits a1a0 with

A = 10 · a1 + a0

▶ Note that at the moment a1 ∈ {0, 1}



5

. . . back to programming

reg u32 a b r;
a = 3348129313;
b = 3810627668;
r = a + b;

▶ Result of integer addition is 7 158 756 981
▶ The result r now has the value of 2 863 789 685
▶ 2 863 789 685 = 7 158 756 981− 232

▶ Addition result produced a carry, which is lost. What do we do?
▶ Idea: obtain the carry, and put it into another u32



5

. . . back to programming

reg u32 a b r;
a = 3348129313;
b = 3810627668;
r = a + b;

▶ Result of integer addition is 7 158 756 981
▶ The result r now has the value of 2 863 789 685

▶ 2 863 789 685 = 7 158 756 981− 232

▶ Addition result produced a carry, which is lost. What do we do?
▶ Idea: obtain the carry, and put it into another u32



5

. . . back to programming

reg u32 a b r;
a = 3348129313;
b = 3810627668;
r = a + b;

▶ Result of integer addition is 7 158 756 981
▶ The result r now has the value of 2 863 789 685
▶ 2 863 789 685 = 7 158 756 981− 232

▶ Addition result produced a carry, which is lost. What do we do?

▶ Idea: obtain the carry, and put it into another u32



5

. . . back to programming

reg u32 a b r;
a = 3348129313;
b = 3810627668;
r = a + b;

▶ Result of integer addition is 7 158 756 981
▶ The result r now has the value of 2 863 789 685
▶ 2 863 789 685 = 7 158 756 981− 232

▶ Addition result produced a carry, which is lost. What do we do?
▶ Idea: obtain the carry, and put it into another u32



6

3348129313 + 3810627668

u32 a = 3348129313;
u32 b = 3810627668;

fn addab() -> reg u32[2] {
reg u32[2] r;
reg bool c;
c, r[0] = a + b;
r[1] = 0;
_, r[1] += r[1] + c;
return r;

}



7

Later in primary school

Addition
42 + 78 = ?
789 + 543 = ?
7862 + 5275 = ?

7862
+ 5275
+ 13137

▶ Once school kids can add beyond 1000,
they can add arbitrary numbers



7

Later in primary school

Addition
42 + 78 = ?
789 + 543 = ?
7862 + 5275 = ?

7862
+ 5275
+ 13137

▶ Once school kids can add beyond 1000,
they can add arbitrary numbers



7

Later in primary school

Addition
42 + 78 = ?
789 + 543 = ?
7862 + 5275 = ?

7862
+ 5275
+ 13137

▶ Once school kids can add beyond 1000,
they can add arbitrary numbers



7

Later in primary school

Addition
42 + 78 = ?
789 + 543 = ?
7862 + 5275 = ?

7862
+ 5275
+ 13137

▶ Once school kids can add beyond 1000,
they can add arbitrary numbers



7

Later in primary school

Addition
42 + 78 = ?
789 + 543 = ?
7862 + 5275 = ?

7862
+ 5275
+ 13137

▶ Once school kids can add beyond 1000,
they can add arbitrary numbers



7

Later in primary school

Addition
42 + 78 = ?
789 + 543 = ?
7862 + 5275 = ?

7862
+ 5275
+ 13137

▶ Once school kids can add beyond 1000,
they can add arbitrary numbers



8

Multiprecision addition is old

“Oh Līlāvatī, intelligent girl, if you understand addition and subtraction, tell me the sum
of the amounts 2, 5, 32, 193, 18, 10, and 100, as well as [the remainder of] those when
subtracted from 10000.”
—“Līlāvatī” by Bhāskara (1150)



9

Multiprecision addition in Jasmin

fn bigint_add(reg ptr u32[N+1] r, reg ptr u32[N] a b) -> reg ptr u32[N+1] {
reg u32 t, u;
reg bool c;
inline int i;

t = a[0];
u = b[0];
c, t += u;
r[0] = t;
for i = 1 to N {

t = a[i];
u = b[i];
c, t += u + c;
r[i] = t;

}
t = 0;
_, t += t + c;
r[N] = t;

return r;
}



10

. . . and subtraction

fn bigint_sub(reg ptr u32[N+1] r, reg ptr u32[N] a b) -> reg ptr u32[N+1] {
reg u32 t, u;
reg bool c;
inline int i;

t = a[0];
u = b[0];
c, t -= u;
r[0] = t;
for i = 1 to N {

t = a[i];
u = b[i];
c, t -= u - c;
r[i] = t;

}
t = 0;
_, t -= t - c;
r[N] = t;

return r;
}



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
11106
98726

+ 863806
973626

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
11106
98726

+ 863806
973626

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
11106
98726

+ 863806
973626

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
11106
98726

+ 863806
973626

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
11106
98726

+ 863806
973626

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
11106
98726

+ 863806
973626

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
11106
98726

+ 863806
973626

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
11106

+ 98726
+ 863806

973626

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
+ 11106

666
666
666

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
11106

+ 98726
666
666

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

+ 1234 · 789
20978
666
666
666

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
20978

+ 863878
666
666

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
973626

+ 666
666
666

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



11

How about multiplication?

▶ Consider multiplication of 1234 by 789

1234 · 789
973626

+ 666
666
666

▶ This is also an old technique
▶ Earliest reference I could find is again the Līlāvatī (1150)



12

Let’s do that in Jasmin

export fn bigint_mul(reg mut ptr u32[6] rp, reg ptr u32[3] ap bp) -> reg ptr u32[6] {



13

Let’s do that in Jasmin
reg u32 r0 r1 r2 r3 r4 r5;
reg u32 a0 a1 a2;
reg u32 b0 b1 b2;
reg u32 t0 t1 t2 t3 hi lo z;
reg bool c;
z = 0;

a0 = ap[0];
a1 = ap[1];
a2 = ap[2];

b0 = bp[0];
t1, r0 = a0 * b0;
rp[0] = r0;

hi, r1 = a1 * b0;
c, r1 += t1;
c, hi += z + c;

r3, r2 = a2 * b0;
c, r2 += hi + c;
_, r3 += z + c;

b1 = bp[1];
t1, t0 = a0 * b1;

hi, lo = a1 * b1;
c, t1 += lo;

r4, t2 = a2 * b1;
c, t2 += hi + c;
c, r4 += z + c;

c, r1 += t0;
c, r2 += t1 + c;
c, r3 += t2 + c;
_, r4 += z + c;
rp[1] = r1;

b2 = bp[2];
t1, t0 = a0 * b2;

hi, lo = a1 * b2;
c, t1 += lo;

r5, t2 = a2 * b2;
c, t2 += hi + c;
_, r5 += z + c;

c, r2 += t0;
c, r3 += t1 + c;
c, r4 += t2 + c;
_, r5 += z + c;

rp[2] = r2;
rp[3] = r3;
rp[4] = r4;
rp[5] = r5;

return rp;
}



14

Schoolbook multiplication analysis

▶ n2 multiplication instructions to multiply two n-limb big integers
▶ About 2 additions per multiplication

▶ Problem: Need 3n+ c registers for n×n-word multiplication
▶ Can add on the fly, get down to 2n+ c, but more carry handling



14

Schoolbook multiplication analysis

▶ n2 multiplication instructions to multiply two n-limb big integers
▶ About 2 additions per multiplication
▶ Problem: Need 3n+ c registers for n×n-word multiplication

▶ Can add on the fly, get down to 2n+ c, but more carry handling



14

Schoolbook multiplication analysis

▶ n2 multiplication instructions to multiply two n-limb big integers
▶ About 2 additions per multiplication
▶ Problem: Need 3n+ c registers for n×n-word multiplication
▶ Can add on the fly, get down to 2n+ c, but more carry handling



15

Can we do better?

