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> Asymmetric cryptography heavily relies on arithmetic on “big integers”
> Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers

> Example 2:

» Elliptic curves defined over finite fields
> Typically use EC over large-characteristic prime fields
> Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .
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Multiprecision arithmetic in crypto @
» Asymmetric cryptography heavily relies on arithmetic on “big integers”

> Example 1: RSA-2048 needs (modular) multiplication and squaring of 2048-bit numbers
> Example 2:

> Elliptic curves defined over finite fields
> Typically use EC over large-characteristic prime fields
> Typical field sizes: (160 bits, 192 bits), 256 bits, 448 bits . . .

» Example 3: Poly1305 needs arithmetic on 130-bit integers
> Aninteger is “big” if it's not natively supported by the machine architecture

» Example: ARMV7E-M supports up to 32-bit integers, multiplication produces 64-bit result,
but not bigger than that.

» We call arithmetic on such “big integers” multiprecision arithmetic
> For now mainly interested in 160-bit and 256-bit arithmetic
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The first year of primary school @@

Available numbers (digits): (0),1,2,3,4,5,6,7,8,9

Addition
3+5= 7
24+7= 7
443= 7

» All results are in the set of available numbers
» No confusion for first-year school kids
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Addition

u32 a b r;
23842;
12390;
a + b;

o
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Available numbers: 0,1,...,232 —1

Addition
u32 a b r; u32 a b r;
a = 23842; a = 874157;
b = 12390; b = 622301;
r = a + b; r = a - b;

> All results are in the set of available numbers
» On other architectures, may also have u64 available, or maybe only u16 or u8
> On Cortex-M4 (ARMV7E-M), working with register-size u32 is natural



Still in the first year of primary school

Crossing the ten barrier
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Still in the first year of primary school

Crossing the ten barrier

6+5= 7
94+7= 7

> Inputs to addition are still from the set of available numbers
> Results are allowed to be larger than 9
> Addition is allowed to produce a carry

What happens with the carry?

> Introduce the decimal positional system
» Write an integer A in two digits a;ag with

| \,

A=10 a1 + ag

> Note that at the moment a; € {0, 1}




... back to programming

reg u32 a b r;
a 3348129313;
b 3810627668;
r a + b;
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» Result of integer addition is 7158 756 981
» The result r now has the value of 2 863 789 685



... back to programming

reg u32 a b r;
3348129313;
3810627668;
a + b;

o’
oo

» Result of integer addition is 7158 756 981

»> The result r now has the value of 2863 789 685

> 2863789685 = 7158756981 — 232

> Addition result produced a carry, which is lost. What do we do?



... back to programming

reg u32 a b r;

a = 3348129313;

b = 3810627668;

r = a + b;

» Result of integer addition is 7158 756 981

»> The result r now has the value of 2863 789 685

> 2863789685 = 7158756981 — 232

> Addition result produced a carry, which is lost. What do we do?
» |dea: obtain the carry, and put it into another u32



3348129313 + 3810627668

u32 a
u32 b

3348129313;
3810627668

fn addab() -> reg u32[2] {
reg u32[2] r;
reg bool c;
c, r[0] = a + b;
r[1] = 0;
_, r[1] += r[1] + c;
return r;
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Addition
42478 = 7

780 + 543 = 7
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Addition
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Later in primary school

Addition
42478 = 7

780 + 543 = 7
7862 + 5275 = ?

7862
+ 5275
+ 13137



Later in primary school

» Once school kids can add beyond 1000,
they can add arbitrary numbers

Addition

42+ 78 = 7
789+ 543 = 7
7862 + 5275 = 7?7

7862
+ 5275
+ 13137



Multiprecision addition is old

“Oh Lilavati, intelligent girl, if you understand addition and subtraction, tell me the sum
of the amounts 2, 5, 32, 193, 18, 10, and 100, as well as [the remainder of] those when
subtracted from 70000.”

—"Lilavatr” by Bhaskara (1150)



Multiprecision addition in Jasmin

fn bigint_add(reg ptr u32[N+1] r, reg ptr u32[N] a b) -> reg ptr u32[N+1] {
reg u32 t, u;
reg bool c;
inline int i;

t = al0];
u = b[0];
c, t += u;
r[0] = t;
for i =1 to N {
t = alil;
u = blil;
c, t +=u + c;
r[i] = t;
}
t = 0;
_, t+=1t + c;
r[N] = t;

return r;



...and subtraction

fn bigint_sub(reg ptr u32[N+1] r, reg ptr u32[N] a b) -> reg ptr u32[N+1] {
reg u32 t, u;
reg bool c;
inline int i;

t = al0];
u = b[0];
c, t -= u;

return r;



How about multiplication?
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> Consider multiplication of 1234 by 789
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> Consider multiplication of 1234 by 789

1234 - 789
20978
+ 8638




How about multiplication?

