Engineering Cryptographic Software

Multiprecision Arithmetic

Peter Schwabe

January 2026

Multiprecision arithmetic in crypto

> Asymmetric cryptography heavily relies on arithmetic on “big integers”
> Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers

Multiprecision arithmetic in crypto @@

> Asymmetric cryptography heavily relies on arithmetic on “big integers”
> Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers
> Example 2:

» Elliptic curves defined over finite fields
> Typically use EC over large-characteristic prime fields
> Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .

Multiprecision arithmetic in crypto @@

Ny

> Asymmetric cryptography heavily relies on arithmetic on “big integers”
> Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers
> Example 2:

» Elliptic curves defined over finite fields
> Typically use EC over large-characteristic prime fields
> Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .

> Example 3: Poly1305 needs arithmetic on 130-bit integers

Multiprecision arithmetic in crypto @

Ny

> Asymmetric cryptography heavily relies on arithmetic on “big integers”
> Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers

> Example 2:

» Elliptic curves defined over finite fields
> Typically use EC over large-characteristic prime fields
> Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .

> Example 3: Poly1305 needs arithmetic on 130-bit integers
An integer is "big" if it's not natively supported by the machine architecture

> Example: ARMV7E-M supports up to 32-bit integers, multiplication produces 64-bit result,
but not bigger than that.

» We call arithmetic on such “big integers” multiprecision arithmetic

v

Multiprecision arithmetic in crypto @
» Asymmetric cryptography heavily relies on arithmetic on “big integers”

> Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers
> Example 2:

> Elliptic curves defined over finite fields
> Typically use EC over large-characteristic prime fields
> Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .

» Example 3: Poly1305 needs arithmetic on 130-bit integers
> Aninteger is “big” if it's not natively supported by the machine architecture

» Example: ARMV7E-M supports up to 32-bit integers, multiplication produces 64-bit result,
but not bigger than that.

» We call arithmetic on such “big integers” multiprecision arithmetic
> For now mainly interested in 160-bit and 256-bit arithmetic

The first year of primary school

Available numbers (digits): (0),1,2,3,4,5,6,7,8,9

The first year of primary school

Available numbers (digits): (0),1,2,3,4,5,6,7,8,9

Addition
3+5= 7
247= 7

44+3= 7

The first year of primary school

Available numbers (digits): (0),1,2,3,4,5,6,7,8,9

Addition
3+5= 7
247= 7

44+3= 7

The first year of primary school @@

Available numbers (digits): (0),1,2,3,4,5,6,7,8,9

Addition
3+5= 7
24+7= 7
443= 7

» All results are in the set of available numbers
» No confusion for first-year school kids

Programming today

Available numbers: 0,1,...,232 —1

Programming today

Available numbers: 0,1,...,232 —1

Addition

u32 a b r;
23842;
12390;
a + b;

o
oo

@ ‘3

Ny

Available numbers: 0,1,...,232 —1

Addition
u32 a b r; u32 a b r;
a = 23842; a = 874157;
b = 12390; b = 622301;
r = a + b; r = a - b;

Ny

@ ‘3

Available numbers: 0,1,...,232 —1

Addition
u32 a b r; u32 a b r;
a = 23842; a = 874157;
b = 12390; b = 622301;
r = a + b; r = a - b;

> All results are in the set of available numbers
» On other architectures, may also have u64 available, or maybe only u16 or u8
> On Cortex-M4 (ARMV7E-M), working with register-size u32 is natural

Still in the first year of primary school

Crossing the ten barrier

6+5= 7
9+7= 7

Still in the first year of primary school

Crossing the ten barrier

6+5= 7
9+7= 7

> Inputs to addition are still from the set of available numbers
> Results are allowed to be larger than 9

Still in the first year of primary school

Crossing the ten barrier

6+5= 7
9+7= 7

> Inputs to addition are still from the set of available numbers
> Results are allowed to be larger than 9
> Addition is allowed to produce a carry

Still in the first year of primary school

Crossing the ten barrier

6+5= 7
94+7= 7

> Inputs to addition are still from the set of available numbers
> Results are allowed to be larger than 9
> Addition is allowed to produce a carry

What happens with the carry?

> Introduce the decimal positional system
» Write an integer A in two digits a;ag with

| \,

A=10 a1 + ag

> Note that at the moment a; € {0, 1}

... back to programming

reg u32 a b r;
a 3348129313;
b 3810627668;
r a + b;

... back to programming

u32 a b r;
3348129313;
3810627668
a + b;

3]
[0
o5}

o’
oo

» Result of integer addition is 7158 756 981
» The result r now has the value of 2 863 789 685

... back to programming

reg u32 a b r;
3348129313;
3810627668;
a + b;

o’
oo

» Result of integer addition is 7158 756 981

»> The result r now has the value of 2863 789 685

> 2863789685 = 7158756981 — 232

> Addition result produced a carry, which is lost. What do we do?