“Again as the information is understood, the multiplication of 2345 by 6789 is proposed;
therefore the numbers are written down; the 5 is multiplied by the 9, there will be 45; the 5
is put, the 4 is kept; and the 5 is multiplied by the 8, and the 9 by the 4 and the products are
added to the kept 4; there will be 80; the 0 is put and the 8 is kept; and the 5 is multiplied
by the 7 and the 9 by the 3 and the 4 by the 8, and the products are added to the kept 8;
there will be 102; the 2 is put and the 10 is kept in hand. . . ”

From “Fibonacci’s Liber Abaci” (1202) Chapter 2
(English translation by Sigler)



16

Product scanning in Jasmin

z = 0;

a0 = ap[0];
a1 = ap[1];
a2 = ap[2];

b0 = bp[0];
b1 = bp[1];
b2 = bp[2];

r1, r0 = a0 * b0;
rp[0] = r0;

r2, lo = a0 * b1;
c, r1 += lo;
_, r2 += z + c;

hi, lo = a1 * b0;
c, r1 += lo;
c, r2 += hi + c;
_, r3 = z + z + c;
rp[1] = r1;

hi, lo = a0 * b2;
c, r2 += lo;
c, r3 += hi + c;
_, r4 = z + z + c;

hi, lo = a1 * b1;
c, r2 += lo;
c, r3 += hi + c;
_, r4 += z + c;

hi, lo = a2 * b0;
c, r2 += lo;
c, r3 += hi + c;
_, r4 += z + c;
rp[2] = r2;

hi, lo = a1 * b2;
c, r3 += lo;
c, r4 += hi + c;
_, r5 = z + z + c;

hi, lo = a2 * b1;
c, r3 += lo;
c, r4 += hi + c;
_, r5 += z + c;
rp[3] = r3;

hi, lo = a2 * b2;
c, r4 += lo;
_, r5 += hi + c;

rp[4] = r4;
rp[5] = r5;

return rp;
}



17

Even better. . . ?

From the Treviso Arithmetic, 1478



18

Carries, carries everywhere!

Radix-232 representation
▶ Currently, represent 256-bit integer A as (a0, . . . , a7) with

A =
7∑

i−0

ai · 232i

▶ Very compact, also computationally efficient
▶ Unique representation for every 256-bit integer
▶ Every addition may generate carries
▶ Carry handling may get involved



18

Carries, carries everywhere!

Radix-232 representation
▶ Currently, represent 256-bit integer A as (a0, . . . , a7) with

A =
7∑

i−0

ai · 232i

▶ Very compact, also computationally efficient
▶ Unique representation for every 256-bit integer
▶ Every addition may generate carries
▶ Carry handling may get involved



18

Carries, carries everywhere!

Radix-28 representiaon
▶ Idea: use “unsaturated” representation (a0, . . . , a31) with

A =

31∑
i−0

ai · 28i

▶ More computations per big-integer operation
▶ Various ways to represent the same 256-bit integer, e.g., 512 = 29

▶ (512, 0, 0, 0, 0, 0, 0, 0)
▶ (0, 2, 0, 0, 0, 0, 0, 0)

▶ Needs more space in memory
▶ Can ignore carries for quite a while



18

Carries, carries everywhere!

Radix-28 representiaon
▶ Idea: use “unsaturated” representation (a0, . . . , a31) with

A =

31∑
i−0

ai · 28i

▶ More computations per big-integer operation
▶ Various ways to represent the same 256-bit integer, e.g., 512 = 29

▶ (512, 0, 0, 0, 0, 0, 0, 0)
▶ (0, 2, 0, 0, 0, 0, 0, 0)

▶ Needs more space in memory
▶ Can ignore carries for quite a while



19

Some remarks about saturated vs. unsaturated representation

▶ On Cortex-M4, saturated representation is most efficient
▶ Carries are annoying, but cheap
▶ Minimize arithmetic and load/stores instructions
▶ Setting flags is optional, carries aren’t overwritten

▶ This is different on other (micro-)architectures
▶ RISC-V does not have a carry flag
▶ On Intel Nehalem, adc is 6× slower than add

▶ More efficient unsaturated code, e.g., radix-226

▶ Unsaturated representation often used for first reference code
▶ Code in assignment2-ecdh25519 uses radix-28 representation



19

Some remarks about saturated vs. unsaturated representation

▶ On Cortex-M4, saturated representation is most efficient
▶ Carries are annoying, but cheap
▶ Minimize arithmetic and load/stores instructions
▶ Setting flags is optional, carries aren’t overwritten

▶ This is different on other (micro-)architectures
▶ RISC-V does not have a carry flag
▶ On Intel Nehalem, adc is 6× slower than add

▶ More efficient unsaturated code, e.g., radix-226

▶ Unsaturated representation often used for first reference code
▶ Code in assignment2-ecdh25519 uses radix-28 representation



19

Some remarks about saturated vs. unsaturated representation

▶ On Cortex-M4, saturated representation is most efficient
▶ Carries are annoying, but cheap
▶ Minimize arithmetic and load/stores instructions
▶ Setting flags is optional, carries aren’t overwritten

▶ This is different on other (micro-)architectures
▶ RISC-V does not have a carry flag
▶ On Intel Nehalem, adc is 6× slower than add

▶ More efficient unsaturated code, e.g., radix-226

▶ Unsaturated representation often used for first reference code
▶ Code in assignment2-ecdh25519 uses radix-28 representation



19

Some remarks about saturated vs. unsaturated representation

▶ On Cortex-M4, saturated representation is most efficient
▶ Carries are annoying, but cheap
▶ Minimize arithmetic and load/stores instructions
▶ Setting flags is optional, carries aren’t overwritten

▶ This is different on other (micro-)architectures
▶ RISC-V does not have a carry flag
▶ On Intel Nehalem, adc is 6× slower than add

▶ More efficient unsaturated code, e.g., radix-226

▶ Unsaturated representation often used for first reference code
▶ Code in assignment2-ecdh25519 uses radix-28 representation



20

Addition in radix 28

fn bigint_add(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = a[i];
u = b[i];
t += u;
r[i] = t;

}

return r;
}

▶ This works as long as all coefficients are in [0, . . . , 231 − 1]

▶ We can do quite a few additions before we have to carry (reduce)



20

Addition in radix 28

fn bigint_add(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = a[i];
u = b[i];
t += u;
r[i] = t;

}

return r;
}

▶ This works as long as all coefficients are in [0, . . . , 231 − 1]

▶ We can do quite a few additions before we have to carry (reduce)



20

Addition in radix 28

fn bigint_add(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = a[i];
u = b[i];
t += u;
r[i] = t;

}

return r;
}

▶ This works as long as all coefficients are in [0, . . . , 231 − 1]

▶ We can do quite a few additions before we have to carry (reduce)