> Consider multiplication of 1234 by 789
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973626




How about multiplication?

> Consider multiplication of 1234 by 789

1234 - 789
973626

» This is also an old technique
> Earliest reference | could find is again the Lilavati (1150)



Let's do that in Jasmin

export fn bigint_mul(reg mut ptr u32[6] rp, reg ptr u32[3] ap bp) -> reg ptr u32[6] {



Let's do that in Jasmin

reg u32 r0 r1 r2 r3 r4 rb5; bl = bpl[1l; b2 = bp[2];
reg u32 a0 al a2; tl, t0 = a0 * bil; tl, t0 = a0 * b2;
reg u32 b0 bl b2;
reg u32 t0 t1 t2 t3 hi lo z; hi, lo = al * bi; hi, 1lo = al * b2;
reg bool c; c, tl += lo; c, t1 += lo;
z = 0;

rd, t2 = a2 *x bil; rb, t2 = a2 *x b2;
a0 = ap[0]; c, t2 += hi + c; c, t2 += hi + c;
al = ap[1]; c, 4 += z + c; _, 5 +=z + c;
a2 = ap[2];

c, rl += t0; c, r2 += t0;
b0 = bpl[0]; c, r2 += t1 + c; c, r3 += tl1 + c;
tl, r0O = a0 * bO; c, r3 += t2 + c; c, rd += t2 + c;
rpl[0] = r0; ., Th +=z + c; _, rh +=z + c;

rp[1] = r1;
hi, r1 = al * bO; rpl[2] = r2;
c, rl += ti1; rpl3] = r3;
c, hi += z + c; rpl4] = r4;

rp[5] = r5;

r3, r2 = a2 * b0;
c, r2 += hi + c; return rp;
_, r3 +=z + c; }
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> About 2 additions per multiplication
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Schoolbook multiplication analysis

» n2 multiplication instructions to multiply two n-limb big integers
> About 2 additions per multiplication

» Problem: Need 3n + c registers for nxn-word multiplication

» Can add on the fly, get down to 2n + ¢, but more carry handling
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"Again as the information is understood, the multiplication of 2345 by 6789 is proposed;
therefore the numbers are written down; the 5 is multiplied by the 9, there will be 45; the 5
is put, the 4 is kept; and the 5 is multiplied by the 8, and the 9 by the 4 and the products are
added to the kept 4; there will be 80; the 0 is put and the 8 is kept; and the 5 is multiplied

by the 7 and the 9 by the 3 and the 4 by the 8, and the products are added to the kept 8;
there will be 102; the 2 is put and the 10 is kept in hand. . .”

From “Fibonacci’s Liber Abaci” (1202) Chapter 2
(English translation by Sigler)



a0 =
al =
a2 =

bo =

bl

b2 =

ap[0];
ap[1];
ap[2];

bp[0];
bp[1];
bpl2];

rl, rO = a0 * bO;
rp[0] = r0;

r2, lo = a0 * bil;
c, rl += lo;
_, r2 += z + c;

hi, lo = al * bO;
c, rl += lo;
c, r2 += hi + c;

_,r3 =2+ 2z + c;

rp[1] = r1;

hi, lo = a0 * b2;
c, r2 += lo;

c, r3 += hi + c;
_, rd =2+ 2z + c;

hi, lo = al * bil;
c, r2 += lo;

c, r3 += hi + c;
_, Td += z + c;

hi, lo = a2 * b0;
c, r2 += lo;

c, r3 += hi + c;
_, T4 += z + c;
rpl2] = r2;

hi, lo = al * b2;
c, r3 += lo;

c, r4d += hi + c;
_, b=z + 2z + c;

hi, lo = a2 * bi;
c, r3 += lo;

c, r4d += hi + c;
_, rb +=z + c;
rp[3] = r3;

hi, lo = a2 * b2;
c, rd += lo;
_, rb += hi + c;

rp[4] = r4;
rp[56] = r5;
return rp;



Even better...?
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From the Treviso Arithmetic, 1478



Carries, carries everywhere!
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Carries, carries everywhere!