... back to programming

reg u32 a b r;

a = 3348129313;

b = 3810627668;

r = a + b;

» Result of integer addition is 7158 756 981

»> The result r now has the value of 2863 789 685

> 2863789685 = 7158756981 — 232

> Addition result produced a carry, which is lost. What do we do?
» |dea: obtain the carry, and put it into another u32

3348129313 + 3810627668

u32 a
u32 b

3348129313;
3810627668

fn addab() -> reg u32[2] {
reg u32[2] r;
reg bool c;
c, r[0] = a + b;
r[1] = 0;
_, r[1] += r[1] + c;
return r;

Later in primary school

Addition
42478 = 7

780 + 543 = 7
7862 + 5275 = ?

Later in primary school

Addition
42478 = 7

780 + 543 = 7
7862 + 5275 = ?

7862
+ 5275

Later in primary school

Addition
42478 = 7

780 + 543 = 7
7862 + 5275 = ?

7862
+ 5275

Later in primary school

Addition
42478 = 7

780 + 543 = 7
7862 + 5275 = ?

7862
+ 5275
+ 137

Later in primary school

Addition
42478 = 7

780 + 543 = 7
7862 + 5275 = ?

7862
+ 5275
+ 13137

Later in primary school

» Once school kids can add beyond 1000,
they can add arbitrary numbers

Addition

42+ 78 = 7
789+ 543 = 7
7862 + 5275 = 7?7

7862
+ 5275
+ 13137

Multiprecision addition is old

“Oh Lilavati, intelligent girl, if you understand addition and subtraction, tell me the sum
of the amounts 2, 5, 32, 193, 18, 10, and 100, as well as [the remainder of] those when
subtracted from 70000.”

—"Lilavatr” by Bhaskara (1150)

Multiprecision addition in Jasmin

fn bigint_add(reg ptr u32[N+1] r, reg ptr u32[N] a b) -> reg ptr u32[N+1] {
reg u32 t, u;
reg bool c;
inline int i;

t = al0];
u = b[0];
c, t += u;
r[0] = t;
for i =1 to N {
t = alil;
u = blil;
c, t +=u + c;
r[i] = t;
}
t = 0;
_, t+=1t + c;
r[N] = t;

return r;

...and subtraction

fn bigint_sub(reg ptr u32[N+1] r, reg ptr u32[N] a b) -> reg ptr u32[N+1] {
reg u32 t, u;
reg bool c;
inline int i;

t = al0];
u = b[0];
c, t -= u;

return r;

How about multiplication?

> Consider multiplication of 1234 by 789

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
6

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
06

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
106

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
11106

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
11106
9872

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
11106
9872

8638

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789

11106

+ 9872
+ 8638

973626

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
11106

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
11106
+ 9872

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
20978

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
20978
+ 8638

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
973626

How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
973626

» This is also an old technique
> Earliest reference | could find is again the Lilavati (1150)

Let's do that in Jasmin

export fn bigint_mul(reg mut ptr u32[6] rp, reg ptr u32[3] ap bp) -> reg ptr u32[6] {

Let's do that in Jasmin

reg u32 r0 r1 r2 r3 r4 rb5; bl = bpl[1l; b2 = bp[2];
reg u32 a0 al a2; tl, t0 = a0 * bil; tl, t0 = a0 * b2;
reg u32 b0 bl b2;
reg u32 t0 t1 t2 t3 hi lo z; hi, lo = al * bi; hi, 1lo = al * b2;
reg bool c; c, tl += lo; c, t1 += lo;
z = 0;

rd, t2 = a2 *x bil; rb, t2 = a2 *x b2;
a0 = ap[0]; c, t2 += hi + c; c, t2 += hi + c;
al = ap[1]; c, 4 += z + c; _, 5 +=z + c;
a2 = ap[2];

c, rl += t0; c, r2 += t0;
b0 = bpl[0]; c, r2 += t1 + c; c, r3 += tl1 + c;
tl, r0O = a0 * bO; c, r3 += t2 + c; c, rd += t2 + c;
rpl[0] = r0; ., Th +=z + c; _, rh +=z + c;

rp[1] = r1;
hi, r1 = al * bO; rpl[2] = r2;
c, rl += ti1; rpl3] = r3;
c, hi += z + c; rpl4] = r4;

rp[5] = r5;

r3, r2 = a2 * b0;
c, r2 += hi + c; return rp;
_, r3 +=z + c; }

Schoolbook multiplication analysis

» n2 multiplication instructions to multiply two n-limb big integers
> About 2 additions per multiplication

Schoolbook multiplication analysis

» n2 multiplication instructions to multiply two n-limb big integers
> About 2 additions per multiplication
» Problem: Need 3n + c registers for nxn-word multiplication

Schoolbook multiplication analysis

» n2 multiplication instructions to multiply two n-limb big integers
> About 2 additions per multiplication

» Problem: Need 3n + c registers for nxn-word multiplication

» Can add on the fly, get down to 2n + ¢, but more carry handling

@)

Ny

@15

"Again as the information is understood, the multiplication of 2345 by 6789 is proposed;
therefore the numbers are written down; the 5 is multiplied by the 9, there will be 45; the 5
is put, the 4 is kept; and the 5 is multiplied by the 8, and the 9 by the 4 and the products are
added to the kept 4; there will be 80; the 0 is put and the 8 is kept; and the 5 is multiplied

by the 7 and the 9 by the 3 and the 4 by the 8, and the products are added to the kept 8;
there will be 102; the 2 is put and the 10 is kept in hand. . .”