21

Subtraction in radix 28

fn bigint_sub(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = a[i];
u = b[i];
t -= u;
r[i] = t;

}

return r;
}

▶ Use signed coefficients to represent our big integers
▶ No need to worry about borrows



22

Carrying in radix-28

▶ With many additions, coefficients may grow larger than 31 bits
▶ They grow even faster with multiplication

▶ Eventually we have to carry en bloc:
t = r[0];
u = r[1];
t = t >>s 8;
u += t;
t = t << 8;
t -= t;
r[0] = t;
r[1] = u;

▶ Continue by carrying from r1 to r2, from r2 to r3, etc.
▶ For the highest limb r[N-1], need to create a new limb to carry to



22

Carrying in radix-28

▶ With many additions, coefficients may grow larger than 31 bits
▶ They grow even faster with multiplication
▶ Eventually we have to carry en bloc:

t = r[0];
u = r[1];
t = t >>s 8;
u += t;
t = t << 8;
t -= t;
r[0] = t;
r[1] = u;

▶ Continue by carrying from r1 to r2, from r2 to r3, etc.
▶ For the highest limb r[N-1], need to create a new limb to carry to



22

Carrying in radix-28

▶ With many additions, coefficients may grow larger than 31 bits
▶ They grow even faster with multiplication
▶ Eventually we have to carry en bloc:

t = r[0];
u = r[1];
t = t >>s 8;
u += t;
t = t << 8;
t -= t;
r[0] = t;
r[1] = u;

▶ Continue by carrying from r1 to r2, from r2 to r3, etc.
▶ For the highest limb r[N-1], need to create a new limb to carry to



23

Big integers and polynomials

▶ Note: Addition code would look exactly the same for 5-coefficient polynomial addition

▶ This is no coincidence: We actually perform arithmetic in Z[x]
▶ Inputs to addition are 5-coefficient polynomials
▶ Nice thing about arithmetic in Z[x]: no carries!
▶ To go from Z[x] to Z, evaluate at the radix (this is a ring homomorphism)
▶ Carrying means evaluating at the radix
▶ Thinking of multiprecision integers as polynomials is very powerful for efficient arithmetic



23

Big integers and polynomials

▶ Note: Addition code would look exactly the same for 5-coefficient polynomial addition
▶ This is no coincidence: We actually perform arithmetic in Z[x]
▶ Inputs to addition are 5-coefficient polynomials

▶ Nice thing about arithmetic in Z[x]: no carries!
▶ To go from Z[x] to Z, evaluate at the radix (this is a ring homomorphism)
▶ Carrying means evaluating at the radix
▶ Thinking of multiprecision integers as polynomials is very powerful for efficient arithmetic



23

Big integers and polynomials

▶ Note: Addition code would look exactly the same for 5-coefficient polynomial addition
▶ This is no coincidence: We actually perform arithmetic in Z[x]
▶ Inputs to addition are 5-coefficient polynomials
▶ Nice thing about arithmetic in Z[x]: no carries!

▶ To go from Z[x] to Z, evaluate at the radix (this is a ring homomorphism)
▶ Carrying means evaluating at the radix
▶ Thinking of multiprecision integers as polynomials is very powerful for efficient arithmetic



23

Big integers and polynomials

▶ Note: Addition code would look exactly the same for 5-coefficient polynomial addition
▶ This is no coincidence: We actually perform arithmetic in Z[x]
▶ Inputs to addition are 5-coefficient polynomials
▶ Nice thing about arithmetic in Z[x]: no carries!
▶ To go from Z[x] to Z, evaluate at the radix (this is a ring homomorphism)
▶ Carrying means evaluating at the radix

▶ Thinking of multiprecision integers as polynomials is very powerful for efficient arithmetic



23

Big integers and polynomials

▶ Note: Addition code would look exactly the same for 5-coefficient polynomial addition
▶ This is no coincidence: We actually perform arithmetic in Z[x]
▶ Inputs to addition are 5-coefficient polynomials
▶ Nice thing about arithmetic in Z[x]: no carries!
▶ To go from Z[x] to Z, evaluate at the radix (this is a ring homomorphism)
▶ Carrying means evaluating at the radix
▶ Thinking of multiprecision integers as polynomials is very powerful for efficient arithmetic



24

How about squaring?

inline fn bigint_square(reg ptr u32[N] r a) -> reg ptr u32[N] {
r = bigint_mul(a, a);

}



25

How about squaring?

▶ What squaring will compute is the following:

r0 = a0a0

r1 = a1a0 + a0a1

r2 = a2a0 + a1a1 + a0a2

. . .

r61 = a30a31 + a31a30

r62 = a31a31

▶ Many partial products are computed twice!



25

How about squaring?

▶ What squaring will compute is the following:

r0 = a0a0

r1 = a1a0 + a0a1

r2 = a2a0 + a1a1 + a0a2

. . .

r61 = a30a31 + a31a30

r62 = a31a31

▶ Many partial products are computed twice!



25

How about squaring?

▶ Idea: compute them only once!
▶ Precompute 2a1, 2a2, . . . , 2a31, then

r0 = a0a0

r1 = 2a1a0

r2 = 2a2a0 + a1a1

. . .

r61 = 2a30a31

r62 = a31a31

▶ Eliminate almost half of the multiplications (and additions)
▶ Precomputation can use addition, shift, or multiplication by 2



25

How about squaring?

▶ Idea: compute them only once!
▶ Precompute 2a1, 2a2, . . . , 2a31, then

r0 = a0a0

r1 = 2a1a0

r2 = 2a2a0 + a1a1

. . .

r61 = 2a30a31

r62 = a31a31

▶ Eliminate almost half of the multiplications (and additions)
▶ Precomputation can use addition, shift, or multiplication by 2



26

Squaring vs. multiplication

For 32 input limbs, multiplication needs
▶ 322 = 1024multiplications
▶ 312 = 961 additions

Squaring needs
▶ 528multiplications
▶ 465 additions
▶ 31 additions or shifts or multiplications by 2 for precomputation



27

Multiplication complexity

▶ So far, multiplication of 2 n-byte numbers needs n2 MULs
▶ Kolmogorov conjectured 1952: You can’t do better, multiplication has quadratic complexity

▶ Proven wrong by 23-year old student Karatsuba in 1960
▶ Idea: write A ·B as (A0 + 2mA1)(B0 + 2mB1) for half-size A0, B0, A1, B1

▶ Compute

A0B0 + 2m(A0B1 +B0A1) + 22mA1B1

=A0B0 + 2m((A0 +A1)(B0 +B1)−A0B0 −A1B1) + 22mA1B1

▶ Recursive application yields Θ(nlog2 3) runtime



27

Multiplication complexity

▶ So far, multiplication of 2 n-byte numbers needs n2 MULs
▶ Kolmogorov conjectured 1952: You can’t do better, multiplication has quadratic complexity
▶ Proven wrong by 23-year old student Karatsuba in 1960

▶ Idea: write A ·B as (A0 + 2mA1)(B0 + 2mB1) for half-size A0, B0, A1, B1

▶ Compute

A0B0 + 2m(A0B1 +B0A1) + 22mA1B1

=A0B0 + 2m((A0 +A1)(B0 +B1)−A0B0 −A1B1) + 22mA1B1

▶ Recursive application yields Θ(nlog2 3) runtime



27

Multiplication complexity

▶ So far, multiplication of 2 n-byte numbers needs n2 MULs
▶ Kolmogorov conjectured 1952: You can’t do better, multiplication has quadratic complexity
▶ Proven wrong by 23-year old student Karatsuba in 1960
▶ Idea: write A ·B as (A0 + 2mA1)(B0 + 2mB1) for half-size A0, B0, A1, B1