Radix-23? representation

> Currently, represent 256-bit integer A as (ao, - . ., az) with

7
A=Y a2
i—0

> Very compact, also computationally efficient
» Unique representation for every 256-bit integer
> Every addition may generate carries

» Carry handling may get involved

7 =

.

8



Carries, carries everywhere!

Radix-2® representiaon
> |dea: use “unsaturated” representation (ao, . . ., az1) with

31
A= Z a; - 2&
i—0




Carries, carries everywhere!

Radix-2® representiaon

> |dea: use “unsaturated” representation (ao, . . ., az1) with

» More computations per big-integer operation

> Various ways to represent the same 256-bit integer, e.g., 512 = 2°
> (512,0,0,0,0,0,0,0)
> (0,2,0,0,0,0,0,0)

> Needs more space in memory
» Can ignore carries for quite a while
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» On Cortex-M4, saturated representation is most efficient
» Carries are annoying, but cheap
» Minimize arithmetic and load/stores instructions
» Setting flags is optional, carries aren’t overwritten
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Some remarks about saturated vs. unsaturated representation

» On Cortex-M4, saturated representation is most efficient

» Carries are annoying, but cheap
» Minimize arithmetic and load/stores instructions
» Setting flags is optional, carries aren’t overwritten

» This is different on other (micro-)architectures

> RISC-V does not have a carry flag
» On Intel Nehalem, adc is 6x slower than add

» More efficient unsaturated code, e.g., radix-226
» Unsaturated representation often used for first reference code
Code in assignment2-ecdh25519 uses radix-2® representation

v



Addition in radix 28

fn bigint_add(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = alil;
u = b[i];
t += u;
r[il = t;

return r;

}



Addition in radix 28

fn bigint_add(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = alil;
u = b[i];
t += u;
r[il = t;

return r;

}

> This works as long as all coefficients are in [0, ..., 23! — 1]



Addition in radix 28 PN
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fn bigint_add(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = alil;
u = b[i];
t += u;
r[il = t;
}

return r;

}

> This works as long as all coefficients are in [0, ..., 23! — 1]
> We can do quite a few additions before we have to carry (reduce)



Subtraction in radix 28

fn bigint_sub(reg ptr u32[N] r, reg ptr u32[N] a b) -> reg ptr u32[N] {
reg u32 t, u;
inline int i;

for i = 0 to N {
t = alil;
u = bl[i];

return r;

}

» Use signed coefficients to represent our big integers
> No need to worry about borrows



Carrying in radix-2%

> With many additions, coefficients may grow larger than 31 bits
> They grow even faster with multiplication
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Carrying in radix-2%

> With many additions, coefficients may grow larger than 31 bits
> They grow even faster with multiplication
> Eventually we have to carry en bloc:

t = r[0];

u = r[1];
t =t >s 8;
u
t

R
—
-
—
]

u;
» Continue by carrying from r1 to r2, from r2 to r3, etc.
> For the highest limb r [N-1], need to create a new limb to carry to
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> Note: Addition code would look exactly the same for 5-coefficient polynomial addition
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> Note: Addition code would look exactly the same for 5-coefficient polynomial addition
» This is no coincidence: We actually perform arithmetic in Z[z]

> Inputs to addition are 5-coefficient polynomials

» Nice thing about arithmetic in Z[x]: no carries!

> To go from Z[z] to Z, evaluate at the radix (this is a ring homomorphism)

» Carrying means evaluating at the radix



Big integers and polynomials @@@
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Note: Addition code would look exactly the same for 5-coefficient polynomial addition
This is no coincidence: We actually perform arithmetic in Z|x]

Inputs to addition are 5-coefficient polynomials

Nice thing about arithmetic in Z[z]: no carries!

To go from Z[z] to Z, evaluate at the radix (this is a ring homomorphism)

Carrying means evaluating at the radix

Thinking of multiprecision integers as polynomials is very powerful for efficient arithmetic

vVvVvyvVvyvVvyVvyYyvyy



How about squaring?

inline fn bigint_square(reg ptr u32[N] r a) -> reg ptr u32[N] {
r = bigint_mul(a, a);

}



How about squaring?
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To = aopao
r1 = aiag + apay

To = a2a9 + ai1a1 + agas

761 = (30031 + (31030

Te2 = 431031



How about squaring?

» What squaring will compute is the following:

To = aopao
r1 = aiag + apay

To = a2a9 + ai1a1 + agas

761 = A30031 + A31030

Te2 = 431031

» Many partial products are computed twice!



How about squaring?