From “Fibonacci’s Liber Abaci” (1202) Chapter 2
(English translation by Sigler)

a0 =
al =
a2 =

bo =

bl

b2 =

ap[0];
ap[1];
ap[2];

bp[0];
bp[1];
bpl2];

rl, rO = a0 * bO;
rp[0] = r0;

r2, lo = a0 * bil;
c, rl += lo;
_, r2 += z + c;

hi, lo = al * bO;
c, rl += lo;
c, r2 += hi + c;

_,r3 =2+ 2z + c;

rp[1] = r1;

hi, lo = a0 * b2;
c, r2 += lo;

c, r3 += hi + c;
_, rd =2+ 2z + c;

hi, lo = al * bil;
c, r2 += lo;

c, r3 += hi + c;
_, Td += z + c;

hi, lo = a2 * b0;
c, r2 += lo;

c, r3 += hi + c;
_, T4 += z + c;
rpl2] = r2;

hi, lo = al * b2;
c, r3 += lo;

c, r4d += hi + c;
_, b=z + 2z + c;

hi, lo = a2 * bi;
c, r3 += lo;

c, r4d += hi + c;
_, rb +=z + c;
rp[3] = r3;

hi, lo = a2 * b2;
c, rd += lo;
_, rb += hi + c;

rp[4] = r4;
rp[56] = r5;
return rp;

Even better...?

) 9
IN© 8[2,1\
\\}\ ANERANERN +]6
O TN\ \t \4 7| ,
1\[NjzN\J2N\[z Ni3]z
2 | N4 I\ | |
_ \ll\l\ \l 16
NINNIRR
o\|o ' 1|2
Suma o 7

From the Treviso Arithmetic, 1478

Carries, carries everywhere!

Radix-23? representation
> Currently, represent 256-bit integer A as (ao, - . ., az) with

7
A=Y a2
i—0

.

Carries, carries everywhere!

Radix-23? representation

> Currently, represent 256-bit integer A as (ao, - . ., az) with

7
A=Y a2
i—0

> Very compact, also computationally efficient
» Unique representation for every 256-bit integer
> Every addition may generate carries

» Carry handling may get involved

7 =

.

8

Carries, carries everywhere!

Radix-2® representiaon
> |dea: use “unsaturated” representation (ao, . . ., az1) with

31
A= Z a; - 2&
i—0

Carries, carries everywhere!

Radix-2® representiaon

> |dea: use “unsaturated” representation (ao, . . ., az1) with

» More computations per big-integer operation

> Various ways to represent the same 256-bit integer, e.g., 512 = 2°
> (512,0,0,0,0,0,0,0)
> (0,2,0,0,0,0,0,0)

> Needs more space in memory
» Can ignore carries for quite a while

Some remarks about saturated vs. unsaturated representation

» On Cortex-M4, saturated representation is most efficient
» Carries are annoying, but cheap
» Minimize arithmetic and load/stores instructions
» Setting flags is optional, carries aren’t overwritten

Some remarks about saturated vs. unsaturated representation

» On Cortex-M4, saturated representation is most efficient
» Carries are annoying, but cheap
» Minimize arithmetic and load/stores instructions
» Setting flags is optional, carries aren’t overwritten

» This is different on other (micro-)architectures

> RISC-V does not have a carry flag
» On Intel Nehalem, adc is 6x slower than add

Some remarks about saturated vs. unsaturated representation

» On Cortex-M4, saturated representation is most efficient
» Carries are annoying, but cheap
» Minimize arithmetic and load/stores instructions
» Setting flags is optional, carries aren’t overwritten
» This is different on other (micro-)architectures
> RISC-V does not have a carry flag
» On Intel Nehalem, adc is 6x slower than add

» More efficient unsaturated code, e.g., radix-226

Some remarks about saturated vs. unsaturated representation

» On Cortex-M4, saturated representation is most efficient

» Carries are annoying, but cheap
» Minimize arithmetic and load/stores instructions
» Setting flags is optional, carries aren’t overwritten

» This is different on other (micro-)architectures

> RISC-V does not have a carry flag
» On Intel Nehalem, adc is 6x slower than add

» More efficient unsaturated code, e.g., radix-226
» Unsaturated representation often used for first reference code
Code in assignment2-ecdh25519 uses radix-2® representation

v

Addition in radix 28

fn bigint_add(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = alil;
u = b[i];
t += u;
r[il = t;

return r;

}

Addition in radix 28

fn bigint_add(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = alil;
u = b[i];
t += u;
r[il = t;

return r;

}

> This works as long as all coefficients are in [0, ..., 23! — 1]

Addition in radix 28 PN
@

fn bigint_add(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = alil;
u = b[i];
t += u;
r[il = t;
}

return r;

}

> This works as long as all coefficients are in [0, ..., 23! — 1]
> We can do quite a few additions before we have to carry (reduce)

Subtraction in radix 28

fn bigint_sub(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = alil;
u = bl[i];

return r;

}

» Use signed coefficients to represent our big integers
> No need to worry about borrows

Carrying in radix-2%

> With many additions, coefficients may grow larger than 31 bits
> They grow even faster with multiplication