▶ Compute

A0B0 + 2m(A0B1 +B0A1) + 22mA1B1

=A0B0 + 2m((A0 +A1)(B0 +B1)−A0B0 −A1B1) + 22mA1B1

▶ Recursive application yields Θ(nlog2 3) runtime



27

Multiplication complexity

▶ So far, multiplication of 2 n-byte numbers needs n2 MULs
▶ Kolmogorov conjectured 1952: You can’t do better, multiplication has quadratic complexity
▶ Proven wrong by 23-year old student Karatsuba in 1960
▶ Idea: write A ·B as (A0 + 2mA1)(B0 + 2mB1) for half-size A0, B0, A1, B1

▶ Compute

A0B0 + 2m(A0B1 +B0A1) + 22mA1B1

=A0B0 + 2m((A0 +A1)(B0 +B1)−A0B0 −A1B1) + 22mA1B1

▶ Recursive application yields Θ(nlog2 3) runtime



27

Multiplication complexity

▶ So far, multiplication of 2 n-byte numbers needs n2 MULs
▶ Kolmogorov conjectured 1952: You can’t do better, multiplication has quadratic complexity
▶ Proven wrong by 23-year old student Karatsuba in 1960
▶ Idea: write A ·B as (A0 + 2mA1)(B0 + 2mB1) for half-size A0, B0, A1, B1

▶ Compute

A0B0 + 2m(A0B1 +B0A1) + 22mA1B1

=A0B0 + 2m((A0 +A1)(B0 +B1)−A0B0 −A1B1) + 22mA1B1

▶ Recursive application yields Θ(nlog2 3) runtime



27

Multiplication complexity

▶ So far, multiplication of 2 n-byte numbers needs n2 MULs
▶ Kolmogorov conjectured 1952: You can’t do better, multiplication has quadratic complexity
▶ Proven wrong by 23-year old student Karatsuba in 1960
▶ Idea: write A ·B as (A0 + 2mA1)(B0 + 2mB1) for half-size A0, B0, A1, B1

▶ Compute

A0B0 + 2m(A0B1 +B0A1) + 22mA1B1

=A0B0 + 2m((A0 +A1)(B0 +B1)−A0B0 −A1B1) + 22mA1B1

▶ Recursive application yields Θ(nlog2 3) runtime



28

More on multiplication complexity

▶ For small multiplication numbers, Karatsuba is typically not faster
▶ Cutoff between quadratic-complexity and Karatsuba depends on

▶ Size of registers and radix used to represent big integers
▶ Relative cost of multiplications, additions, and load/stores
▶ Cost of carry handling

▶ Very rough rule of thumb: consider Karatsuba from ≈10 limbs
▶ Lower complexity is also possible (for even larger inputs):

▶ Θ(nlog3 5) for Toom-3 multiplication
▶ Θ(nlog4 7) for Toom-4 multiplication
▶ Θ(n logn log logn)) for Schönhage-Strassen
▶ Θ(n logn)) for Harvey and van-der-Hoeven (2019)

▶ For cryptography, we care about Karatsuba and Toom, but nothing beyond



28

More on multiplication complexity

▶ For small multiplication numbers, Karatsuba is typically not faster
▶ Cutoff between quadratic-complexity and Karatsuba depends on

▶ Size of registers and radix used to represent big integers
▶ Relative cost of multiplications, additions, and load/stores
▶ Cost of carry handling

▶ Very rough rule of thumb: consider Karatsuba from ≈10 limbs

▶ Lower complexity is also possible (for even larger inputs):
▶ Θ(nlog3 5) for Toom-3 multiplication
▶ Θ(nlog4 7) for Toom-4 multiplication
▶ Θ(n logn log logn)) for Schönhage-Strassen
▶ Θ(n logn)) for Harvey and van-der-Hoeven (2019)

▶ For cryptography, we care about Karatsuba and Toom, but nothing beyond



28

More on multiplication complexity

▶ For small multiplication numbers, Karatsuba is typically not faster
▶ Cutoff between quadratic-complexity and Karatsuba depends on

▶ Size of registers and radix used to represent big integers
▶ Relative cost of multiplications, additions, and load/stores
▶ Cost of carry handling

▶ Very rough rule of thumb: consider Karatsuba from ≈10 limbs
▶ Lower complexity is also possible (for even larger inputs):

▶ Θ(nlog3 5) for Toom-3 multiplication
▶ Θ(nlog4 7) for Toom-4 multiplication
▶ Θ(n logn log logn)) for Schönhage-Strassen
▶ Θ(n logn)) for Harvey and van-der-Hoeven (2019)

▶ For cryptography, we care about Karatsuba and Toom, but nothing beyond



29

Modular reduction

▶ We don’t just need arithmetic on big integers
▶ We need arithmetic in finite fields

▶ In other words, we need reduction modulo a prime p

▶ Let’s fix some size and representation:
/* 256-bit integers in radix 2^8 */

stack u32[32] a;

▶ Integer A is obtained as
∑31

i=0 ai2
8i

▶ Lot of space in top of limbs to accumulate carries
▶ Multiplication produces stack u32[63] r
▶ For “carried” inputs, each limb in r has at most 21 bits



29

Modular reduction

▶ We don’t just need arithmetic on big integers
▶ We need arithmetic in finite fields
▶ In other words, we need reduction modulo a prime p

▶ Let’s fix some size and representation:
/* 256-bit integers in radix 2^8 */

stack u32[32] a;

▶ Integer A is obtained as
∑31

i=0 ai2
8i

▶ Lot of space in top of limbs to accumulate carries
▶ Multiplication produces stack u32[63] r
▶ For “carried” inputs, each limb in r has at most 21 bits



29

Modular reduction

▶ We don’t just need arithmetic on big integers
▶ We need arithmetic in finite fields
▶ In other words, we need reduction modulo a prime p

▶ Let’s fix some size and representation:
/* 256-bit integers in radix 2^8 */
stack u32[32] a;

▶ Integer A is obtained as
∑31

i=0 ai2
8i

▶ Lot of space in top of limbs to accumulate carries

▶ Multiplication produces stack u32[63] r
▶ For “carried” inputs, each limb in r has at most 21 bits



29

Modular reduction

▶ We don’t just need arithmetic on big integers
▶ We need arithmetic in finite fields
▶ In other words, we need reduction modulo a prime p

▶ Let’s fix some size and representation:
/* 256-bit integers in radix 2^8 */
stack u32[32] a;

▶ Integer A is obtained as
∑31

i=0 ai2
8i

▶ Lot of space in top of limbs to accumulate carries
▶ Multiplication produces stack u32[63] r
▶ For “carried” inputs, each limb in r has at most 21 bits



30

Modular reduction

▶ Let’s fix some p, say p = 2255 − 19

▶ We know that 2255 ≡ 19 (mod p)

▶ This means that 2256 ≡ 38 (mod p)