» |dea: compute them only oncel!
» Precompute 2ay, 2as, ..., 2as;, then

To = aolGo
r = 2a1a0

ro = 2a2a0 + a101

re1 = 2030031
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How about squaring?

» |dea: compute them only oncel!
» Precompute 2ay, 2as, ..., 2as;, then

To = aolGo
r = 2a1a0

ro = 2a2a0 + a101

re1 = 2030031
T62 = (31031

» Eliminate almost half of the multiplications (and additions)
» Precomputation can use addition, shift, or multiplication by 2



Squaring vs. multiplication

For 32 input limbs, multiplication needs
> 322 = 1024 multiplications
> 312 = 961 additions
Squaring needs
> 528 multiplications
> 465 additions
» 31 additions or shifts or multiplications by 2 for precomputation
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» So far, multiplication of 2 n-byte numbers needs n? MULS

> Kolmogorov conjectured 1952: You can't do better, multiplication has quadratic complexity
» Proven wrong by 23-year old student Karatsuba in 1960

> |dea: write A- B as (Ag + 2™A;1)(Bo + 2™ By) for half-size Ay, By, A1, B;

» Compute

AoBy + 2™ (AoBy + BoAy) +22M A By
=AoBo +2™((Ag + A1) (By + By) — AgBy — A1 By) + 2™ A By

» Recursive application yields ©(n'°#23) runtime



More on multiplication complexity

» For small multiplication numbers, Karatsuba is typically not faster
> Cutoff between quadratic-complexity and Karatsuba depends on

» Size of registers and radix used to represent big integers
» Relative cost of multiplications, additions, and load/stores
» Cost of carry handling
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More on multiplication complexity @

» For small multiplication numbers, Karatsuba is typically not faster
> Cutoff between quadratic-complexity and Karatsuba depends on

» Size of registers and radix used to represent big integers
» Relative cost of multiplications, additions, and load/stores
» Cost of carry handling

> Very rough rule of thumb: consider Karatsuba from ~10 limbs

> Lower complexity is also possible (for even larger inputs):

O(n'°83°) for Toom-3 multiplication
O(n'°8+ 7) for Toom-4 multiplication
O(nlognloglogn)) for Schonhage-Strassen

> @(nlog n)) for Harvey and van-der-Hoeven (2019)

> For cryptography, we care about Karatsuba and Toom, but nothing beyond
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» |n other words, we need reduction modulo a prime p
> |et's fix some size and representation:

/* 256-bit integers in radix 278 %/
stack u32[32] a;

v

Integer A is obtained as 3.2 | ¢;2%
Lot of space in top of limbs to accumulate carries
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Modular reduction @@2
(29
We don't just need arithmetic on big integers
We need arithmetic in finite fields
In other words, we need reduction modulo a prime p
Let’s fix some size and representation:

/* 256-bit integers in radix 278 %/
stack u32[32] a;

vvyVvyy

Integer A is obtained as 3.2 | ¢;2%

Lot of space in top of limbs to accumulate carries
Multiplication produces stack u32[63] r

For “carried” inputs, each limb in r has at most 21 bits

vvyyvyy
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» This means that 22°¢ = 38 (mod p)

» Reduce 31-word intermediate result r as follows:

for i = 0 to 31 {
u = rl[i];
t = r[i+32];
t = 38 * t;
u += t;
r[i]l = u;



Modular reduction

> Let's fix some p, say p = 225% — 19

> We know that 2255 = 19 (mod p)

» This means that 22°¢ = 38 (mod p)

» Reduce 31-word intermediate result r as follows:

for i = 0 to 31 {
u = rl[i];
t = r[i+32];
t =38 % t;
u += t;
r[i] = u;
}

» Resultisinr[0],..., r[31]
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Primes are not rabbits

> “You cannot just simply pull some nice prime out of your hat!”
> In fact, very often we can.

» For cryptography we construct curves over fields of “nice” order
» Examples:
> 2192 _ 964 _ 1 (“NIST-P192", FIPS186-2, 2000)
2224 _ 996 4 1 ("NIST-P224", FIPS186-2, 2000)
2256 _ 9224 | 9192 4 996 _ 1 (“NIST-P256", FIPS186-2, 2000)
2255 _ 19 (Bernstein, 2006)
2448 _ 9224 _ 1 (Hamburg, 2015)
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Primes are not rabbits @@?

> “You cannot just simply pull some nice prime out of your hat!”
> In fact, very often we can.