Carrying in radix-2%

> With many additions, coefficients may grow larger than 31 bits
> They grow even faster with multiplication
> Eventually we have to carry en bloc:

t = r[0];

u = r[1];
t =t >s 8;
u
t

Carrying in radix-2%

> With many additions, coefficients may grow larger than 31 bits
> They grow even faster with multiplication
> Eventually we have to carry en bloc:

t = r[0];

u = r[1];
t =t >s 8;
u
t

R
—
-
—
]

u;
» Continue by carrying from r1 to r2, from r2 to r3, etc.
> For the highest limb r [N-1], need to create a new limb to carry to

Big integers and polynomials

> Note: Addition code would look exactly the same for 5-coefficient polynomial addition

Big integers and polynomials

> Note: Addition code would look exactly the same for 5-coefficient polynomial addition
» This is no coincidence: We actually perform arithmetic in Z[z]
> Inputs to addition are 5-coefficient polynomials

Big integers and polynomials

> Note: Addition code would look exactly the same for 5-coefficient polynomial addition
» This is no coincidence: We actually perform arithmetic in Z[z]

> Inputs to addition are 5-coefficient polynomials

» Nice thing about arithmetic in Z[x]: no carries!

Big integers and polynomials (@@

> Note: Addition code would look exactly the same for 5-coefficient polynomial addition
» This is no coincidence: We actually perform arithmetic in Z[z]

> Inputs to addition are 5-coefficient polynomials

» Nice thing about arithmetic in Z[x]: no carries!

> To go from Z[z] to Z, evaluate at the radix (this is a ring homomorphism)

» Carrying means evaluating at the radix

Big integers and polynomials @@@

Ny

Note: Addition code would look exactly the same for 5-coefficient polynomial addition
This is no coincidence: We actually perform arithmetic in Z|x]

Inputs to addition are 5-coefficient polynomials

Nice thing about arithmetic in Z[z]: no carries!

To go from Z[z] to Z, evaluate at the radix (this is a ring homomorphism)

Carrying means evaluating at the radix

Thinking of multiprecision integers as polynomials is very powerful for efficient arithmetic

vVvVvyvVvyvVvyVvyYyvyy

How about squaring?

inline fn bigint_square(reg ptr u32[N] r a) -> reg ptr u32[N] {
r = bigint_mul(a, a);

}

How about squaring?

» What squaring will compute is the following:

To = aopao
r1 = aiag + apay

To = a2a9 + ai1a1 + agas

761 = (30031 + (31030

Te2 = 431031

How about squaring?

» What squaring will compute is the following:

To = aopao
r1 = aiag + apay

To = a2a9 + ai1a1 + agas

761 = A30031 + A31030

Te2 = 431031

» Many partial products are computed twice!

How about squaring?

» |dea: compute them only oncel!
» Precompute 2ay, 2as, ..., 2as;, then

To = aolGo
r = 2a1a0

ro = 2a2a0 + a101

re1 = 2030031

Te2 = (31031

How about squaring?

» |dea: compute them only oncel!
» Precompute 2ay, 2as, ..., 2as;, then

To = aolGo
r = 2a1a0

ro = 2a2a0 + a101

re1 = 2030031
T62 = (31031

» Eliminate almost half of the multiplications (and additions)
» Precomputation can use addition, shift, or multiplication by 2

Squaring vs. multiplication

For 32 input limbs, multiplication needs
> 322 = 1024 multiplications
> 312 = 961 additions
Squaring needs
> 528 multiplications
> 465 additions
» 31 additions or shifts or multiplications by 2 for precomputation

Multiplication complexity

» So far, multiplication of 2 n-byte numbers needs n? MULS
» Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity

Multiplication complexity

» So far, multiplication of 2 n-byte numbers needs n? MULS
» Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
» Proven wrong by 23-year old student Karatsuba in 1960

Multiplication complexity

» So far, multiplication of 2 n-byte numbers needs n? MULS

» Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
» Proven wrong by 23-year old student Karatsuba in 1960

> |dea: write A- B as (Ag + 2™A;1)(Bo + 2™ By) for half-size Ay, By, A1, B;

@27

» So far, multiplication of 2 n-byte numbers needs n? MULS

> Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
» Proven wrong by 23-year old student Karatsuba in 1960

> |dea: write A- B as (Ag + 2™A;1)(Bo + 2™ By) for half-size Ay, By, A1, B;

» Compute

AoBy + 2™ (AoBy + BoAy) +22M A By

@27

» So far, multiplication of 2 n-byte numbers needs n? MULS

> Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
» Proven wrong by 23-year old student Karatsuba in 1960

> |dea: write A- B as (Ag + 2™A;1)(Bo + 2™ By) for half-size Ay, By, A1, B;

» Compute

AoBy + 2™ (AoBy + BoAy) +22M A By
=AoBo +2™((Ag + A1) (By + By) — AgBy — A1 By) + 2™ A By

@27

Ny

» So far, multiplication of 2 n-byte numbers needs n? MULS

> Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
» Proven wrong by 23-year old student Karatsuba in 1960

> |dea: write A- B as (Ag + 2™A;1)(Bo + 2™ By) for half-size Ay, By, A1, B;