▶ Reduce 31-word intermediate result r as follows:
for i = 0 to 31 {
u = r[i];
t = r[i+32];
t = 38 * t;
u += t;
r[i] = u;

}

▶ Result is in r[0],. . . , r[31]



30

Modular reduction

▶ Let’s fix some p, say p = 2255 − 19

▶ We know that 2255 ≡ 19 (mod p)

▶ This means that 2256 ≡ 38 (mod p)

▶ Reduce 31-word intermediate result r as follows:
for i = 0 to 31 {
u = r[i];
t = r[i+32];
t = 38 * t;
u += t;
r[i] = u;

}

▶ Result is in r[0],. . . , r[31]



30

Modular reduction

▶ Let’s fix some p, say p = 2255 − 19

▶ We know that 2255 ≡ 19 (mod p)

▶ This means that 2256 ≡ 38 (mod p)

▶ Reduce 31-word intermediate result r as follows:
for i = 0 to 31 {

u = r[i];
t = r[i+32];
t = 38 * t;
u += t;
r[i] = u;

}

▶ Result is in r[0],. . . , r[31]



30

Modular reduction

▶ Let’s fix some p, say p = 2255 − 19

▶ We know that 2255 ≡ 19 (mod p)

▶ This means that 2256 ≡ 38 (mod p)

▶ Reduce 31-word intermediate result r as follows:
for i = 0 to 31 {

u = r[i];
t = r[i+32];
t = 38 * t;
u += t;
r[i] = u;

}

▶ Result is in r[0],. . . , r[31]



31

Primes are not rabbits

▶ “You cannot just simply pull some nice prime out of your hat!”

▶ In fact, very often we can.
▶ For cryptography we construct curves over fields of “nice” order
▶ Examples:

▶ 2192 − 264 − 1 (“NIST-P192”, FIPS186-2, 2000)
▶ 2224 − 296 + 1 (“NIST-P224”, FIPS186-2, 2000)
▶ 2256 − 2224 + 2192 + 296 − 1 (“NIST-P256”, FIPS186-2, 2000)
▶ 2255 − 19 (Bernstein, 2006)
▶ 2448 − 2224 − 1 (Hamburg, 2015)

▶ All these primes come with (more or less) fast reduction algorithms



31

Primes are not rabbits

▶ “You cannot just simply pull some nice prime out of your hat!”
▶ In fact, very often we can.
▶ For cryptography we construct curves over fields of “nice” order

▶ Examples:
▶ 2192 − 264 − 1 (“NIST-P192”, FIPS186-2, 2000)
▶ 2224 − 296 + 1 (“NIST-P224”, FIPS186-2, 2000)
▶ 2256 − 2224 + 2192 + 296 − 1 (“NIST-P256”, FIPS186-2, 2000)
▶ 2255 − 19 (Bernstein, 2006)
▶ 2448 − 2224 − 1 (Hamburg, 2015)

▶ All these primes come with (more or less) fast reduction algorithms



31

Primes are not rabbits

▶ “You cannot just simply pull some nice prime out of your hat!”
▶ In fact, very often we can.
▶ For cryptography we construct curves over fields of “nice” order
▶ Examples:

▶ 2192 − 264 − 1 (“NIST-P192”, FIPS186-2, 2000)
▶ 2224 − 296 + 1 (“NIST-P224”, FIPS186-2, 2000)
▶ 2256 − 2224 + 2192 + 296 − 1 (“NIST-P256”, FIPS186-2, 2000)
▶ 2255 − 19 (Bernstein, 2006)
▶ 2448 − 2224 − 1 (Hamburg, 2015)

▶ All these primes come with (more or less) fast reduction algorithms



31

Primes are not rabbits

▶ “You cannot just simply pull some nice prime out of your hat!”
▶ In fact, very often we can.
▶ For cryptography we construct curves over fields of “nice” order
▶ Examples:

▶ 2192 − 264 − 1 (“NIST-P192”, FIPS186-2, 2000)
▶ 2224 − 296 + 1 (“NIST-P224”, FIPS186-2, 2000)
▶ 2256 − 2224 + 2192 + 296 − 1 (“NIST-P256”, FIPS186-2, 2000)
▶ 2255 − 19 (Bernstein, 2006)
▶ 2448 − 2224 − 1 (Hamburg, 2015)

▶ All these primes come with (more or less) fast reduction algorithms



32

How about other prime fields?

▶ What if somebody just throws an ugly prime at you?

▶ Example: German BSI is pushing the “Brainpool curves”, over fields Fp with
p224 =2272162293245435278755253799591092807334073\

2145944992304435472941311

=0xD7C134AA264366862A18302575D1D787B09F07579\
7DA89F57EC8C0FF

or
p256 =7688495639704534422080974662900164909303795\

0200943055203735601445031516197751

=0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D\
52620282013481D1F6E5377

▶ Another example: Pairing-friendly curves are typically defined over fields Fp where p has
some structure, but hard to exploit for fast arithmetic



32

How about other prime fields?

▶ What if somebody just throws an ugly prime at you?
▶ Example: German BSI is pushing the “Brainpool curves”, over fields Fp with

p224 =2272162293245435278755253799591092807334073\
2145944992304435472941311

=0xD7C134AA264366862A18302575D1D787B09F07579\
7DA89F57EC8C0FF

or
p256 =7688495639704534422080974662900164909303795\

0200943055203735601445031516197751

=0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D\
52620282013481D1F6E5377

▶ Another example: Pairing-friendly curves are typically defined over fields Fp where p has
some structure, but hard to exploit for fast arithmetic



32

How about other prime fields?

▶ What if somebody just throws an ugly prime at you?
▶ Example: German BSI is pushing the “Brainpool curves”, over fields Fp with

p224 =2272162293245435278755253799591092807334073\
2145944992304435472941311

=0xD7C134AA264366862A18302575D1D787B09F07579\
7DA89F57EC8C0FF

or
p256 =7688495639704534422080974662900164909303795\

0200943055203735601445031516197751

=0xA9FB57DBA1EEA9BC3E660A909D838D726E3BF623D\
52620282013481D1F6E5377

▶ Another example: Pairing-friendly curves are typically defined over fields Fp where p has
some structure, but hard to exploit for fast arithmetic



33

Montgomery representation

▶ We have the following problem:
▶ We multiply two n-limb big integers and obtain a 2n-limb result t
▶ We need to find t mod p

▶ Idea: Perform big-integer division with remainder (expensive!)
▶ Better idea (Montgomery, 1985):

▶ Let R be such that gcd(R, p) = 1 and t < p ·R
▶ Represent an element a of Fp as aR mod p
▶ Multiplication of aR and bR yields t = abR2 (2n limbs)
▶ Now compute Montgomery reduction: tR−1 mod p

▶ For some choices of R this is more efficient than division
▶ Typical choice for radix-b representation: R = bn



33

Montgomery representation

▶ We have the following problem:
▶ We multiply two n-limb big integers and obtain a 2n-limb result t
▶ We need to find t mod p

▶ Idea: Perform big-integer division with remainder (expensive!)