» For cryptography we construct curves over fields of “nice” order
>

Examples:
> 2192 _ 964 _ 1 ("NIST-P192", FIPS186-2, 2000)
> 9224 _ 99 4 ("NIST-P224”, FIPS186-2, 2000)
B 9256 _ 9224 4 9192 4 996 _ 1 (“NIST-P256", FIPS186-2, 2000)
> 2755 _ 19 (Bernstein, 2006)
> 2448 _ 2224 _1 (Hamburg, 201 5)

> All these primes come with (more or less) fast reduction algorithms
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> What if somebody just throws an ugly prime at you?
> Example: German BSl is pushing the “Brainpool curves”, over fields FF,, with

224 =2272162293245435278755253799591092807334073\
2145944992304435472941311
=0xD7C134AA264366862A18302575D1D787B09F 07579\
TDA8IF57TEC8COFF
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How about other prime fields?

> What if somebody just throws an ugly prime at you?
> Example: German BSl is pushing the “Brainpool curves”, over fields FF,, with

224 =2272162293245435278755253799591092807334073\
2145944992304435472941311
=0xD7C134AA264366862A18302575D1D787B09F 07579\
TDA8IF57TEC8COFF

or

pase =7688495639704534422080974662900164909303795\
0200943055203735601445031516197751
=02A9FB57TDBA1EEA9BC3E660A909D838DT26 E3BF623D\
52620282013481D1F6E5377

> Another example: Pairing-friendly curves are typically defined over fields F,, where p has
some structure, but hard to exploit for fast arithmetic
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Montgomery representation

> We have the following problem:

>
>

We multiply two n-limb big integers and obtain a 2n-limb result ¢
We need to find ¢ mod p

» |dea: Perform big-integer division with remainder (expensive!)
> Better idea (Montgomery, 1985):

>

vVVvyVyYVYYy

Let Rbe such that gcd(R,p) =1andt <p- R
Represent an element a of F, as aR mod p
Multiplication of aR and bR yields t = abR? (2n limbs)
Now compute Montgomery reduction: tR™ mod p

For some choices of R this is more efficient than division
Typical choice for radix-b representation: R = b"



Montgomery reduction (pseudocode)

Require: p = (pn—1,---,p0)p With ged(p,b) =1, R = b",
p =—-p! modbandt= (tzn_1,...,t0)s
Ensure: tR~' mod p
A+t
forifrom0O0ton —1do
u < a;p’ mod b
A+ A+u-p-b
end for
A<+ A/b™
if A > pthen
A+~ A-p
end if
return A
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Some cost for transforming to Montgomery representation and back

Only efficient if many operations are performed in Montgomery representation
The algorithms takes n? + n multiplication instructions

n of those are “shortened” multiplications (modulo b)

The cost is roughly the same as schoolbook multiplication

Careful about conditional subtraction (timing attacks!)



Some notes about Montgomery reduction
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Some cost for transforming to Montgomery representation and back

Only efficient if many operations are performed in Montgomery representation
The algorithms takes n? + n multiplication instructions

n of those are “shortened” multiplications (modulo b)

The cost is roughly the same as schoolbook multiplication

Careful about conditional subtraction (timing attacks!)

One can merge schoolbook multiplication with Montgomery reduction: “Montgomery
multiplication”
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Still missing: inversion

Inversion is typically much more expensive than multiplication
Efficient ECC arithmetic avoids frequent inversions

ECC can typically not avoid all inversions

We need inversion, but we do (usually) not need it often

Two approaches to inversion:

1. Extended Euclidean algorithm
2. Fermat's little theorem

vvyyvyyvyy
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Extended Euclidean algorithm

> Given two integers a, b, the Extended Euclidean algorithm finds

» The greatest common divisor of a and b
> Integers wand v, suchthata-u+b-v = ged(a,b)

> [tis based on the observation that
ged(a, b) = ged(b,a — gb) Vg eZ
» To compute a=! (mod p), use the algorithm to compute
a-u+p-v=ged(a,p) =1

> Now it holds thatu = a=! (mod p)



Extended Euclidean algorithm (pseudocode)

Require: Integers a and b.
Ensure: Aninteger tuple (u,v,d) satisfyinga-u+b-v = d = ged(a, b)
u 1
v 0
d<+«a
v1 <0
v3 b
while (v3 # 0) do
g L]
t3 < d mod V3
t1 < u—qu;
U < V1
d <+ vs
v
Vg — t3
end while
et
return (u, v, d)



Some notes about the Extended Euclidean algorithm

» Core operation are divisions with remainder

» This lecture: no details about big-integer division

> Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61


http://cacr.uwaterloo.ca/hac/
https://eprint.iacr.org/2019/266.pdf
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Some notes about the Extended Euclidean algorithm

» Core operation are divisions with remainder
» This lecture: no details about big-integer division
> Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61
» The running time (number of loop iterations) depends on the inputs
» We usually do not want this for cryptography (timing attacks!)