» Compute

AoBy + 2™ (AoBy + BoAy) +22M A By
=AoBo +2™((Ag + A1) (By + By) — AgBy — A1 By) + 2™ A By

» Recursive application yields ©(n'°#23) runtime

More on multiplication complexity

» For small multiplication numbers, Karatsuba is typically not faster
> Cutoff between quadratic-complexity and Karatsuba depends on

» Size of registers and radix used to represent big integers
» Relative cost of multiplications, additions, and load/stores
» Cost of carry handling

More on multiplication complexity @

» For small multiplication numbers, Karatsuba is typically not faster
> Cutoff between quadratic-complexity and Karatsuba depends on

» Size of registers and radix used to represent big integers
» Relative cost of multiplications, additions, and load/stores
» Cost of carry handling

> Very rough rule of thumb: consider Karatsuba from ~10 limbs

Ny

More on multiplication complexity @

» For small multiplication numbers, Karatsuba is typically not faster
> Cutoff between quadratic-complexity and Karatsuba depends on

» Size of registers and radix used to represent big integers
» Relative cost of multiplications, additions, and load/stores
» Cost of carry handling

> Very rough rule of thumb: consider Karatsuba from ~10 limbs

> Lower complexity is also possible (for even larger inputs):

O(n'°83°) for Toom-3 multiplication
O(n'°8+ 7) for Toom-4 multiplication
O(nlognloglogn)) for Schonhage-Strassen

> @(nlog n)) for Harvey and van-der-Hoeven (2019)

> For cryptography, we care about Karatsuba and Toom, but nothing beyond

Modular reduction

> We don't just need arithmetic on big integers
> We need arithmetic in finite fields

Modular reduction

> We don't just need arithmetic on big integers
> We need arithmetic in finite fields
» |n other words, we need reduction modulo a prime p

> We don't just need arithmetic on big integers

> We need arithmetic in finite fields

» |n other words, we need reduction modulo a prime p
> |et's fix some size and representation:

/* 256-bit integers in radix 278 %/
stack u32[32] a;

v

Integer A is obtained as 3.2 | ¢;2%
Lot of space in top of limbs to accumulate carries

v

Modular reduction @@2
(29
We don't just need arithmetic on big integers
We need arithmetic in finite fields
In other words, we need reduction modulo a prime p
Let’s fix some size and representation:

/* 256-bit integers in radix 278 %/
stack u32[32] a;

vvyVvyy

Integer A is obtained as 3.2 | ¢;2%

Lot of space in top of limbs to accumulate carries
Multiplication produces stack u32[63] r

For “carried” inputs, each limb in r has at most 21 bits

vvyyvyy

Modular reduction

> Let's fix some p, say p = 225% — 19

Modular reduction

> Let's fix some p, say p = 225% — 19
> We know that 2255 = 19 (mod p)
» This means that 22°¢ = 38 (mod p)

Modular reduction

> Let's fix some p, say p = 225% — 19

> We know that 2255 = 19 (mod p)

» This means that 22°¢ = 38 (mod p)

» Reduce 31-word intermediate result r as follows:

for i = 0 to 31 {
u = rl[i];
t = r[i+32];
t = 38 * t;
u += t;
r[i]l = u;

Modular reduction

> Let's fix some p, say p = 225% — 19

> We know that 2255 = 19 (mod p)

» This means that 22°¢ = 38 (mod p)

» Reduce 31-word intermediate result r as follows:

for i = 0 to 31 {
u = rl[i];
t = r[i+32];
t =38 % t;
u += t;
r[i] = u;
}

» Resultisinr[0],..., r[31]

Primes are not rabbits

> “You cannot just simply pull some nice prime out of your hat!”

Primes are not rabbits

> “You cannot just simply pull some nice prime out of your hat!”
> In fact, very often we can.
» For cryptography we construct curves over fields of “nice” order

Primes are not rabbits

> “You cannot just simply pull some nice prime out of your hat!”
> In fact, very often we can.

» For cryptography we construct curves over fields of “nice” order
» Examples:
> 2192 _ 964 _ 1 (“NIST-P192", FIPS186-2, 2000)
2224 _ 996 4 1 ("NIST-P224", FIPS186-2, 2000)
2256 _ 9224 | 9192 4 996 _ 1 (“NIST-P256", FIPS186-2, 2000)
2255 _ 19 (Bernstein, 2006)
2448 _ 9224 _ 1 (Hamburg, 2015)

vvyyvyy

Primes are not rabbits @@?

> “You cannot just simply pull some nice prime out of your hat!”
> In fact, very often we can.

» For cryptography we construct curves over fields of “nice” order
>

Examples:
> 2192 _ 964 _ 1 ("NIST-P192", FIPS186-2, 2000)
> 9224 _ 99 4 ("NIST-P224”, FIPS186-2, 2000)
B 9256 _ 9224 4 9192 4 996 _ 1 (“NIST-P256", FIPS186-2, 2000)
> 2755 _ 19 (Bernstein, 2006)
> 2448 _ 2224 _1 (Hamburg, 201 5)

> All these primes come with (more or less) fast reduction algorithms

How about other prime fields?

> What if somebody just throws an ugly prime at you?

How about other prime fields?