▶ Better idea (Montgomery, 1985):
▶ Let R be such that gcd(R, p) = 1 and t < p ·R
▶ Represent an element a of Fp as aR mod p
▶ Multiplication of aR and bR yields t = abR2 (2n limbs)
▶ Now compute Montgomery reduction: tR−1 mod p

▶ For some choices of R this is more efficient than division
▶ Typical choice for radix-b representation: R = bn



33

Montgomery representation

▶ We have the following problem:
▶ We multiply two n-limb big integers and obtain a 2n-limb result t
▶ We need to find t mod p

▶ Idea: Perform big-integer division with remainder (expensive!)
▶ Better idea (Montgomery, 1985):

▶ Let R be such that gcd(R, p) = 1 and t < p ·R
▶ Represent an element a of Fp as aR mod p
▶ Multiplication of aR and bR yields t = abR2 (2n limbs)
▶ Now compute Montgomery reduction: tR−1 mod p

▶ For some choices of R this is more efficient than division
▶ Typical choice for radix-b representation: R = bn



33

Montgomery representation

▶ We have the following problem:
▶ We multiply two n-limb big integers and obtain a 2n-limb result t
▶ We need to find t mod p

▶ Idea: Perform big-integer division with remainder (expensive!)
▶ Better idea (Montgomery, 1985):

▶ Let R be such that gcd(R, p) = 1 and t < p ·R
▶ Represent an element a of Fp as aR mod p
▶ Multiplication of aR and bR yields t = abR2 (2n limbs)
▶ Now compute Montgomery reduction: tR−1 mod p
▶ For some choices of R this is more efficient than division
▶ Typical choice for radix-b representation: R = bn



34

Montgomery reduction (pseudocode)

Require: p = (pn−1, . . . , p0)b with gcd(p, b) = 1, R = bn,
p′ = −p−1 mod b and t = (t2n−1, . . . , t0)b

Ensure: tR−1 mod p
A← t
for i from 0 to n− 1 do

u← aip
′ mod b

A← A+ u · p · bi
end for
A← A/bn

if A ≥ p then
A← A− p

end if
return A



35

Some notes about Montgomery reduction

▶ Some cost for transforming to Montgomery representation and back
▶ Only efficient if many operations are performed in Montgomery representation

▶ The algorithms takes n2 + nmultiplication instructions
▶ n of those are “shortened” multiplications (modulo b)
▶ The cost is roughly the same as schoolbook multiplication
▶ Careful about conditional subtraction (timing attacks!)
▶ One can merge schoolbook multiplication with Montgomery reduction: “Montgomery

multiplication”



35

Some notes about Montgomery reduction

▶ Some cost for transforming to Montgomery representation and back
▶ Only efficient if many operations are performed in Montgomery representation
▶ The algorithms takes n2 + nmultiplication instructions
▶ n of those are “shortened” multiplications (modulo b)

▶ The cost is roughly the same as schoolbook multiplication
▶ Careful about conditional subtraction (timing attacks!)
▶ One can merge schoolbook multiplication with Montgomery reduction: “Montgomery

multiplication”



35

Some notes about Montgomery reduction

▶ Some cost for transforming to Montgomery representation and back
▶ Only efficient if many operations are performed in Montgomery representation
▶ The algorithms takes n2 + nmultiplication instructions
▶ n of those are “shortened” multiplications (modulo b)
▶ The cost is roughly the same as schoolbook multiplication

▶ Careful about conditional subtraction (timing attacks!)
▶ One can merge schoolbook multiplication with Montgomery reduction: “Montgomery

multiplication”



35

Some notes about Montgomery reduction

▶ Some cost for transforming to Montgomery representation and back
▶ Only efficient if many operations are performed in Montgomery representation
▶ The algorithms takes n2 + nmultiplication instructions
▶ n of those are “shortened” multiplications (modulo b)
▶ The cost is roughly the same as schoolbook multiplication
▶ Careful about conditional subtraction (timing attacks!)

▶ One can merge schoolbook multiplication with Montgomery reduction: “Montgomery
multiplication”



35

Some notes about Montgomery reduction

▶ Some cost for transforming to Montgomery representation and back
▶ Only efficient if many operations are performed in Montgomery representation
▶ The algorithms takes n2 + nmultiplication instructions
▶ n of those are “shortened” multiplications (modulo b)
▶ The cost is roughly the same as schoolbook multiplication
▶ Careful about conditional subtraction (timing attacks!)
▶ One can merge schoolbook multiplication with Montgomery reduction: “Montgomery

multiplication”



36

Still missing: inversion

▶ Inversion is typically much more expensive than multiplication

▶ Efficient ECC arithmetic avoids frequent inversions
▶ ECC can typically not avoid all inversions
▶ We need inversion, but we do (usually) not need it often
▶ Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat’s little theorem



36

Still missing: inversion

▶ Inversion is typically much more expensive than multiplication
▶ Efficient ECC arithmetic avoids frequent inversions
▶ ECC can typically not avoid all inversions
▶ We need inversion, but we do (usually) not need it often

▶ Two approaches to inversion:
1. Extended Euclidean algorithm
2. Fermat’s little theorem



36

Still missing: inversion

▶ Inversion is typically much more expensive than multiplication
▶ Efficient ECC arithmetic avoids frequent inversions
▶ ECC can typically not avoid all inversions
▶ We need inversion, but we do (usually) not need it often
▶ Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat’s little theorem



37

Extended Euclidean algorithm

▶ Given two integers a, b, the Extended Euclidean algorithm finds
▶ The greatest common divisor of a and b
▶ Integers u and v, such that a · u+ b · v = gcd(a, b)

▶ It is based on the observation that

gcd(a, b) = gcd(b, a− qb) ∀q ∈ Z

▶ To compute a−1 (mod p), use the algorithm to compute

a · u+ p · v = gcd(a, p) = 1

▶ Now it holds that u ≡ a−1 (mod p)



37

Extended Euclidean algorithm

▶ Given two integers a, b, the Extended Euclidean algorithm finds
▶ The greatest common divisor of a and b
▶ Integers u and v, such that a · u+ b · v = gcd(a, b)

▶ It is based on the observation that

gcd(a, b) = gcd(b, a− qb) ∀q ∈ Z

▶ To compute a−1 (mod p), use the algorithm to compute

a · u+ p · v = gcd(a, p) = 1

▶ Now it holds that u ≡ a−1 (mod p)



37

Extended Euclidean algorithm

▶ Given two integers a, b, the Extended Euclidean algorithm finds
▶ The greatest common divisor of a and b
▶ Integers u and v, such that a · u+ b · v = gcd(a, b)

▶ It is based on the observation that

gcd(a, b) = gcd(b, a− qb) ∀q ∈ Z

▶ To compute a−1 (mod p), use the algorithm to compute

a · u+ p · v = gcd(a, p) = 1

▶ Now it holds that u ≡ a−1 (mod p)



38

Extended Euclidean algorithm (pseudocode)

Require: Integers a and b.
Ensure: An integer tuple (u, v, d) satisfying a · u+ b · v = d = gcd(a, b)
u← 1
v ← 0
d← a
v1 ← 0
v3 ← b
while (v3 ̸= 0) do

q ← ⌊ d
v3
⌋

t3 ← d mod v3
t1 ← u− qv1
u← v1
d← v3
v1 ← t1
v3 ← t3

end while
v ← d−au

b
return (u, v, d)



39

Some notes about the Extended Euclidean algorithm

▶ Core operation are divisions with remainder
▶ This lecture: no details about big-integer division
▶ Version without divisions: binary extended gcd:

Handbook of applied cryptography, Alg. 14.61

▶ The running time (number of loop iterations) depends on the inputs
▶ We usually do not want this for cryptography (timing attacks!)
▶ Possible protection: blinding

▶ Multiply a by random integer r
▶ Invert, obtain r−1a−1

▶ Multiply again by r to obtain a−1

▶ Note that this requires a source of randomness
▶ Other option: constant-time EEA, Bernstein-Yang, 2019:

https://eprint.iacr.org/2019/266.pdf

http://cacr.uwaterloo.ca/hac/
https://eprint.iacr.org/2019/266.pdf


39

Some notes about the Extended Euclidean algorithm

▶ Core operation are divisions with remainder
▶ This lecture: no details about big-integer division
▶ Version without divisions: binary extended gcd:

Handbook of applied cryptography, Alg. 14.61
▶ The running time (number of loop iterations) depends on the inputs
▶ We usually do not want this for cryptography (timing attacks!)