> What if somebody just throws an ugly prime at you?
> Example: German BSl is pushing the “Brainpool curves”, over fields FF,, with

224 =2272162293245435278755253799591092807334073\
2145944992304435472941311
=0xD7C134AA264366862A18302575D1D787B09F 07579\
TDA8IF57TEC8COFF

or

pase =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751
=02A9FB57TDBA1EEA9BC3E660A909D838DT26 E3BF623D\
52620282013481D1F6E5377

How about other prime fields?

> What if somebody just throws an ugly prime at you?
> Example: German BSl is pushing the “Brainpool curves”, over fields FF,, with

224 =2272162293245435278755253799591092807334073\
2145944992304435472941311
=0xD7C134AA264366862A18302575D1D787B09F 07579\
TDA8IF57TEC8COFF

or

pase =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751
=02A9FB57TDBA1EEA9BC3E660A909D838DT26 E3BF623D\
52620282013481D1F6E5377

> Another example: Pairing-friendly curves are typically defined over fields F,, where p has
some structure, but hard to exploit for fast arithmetic

Montgomery representation

> We have the following problem:

> We multiply two n-limb big integers and obtain a 2n-limb result ¢
» Weneedtofindt mod p

Montgomery representation

> We have the following problem:

> We multiply two n-limb big integers and obtain a 2n-limb result ¢
» Weneedtofindt mod p

» |dea: Perform big-integer division with remainder (expensive!)

Montgomery representation

> We have the following problem:
> We multiply two n-limb big integers and obtain a 2n-limb result ¢
» Weneedtofindt mod p
» |dea: Perform big-integer division with remainder (expensive!)
> Better idea (Montgomery, 1985):

> Let Rbesuchthatged(R,p) =1andt <p-R

> Represent an element a of F, as aR mod p

> Multiplication of aR and bR yields t = abR? (2n limbs)
> Now compute Montgomery reduction: tR™ mod p

Montgomery representation

> We have the following problem:

>
>

We multiply two n-limb big integers and obtain a 2n-limb result ¢
We need to find ¢ mod p

» |dea: Perform big-integer division with remainder (expensive!)
> Better idea (Montgomery, 1985):

>

vVVvyVyYVYYy

Let Rbe such that gcd(R,p) =1andt <p- R
Represent an element a of F, as aR mod p
Multiplication of aR and bR yields t = abR? (2n limbs)
Now compute Montgomery reduction: tR™ mod p

For some choices of R this is more efficient than division
Typical choice for radix-b representation: R = b"

Montgomery reduction (pseudocode)

Require: p = (pn—1,---,p0)p With ged(p,b) =1, R = b",
p =—-p! modbandt= (tzn_1,...,t0)s
Ensure: tR~' mod p
A+t
forifrom0O0ton —1do
u < a;p’ mod b
A+ A+u-p-b
end for
A<+ A/b™
if A > pthen
A+~ A-p
end if
return A

Some notes about Montgomery reduction

» Some cost for transforming to Montgomery representation and back
> Only efficient if many operations are performed in Montgomery representation

Some notes about Montgomery reduction

» Some cost for transforming to Montgomery representation and back

> Only efficient if many operations are performed in Montgomery representation
» The algorithms takes n? + n multiplication instructions

> n of those are “shortened” multiplications (modulo b)

Some notes about Montgomery reduction

» Some cost for transforming to Montgomery representation and back

> Only efficient if many operations are performed in Montgomery representation
» The algorithms takes n? + n multiplication instructions

> n of those are “shortened” multiplications (modulo b)

» The cost is roughly the same as schoolbook multiplication

Some notes about Montgomery reduction

vVvyYVvyVvyyvyy

Some cost for transforming to Montgomery representation and back

Only efficient if many operations are performed in Montgomery representation
The algorithms takes n? + n multiplication instructions

n of those are “shortened” multiplications (modulo b)

The cost is roughly the same as schoolbook multiplication

Careful about conditional subtraction (timing attacks!)

Some notes about Montgomery reduction

vVvyVvyVvyVvyVvyy

Some cost for transforming to Montgomery representation and back

Only efficient if many operations are performed in Montgomery representation
The algorithms takes n? + n multiplication instructions

n of those are “shortened” multiplications (modulo b)

The cost is roughly the same as schoolbook multiplication

Careful about conditional subtraction (timing attacks!)

One can merge schoolbook multiplication with Montgomery reduction: “Montgomery
multiplication”

Still missing: inversion

» Inversion is typically much more expensive than multiplication

Still missing: inversion

» Inversion is typically much more expensive than multiplication
» Efficient ECC arithmetic avoids frequent inversions

» ECC can typically not avoid all inversions

> We need inversion, but we do (usually) not need it often

Still missing: inversion

Inversion is typically much more expensive than multiplication
Efficient ECC arithmetic avoids frequent inversions

ECC can typically not avoid all inversions

We need inversion, but we do (usually) not need it often

Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat's little theorem

vvyyvyyvyy

Extended Euclidean algorithm

> Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers wand v, suchthata-u+b-v = ged(a,b)

Extended Euclidean algorithm

> Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers wand v, suchthata-u+b-v = ged(a,b)