▶ Possible protection: blinding
▶ Multiply a by random integer r
▶ Invert, obtain r−1a−1

▶ Multiply again by r to obtain a−1

▶ Note that this requires a source of randomness
▶ Other option: constant-time EEA, Bernstein-Yang, 2019:

https://eprint.iacr.org/2019/266.pdf

http://cacr.uwaterloo.ca/hac/
https://eprint.iacr.org/2019/266.pdf


39

Some notes about the Extended Euclidean algorithm

▶ Core operation are divisions with remainder
▶ This lecture: no details about big-integer division
▶ Version without divisions: binary extended gcd:

Handbook of applied cryptography, Alg. 14.61
▶ The running time (number of loop iterations) depends on the inputs
▶ We usually do not want this for cryptography (timing attacks!)
▶ Possible protection: blinding

▶ Multiply a by random integer r
▶ Invert, obtain r−1a−1

▶ Multiply again by r to obtain a−1

▶ Note that this requires a source of randomness

▶ Other option: constant-time EEA, Bernstein-Yang, 2019:
https://eprint.iacr.org/2019/266.pdf

http://cacr.uwaterloo.ca/hac/
https://eprint.iacr.org/2019/266.pdf


39

Some notes about the Extended Euclidean algorithm

▶ Core operation are divisions with remainder
▶ This lecture: no details about big-integer division
▶ Version without divisions: binary extended gcd:

Handbook of applied cryptography, Alg. 14.61
▶ The running time (number of loop iterations) depends on the inputs
▶ We usually do not want this for cryptography (timing attacks!)
▶ Possible protection: blinding

▶ Multiply a by random integer r
▶ Invert, obtain r−1a−1

▶ Multiply again by r to obtain a−1

▶ Note that this requires a source of randomness
▶ Other option: constant-time EEA, Bernstein-Yang, 2019:

https://eprint.iacr.org/2019/266.pdf

http://cacr.uwaterloo.ca/hac/
https://eprint.iacr.org/2019/266.pdf


40

Fermat’s little theorem

Theorem
Let p be prime. Then for any integer a it holds that ap−1 ≡ 1 (mod p)

▶ This implies that ap−2 ≡ a−1 (mod p)

▶ Obvious algorithm for inversion: Exponentiation with p− 2

▶ The exponent is quite large (e.g., 255 bits), is that efficient?
▶ Yes, fairly:

▶ Exponent is fixed and known at compile time
▶ Can spend quite some time on finding an efficient addition chain (next week)
▶ Inversion modulo 2255 − 19 needs 254 squarings and 11multiplications in F2255−19



40

Fermat’s little theorem

Theorem
Let p be prime. Then for any integer a it holds that ap−1 ≡ 1 (mod p)

▶ This implies that ap−2 ≡ a−1 (mod p)

▶ Obvious algorithm for inversion: Exponentiation with p− 2

▶ The exponent is quite large (e.g., 255 bits), is that efficient?
▶ Yes, fairly:

▶ Exponent is fixed and known at compile time
▶ Can spend quite some time on finding an efficient addition chain (next week)
▶ Inversion modulo 2255 − 19 needs 254 squarings and 11multiplications in F2255−19



40

Fermat’s little theorem

Theorem
Let p be prime. Then for any integer a it holds that ap−1 ≡ 1 (mod p)

▶ This implies that ap−2 ≡ a−1 (mod p)

▶ Obvious algorithm for inversion: Exponentiation with p− 2

▶ The exponent is quite large (e.g., 255 bits), is that efficient?

▶ Yes, fairly:
▶ Exponent is fixed and known at compile time
▶ Can spend quite some time on finding an efficient addition chain (next week)
▶ Inversion modulo 2255 − 19 needs 254 squarings and 11multiplications in F2255−19



40

Fermat’s little theorem

Theorem
Let p be prime. Then for any integer a it holds that ap−1 ≡ 1 (mod p)

▶ This implies that ap−2 ≡ a−1 (mod p)

▶ Obvious algorithm for inversion: Exponentiation with p− 2

▶ The exponent is quite large (e.g., 255 bits), is that efficient?
▶ Yes, fairly:

▶ Exponent is fixed and known at compile time
▶ Can spend quite some time on finding an efficient addition chain (next week)
▶ Inversion modulo 2255 − 19 needs 254 squarings and 11multiplications in F2255−19



41

Inversion in F2255−19

fn invert(reg ptr u32[N] r x) -> reg ptr u32[N] {
stack u32[N] z2 z9 z11 z2_5_0 z2_10_0 z2_20_0 z2_50_0 z2_100_0 t;
inline int i;

/* 2 */ z2 = gfe_square(z2,x);
/* 4 */ t = gfe_square(t,z2);
/* 8 */ t = gfe_square_inline(t);
/* 9 */ z9 = gfe_mul(z9,t,x);
/* 11 */ z11 = gfe_mul(z11,z9,z2);
/* 22 */ t = gfe_square(t,z11);
/* 2^5 - 2^0 = 31 */ z2_5_0 = gfe_mul(z2_5_0,t,z9);
/* 2^6 - 2^1 */ t = gfe_square(t,z2_5_0);
/* 2^10 - 2^5 */ for i = 1 to 5 { t = gfe_square_inline(t); }
/* 2^10 - 2^0 */ z2_10_0 = gfe_mul(z2_10_0,t,z2_5_0);
/* 2^11 - 2^1 */ t = gfe_square(t,z2_10_0);
/* 2^20 - 2^10 */ for i = 1 to 10 { t = gfe_square_inline(t); }
/* 2^20 - 2^0 */ z2_20_0 = gfe_mul(z2_20_0,t,z2_10_0);
/* 2^21 - 2^1 */ t = gfe_square(t,z2_20_0);
/* 2^40 - 2^20 */ for i = 1 to 20 { t = gfe_square_inline(t); }
/* 2^40 - 2^0 */ t = gfe_mul_inline(t,z2_20_0);



41

Inversion in F2255−19

/* 2^41 - 2^1 */ t = gfe_square_inline(t);
/* 2^50 - 2^10 */ for i = 1 to 10 { t = gfe_square_inline(t); }
/* 2^50 - 2^0 */ z2_50_0 = gfe_mul(z2_50_0,t,z2_10_0);
/* 2^51 - 2^1 */ t = gfe_square(t,z2_50_0);
/* 2^100 - 2^50 */ for i = 1 to 50 { t = gfe_square_inline(t); }
/* 2^100 - 2^0 */ z2_100_0 = gfe_mul(z2_100_0,t,z2_50_0);
/* 2^101 - 2^1 */ t = gfe_square(t,z2_100_0);
/* 2^200 - 2^100 */ for i = 1 to 100 { t = gfe_square_inline(t); }
/* 2^200 - 2^0 */ t = gfe_mul_inline(t,z2_100_0);
/* 2^201 - 2^1 */ t = gfe_square_inline(t);
/* 2^250 - 2^50 */ for i = 1 to 50 { t = gfe_square_inline(t); }
/* 2^250 - 2^0 */ t = gfe_mul_inline(t,z2_50_0);
/* 2^251 - 2^1 */ t = gfe_square_inline(t);
/* 2^252 - 2^2 */ t = gfe_square_inline(t);
/* 2^253 - 2^3 */ t = gfe_square_inline(t);
/* 2^254 - 2^4 */ t = gfe_square_inline(t);
/* 2^255 - 2^5 */ t = gfe_square_inline(t);
/* 2^255 - 21 */ r = gfe_mul(r,t,z11);

return r;
}



42

While we’re at it: square roots

▶ We can compress a point (x, y) before sending
▶ Usually send only x and one bit of y
▶ When receiving such a compressed point we need to solve recompute y as

√
x3 + ax+ b

(Weierstrass curve)
▶ Similar for twisted Edwards curves (see https://cryptojedi.org/papers/#ed25519)

▶ If p ≡ 3 (mod 4): compute square root of a as a(p+1)/4

▶ If p ≡ 5 (mod 8): compute β, such that β4 = a2 as a(p+3)/8

▶ If β2 = −a: multiply by
√
−1

▶ Computing square roots is (typically) about as expensive as an inversion

https://cryptojedi.org/papers/#ed25519


42

While we’re at it: square roots

▶ We can compress a point (x, y) before sending
▶ Usually send only x and one bit of y
▶ When receiving such a compressed point we need to solve recompute y as

√
x3 + ax+ b

(Weierstrass curve)
▶ Similar for twisted Edwards curves (see https://cryptojedi.org/papers/#ed25519)
▶ If p ≡ 3 (mod 4): compute square root of a as a(p+1)/4

▶ If p ≡ 5 (mod 8): compute β, such that β4 = a2 as a(p+3)/8

▶ If β2 = −a: multiply by
√
−1

▶ Computing square roots is (typically) about as expensive as an inversion

https://cryptojedi.org/papers/#ed25519


42

While we’re at it: square roots

▶ We can compress a point (x, y) before sending
▶ Usually send only x and one bit of y
▶ When receiving such a compressed point we need to solve recompute y as

√
x3 + ax+ b

(Weierstrass curve)
▶ Similar for twisted Edwards curves (see https://cryptojedi.org/papers/#ed25519)
▶ If p ≡ 3 (mod 4): compute square root of a as a(p+1)/4

▶ If p ≡ 5 (mod 8): compute β, such that β4 = a2 as a(p+3)/8

▶ If β2 = −a: multiply by
√
−1

▶ Computing square roots is (typically) about as expensive as an inversion

https://cryptojedi.org/papers/#ed25519


42

While we’re at it: square roots

▶ We can compress a point (x, y) before sending
▶ Usually send only x and one bit of y
▶ When receiving such a compressed point we need to solve recompute y as

√
x3 + ax+ b

(Weierstrass curve)
▶ Similar for twisted Edwards curves (see https://cryptojedi.org/papers/#ed25519)
▶ If p ≡ 3 (mod 4): compute square root of a as a(p+1)/4

▶ If p ≡ 5 (mod 8): compute β, such that β4 = a2 as a(p+3)/8

▶ If β2 = −a: multiply by
√
−1

▶ Computing square roots is (typically) about as expensive as an inversion

https://cryptojedi.org/papers/#ed25519


43

Summary

▶ Multiprecision integers are represented as tuples of smaller integers
▶ Different representations possible

▶ Saturated representation often most efficient
▶ Unsaturated representation have easier carry handling

▶ Multiprecision arithmetic is similar to polynomial arithmetic
▶ Difference is carries
▶ For ECC, dominating cost is typically multiplications

▶ Different approaches with quadratic complexity
▶ Karatsuba (or Toom) may be worth considering

▶ Modular reduction often for special primes
▶ For General primes typically use Montgomery reduction
▶ Two main options for inversion:

▶ Extended Euclidean algorithm (careful about timing attacks!)
▶ Fermat’s little theorem (less efficient, but trivially constant-time)



43

Summary

▶ Multiprecision integers are represented as tuples of smaller integers
▶ Different representations possible

▶ Saturated representation often most efficient
▶ Unsaturated representation have easier carry handling

▶ Multiprecision arithmetic is similar to polynomial arithmetic
▶ Difference is carries

▶ For ECC, dominating cost is typically multiplications
▶ Different approaches with quadratic complexity
▶ Karatsuba (or Toom) may be worth considering

▶ Modular reduction often for special primes
▶ For General primes typically use Montgomery reduction
▶ Two main options for inversion:

▶ Extended Euclidean algorithm (careful about timing attacks!)
▶ Fermat’s little theorem (less efficient, but trivially constant-time)



43

Summary

▶ Multiprecision integers are represented as tuples of smaller integers
▶ Different representations possible

▶ Saturated representation often most efficient
▶ Unsaturated representation have easier carry handling

▶ Multiprecision arithmetic is similar to polynomial arithmetic
▶ Difference is carries
▶ For ECC, dominating cost is typically multiplications

▶ Different approaches with quadratic complexity
▶ Karatsuba (or Toom) may be worth considering

▶ Modular reduction often for special primes
▶ For General primes typically use Montgomery reduction
▶ Two main options for inversion:

▶ Extended Euclidean algorithm (careful about timing attacks!)
▶ Fermat’s little theorem (less efficient, but trivially constant-time)



43

Summary

▶ Multiprecision integers are represented as tuples of smaller integers
▶ Different representations possible

▶ Saturated representation often most efficient
▶ Unsaturated representation have easier carry handling

▶ Multiprecision arithmetic is similar to polynomial arithmetic
▶ Difference is carries
▶ For ECC, dominating cost is typically multiplications

▶ Different approaches with quadratic complexity
▶ Karatsuba (or Toom) may be worth considering

▶ Modular reduction often for special primes
▶ For General primes typically use Montgomery reduction

▶ Two main options for inversion:
▶ Extended Euclidean algorithm (careful about timing attacks!)
▶ Fermat’s little theorem (less efficient, but trivially constant-time)



43

Summary

▶ Multiprecision integers are represented as tuples of smaller integers
▶ Different representations possible

▶ Saturated representation often most efficient
▶ Unsaturated representation have easier carry handling

▶ Multiprecision arithmetic is similar to polynomial arithmetic
▶ Difference is carries
▶ For ECC, dominating cost is typically multiplications

▶ Different approaches with quadratic complexity
▶ Karatsuba (or Toom) may be worth considering

▶ Modular reduction often for special primes
▶ For General primes typically use Montgomery reduction
▶ Two main options for inversion:

▶ Extended Euclidean algorithm (careful about timing attacks!)
▶ Fermat’s little theorem (less efficient, but trivially constant-time)