» |t is based on the observation that

ged(a, b) = ged(b,a — gb) Vg eZ

Extended Euclidean algorithm

> Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers wand v, suchthata-u+b-v = ged(a,b)

> [tis based on the observation that
ged(a, b) = ged(b,a — gb) Vg eZ
» To compute a=! (mod p), use the algorithm to compute
a-u+p-v=ged(a,p) =1

> Now it holds thatu = a=! (mod p)

Extended Euclidean algorithm (pseudocode)

Require: Integers a and b.
Ensure: Aninteger tuple (u,v,d) satisfyinga-u+b-v = d = ged(a, b)
u 1
v 0
d<+«a
v1 <0
v3 b
while (v3 # 0) do
g L]
t3 < d mod V3
t1 < u—qu;
U < V1
d <+ vs
v
Vg — t3
end while
et
return (u, v, d)

Some notes about the Extended Euclidean algorithm

» Core operation are divisions with remainder

» This lecture: no details about big-integer division

> Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61

http://cacr.uwaterloo.ca/hac/
https://eprint.iacr.org/2019/266.pdf

v

Core operation are divisions with remainder
This lecture: no details about big-integer division
Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61
The running time (number of loop iterations) depends on the inputs
We usually do not want this for cryptography (timing attacks!)

http://cacr.uwaterloo.ca/hac/
https://eprint.iacr.org/2019/266.pdf

Some notes about the Extended Euclidean algorithm

» Core operation are divisions with remainder
» This lecture: no details about big-integer division
> Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61
» The running time (number of loop iterations) depends on the inputs
» We usually do not want this for cryptography (timing attacks!)

» Possible protection: blinding

> Multiply a by random integer r
> Invert, obtain r~'a ™!

> Multiply again by r to obtain a™
» Note that this requires a source of randomness

1

http://cacr.uwaterloo.ca/hac/
https://eprint.iacr.org/2019/266.pdf

Some notes about the Extended Euclidean algorithm

» Core operation are divisions with remainder
» This lecture: no details about big-integer division
> Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61
» The running time (number of loop iterations) depends on the inputs
» We usually do not want this for cryptography (timing attacks!)

» Possible protection: blinding

> Multiply a by random integer r
> Invert, obtain r~'a ™!

> Multiply again by r to obtain a™
» Note that this requires a source of randomness

» Other option: constant-time EEA, Bernstein-Yang, 2019:
https://eprint.iacr.org/2019/266.pdf

1

http://cacr.uwaterloo.ca/hac/
https://eprint.iacr.org/2019/266.pdf

Fermat’s little theorem

Let p be prime. Then for any integer a it holds that a?~! =1 (mod p)

Fermat’s little theorem

Let p be prime. Then for any integer a it holds that a?~! =1 (mod p)

» This implies that a?=2 = ¢! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2

Fermat’s little theorem

Let p be prime. Then for any integer a it holds that a?~! =1 (mod p)

» This implies that a?=2 = ¢! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2
> The exponent is quite large (e.g., 255 bits), is that efficient?

Fermat’s little theorem 6@@5

Let p be prime. Then for any integer a it holds that a?~! =1 (mod p)

» This implies that a?=2 = ¢! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2
> The exponent is quite large (e.g., 255 bits), is that efficient?
> VYes, fairly:

> Exponent is fixed and known at compile time

> Can spend quite some time on finding an efficient addition chain (next week)
> Inversion modulo 2255 — 19 needs 254 squarings and 11 multiplications in Fy2s5 _ ;g

Inversion in Fgzss_1g

fn invert(reg ptr u32[N] r x) -> reg ptr u32[N] {
stack u32[N] z2 z9 z11 z2_5_0 z2_10_0 z2_20_0 z2_50_0 z2_100_0 t;
inline int i;

/x 2 %/ z2 = gfe_square(z2,x);

/* 4 %/ t = gfe_square(t,z2);

/*x 8 %/ t = gfe_square_inline(t);

/* 9 x/ z9 = gfe_mul(z9,t,x);

/* 11 *x/ z11 = gfe_mul(z11,29,22);

/* 22 *x/ t = gfe_square(t,z11);

/¥ 2°5 - 270 = 31 %/ 22.5_0 = gfe_mul(z2_5_0,t,29);

/*x 276 - 271 %/ t = gfe_square(t,z2_5_0);

/* 2710 - 275 %/ for i = 1 to 5 { t = gfe_square_inline(t); }
/* 2710 - 270 */ z2_10_0 = gfe_mul(z2_10_0,t,z2_5_0);

/* 2711 - 271 %/ t = gfe_square(t,z2_10_0);

/* 2720 - 2710 */ for i = 1 to 10 { t = gfe_square_inline(t); }
/* 2720 - 270 */ z2_20_0 = gfe_mul(z2_20_0,t,z2_10_0);

/*x 2721 - 271 %/ t = gfe_square(t,z2_20_0);

/* 2740 - 2720 */ for i = 1 to 20 { t = gfe_square_inline(t); }
/* 2740 - 270 */ t = gfe_mul_inline(t,z2_20_0);

Inversion in Fgzss_1g

/* 2741 - 271 */ t = gfe_square_inline(t);

/* 2750 - 2710 */ for i = 1 to 10 { t = gfe_square_inline(t); }
/* 2750 - 270 */ z2_50_0 = gfe_mul(z2_50_0,t,z2_10_0);

/* 2761 - 271 %/ t = gfe_square(t,z2_50_0);

/* 27100 - 2750 */ for i = 1 to 50 { t = gfe_square_inline(t); }
/* 27100 - 270 */ z2_100_0 = gfe_mul(z2_100_0,t,z2_50_0);

/* 27101 - 271 */ t = gfe_square(t,z2_100_0);

/* 27200 - 27100 */ for i = 1 to 100 { t = gfe_square_inline(t); }
/* 27200 - 270 */ t = gfe_mul_inline(t,z2_100_0);

/*x 27201 - 271 %/ t = gfe_square_inline(t);

/* 27250 - 2750 */ for i = 1 to 50 { t = gfe_square_inline(t); }
/* 27250 - 270 */ t = gfe_mul_inline(t,z2_50_0);

/* 27251 - 271 x/ t = gfe_square_inline(t);

/* 27252 - 272 *x/ t = gfe_square_inline(t);

/* 27263 - 273 */ t = gfe_square_inline(t);

/* 27254 - 274 x/ t = gfe_square_inline(t);

/* 27255 - 275 */ t = gfe_square_inline(t);

/* 27255 - 21 */ r = gfe_mul(r,t,z11);

return r;

While we're at it: square roots

> We can compress a point (z, y) before sending
» Usually send only z and one bit of ¢

» When receiving such a compressed point we need to solve recompute y as va? + ax + b
(Weierstrass curve)

> Similar for twisted Edwards curves (see https://cryptojedi.org/papers/#ed25519)

https://cryptojedi.org/papers/#ed25519

While we're at it: square roots @

> We can compress a point (z, y) before sending
» Usually send only z and one bit of y

» When receiving such a compressed point we need to solve recompute y as va? + ax + b
(Weierstrass curve)

> Similar for twisted Edwards curves (see https://cryptojedi.org/papers/#ed25519)
> If p =3 (mod 4): compute square root of a as a(P+1)/4

https://cryptojedi.org/papers/#ed25519

While we're at it: square roots @

> We can compress a point (z, y) before sending
» Usually send only z and one bit of y

» When receiving such a compressed point we need to solve recompute y as va? + ax + b
(Weierstrass curve)

> Similar for twisted Edwards curves (see https://cryptojedi.org/papers/#ed25519)
> If p =3 (mod 4): compute square root of a as a(P+1)/4

> If p=>5 (mod 8): compute 3, such that 3* = a? as a(P+3)/8

> If 32 = —a: multiply by /=1

https://cryptojedi.org/papers/#ed25519

While we're at it: square roots @@2

Ny

> We can compress a point (z,y) before sending
Usually send only = and one bit of y

When receiving such a compressed point we need to solve recompute y as Va3 + ax + b
(Weierstrass curve)

Similar for twisted Edwards curves (see https://cryptojedi.org/papers/#ed25519)
If p=3 (mod 4): compute square root of a as a(P+1)/4

If p=>5 (mod 8): compute g, such that * = a2 as a(P+3)/8

If 32 = —a: multiply by /=1

Computing square roots is (typically) about as expensive as an inversion

vy

vvyYVvyvyy

https://cryptojedi.org/papers/#ed25519

Summary

> Multiprecision integers are represented as tuples of smaller integers
> Different representations possible

> Saturated representation often most efficient
> Unsaturated representation have easier carry handling

> Multiprecision integers are represented as tuples of smaller integers
> Different representations possible

> Saturated representation often most efficient
> Unsaturated representation have easier carry handling

> Multiprecision arithmetic is similar to polynomial arithmetic
» Difference is carries

Ny

> Multiprecision integers are represented as tuples of smaller integers
> Different representations possible

> Saturated representation often most efficient
> Unsaturated representation have easier carry handling

> Multiprecision arithmetic is similar to polynomial arithmetic
» Difference is carries

» For ECC, dominating cost is typically multiplications

» Different approaches with quadratic complexity
» Karatsuba (or Toom) may be worth considering

Ny

> Multiprecision integers are represented as tuples of smaller integers
> Different representations possible

> Saturated representation often most efficient
> Unsaturated representation have easier carry handling

> Multiprecision arithmetic is similar to polynomial arithmetic
» Difference is carries

» For ECC, dominating cost is typically multiplications

» Different approaches with quadratic complexity
» Karatsuba (or Toom) may be worth considering

» Modular reduction often for special primes
» For General primes typically use Montgomery reduction

Ny

> Multiprecision integers are represented as tuples of smaller integers
> Different representations possible

> Saturated representation often most efficient
> Unsaturated representation have easier carry handling

> Multiprecision arithmetic is similar to polynomial arithmetic
» Difference is carries
» For ECC, dominating cost is typically multiplications
» Different approaches with quadratic complexity
» Karatsuba (or Toom) may be worth considering
» Modular reduction often for special primes

» For General primes typically use Montgomery reduction
» Two main options for inversion:

» Extended Euclidean algorithm (careful about timing attacks!)
> Fermat'’s little theorem (less efficient, but trivially constant-time)