» Possible protection: blinding

> Multiply a by random integer r
> Invert, obtain r~'a ™!

> Multiply again by r to obtain a™
» Note that this requires a source of randomness
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Some notes about the Extended Euclidean algorithm

» Core operation are divisions with remainder
» This lecture: no details about big-integer division
> Version without divisions: binary extended gcd:
Handbook of applied cryptography, Alg. 14.61
» The running time (number of loop iterations) depends on the inputs
» We usually do not want this for cryptography (timing attacks!)

» Possible protection: blinding

> Multiply a by random integer r
> Invert, obtain r~'a ™!

> Multiply again by r to obtain a™
» Note that this requires a source of randomness

» Other option: constant-time EEA, Bernstein-Yang, 2019:
https://eprint.iacr.org/2019/266.pdf

1


http://cacr.uwaterloo.ca/hac/
https://eprint.iacr.org/2019/266.pdf
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Fermat’s little theorem 6@@5

Let p be prime. Then for any integer a it holds that a?~! =1 (mod p)

» This implies that a?=2 = ¢! (mod p)
» Obvious algorithm for inversion: Exponentiation with p — 2
> The exponent is quite large (e.g., 255 bits), is that efficient?
> VYes, fairly:

> Exponent is fixed and known at compile time

> Can spend quite some time on finding an efficient addition chain (next week)
> Inversion modulo 2255 — 19 needs 254 squarings and 11 multiplications in Fy2s5 _ ;g



Inversion in Fgzss_1g

fn invert(reg ptr u32[N] r x) -> reg ptr u32[N] {
stack u32[N] z2 z9 z11 z2_5_0 z2_10_0 z2_20_0 z2_50_0 z2_100_0 t;
inline int i;

/x 2 %/ z2 = gfe_square(z2,x);

/* 4 %/ t = gfe_square(t,z2);

/*x 8 %/ t = gfe_square_inline(t);

/* 9 x/ z9 = gfe_mul(z9,t,x);

/* 11 *x/ z11 = gfe_mul(z11,29,22);

/* 22 *x/ t = gfe_square(t,z11);

/¥ 2°5 - 270 = 31 %/ 22.5_0 = gfe_mul(z2_5_0,t,29);

/*x 276 - 271 %/ t = gfe_square(t,z2_5_0);

/* 2710 - 275 %/ for i = 1 to 5 { t = gfe_square_inline(t); }
/* 2710 - 270 */ z2_10_0 = gfe_mul(z2_10_0,t,z2_5_0);

/* 2711 - 271 %/ t = gfe_square(t,z2_10_0);

/* 2720 - 2710 */ for i = 1 to 10 { t = gfe_square_inline(t); }
/* 2720 - 270 */ z2_20_0 = gfe_mul(z2_20_0,t,z2_10_0);

/*x 2721 - 271 %/ t = gfe_square(t,z2_20_0);

/* 2740 - 2720 */ for i = 1 to 20 { t = gfe_square_inline(t); }
/* 2740 - 270 */ t = gfe_mul_inline(t,z2_20_0);



Inversion in Fgzss_1g

/* 2741 - 271 */ t = gfe_square_inline(t);

/* 2750 - 2710 */ for i = 1 to 10 { t = gfe_square_inline(t); }
/* 2750 - 270 */ z2_50_0 = gfe_mul(z2_50_0,t,z2_10_0);

/* 2761 - 271 %/ t = gfe_square(t,z2_50_0);

/* 27100 - 2750 */ for i = 1 to 50 { t = gfe_square_inline(t); }
/* 27100 - 270 */ z2_100_0 = gfe_mul(z2_100_0,t,z2_50_0);

/* 27101 - 271 */ t = gfe_square(t,z2_100_0);

/* 27200 - 27100 */ for i = 1 to 100 { t = gfe_square_inline(t); }
/* 27200 - 270 */ t = gfe_mul_inline(t,z2_100_0);

/*x 27201 - 271 %/ t = gfe_square_inline(t);

/* 27250 - 2750 */ for i = 1 to 50 { t = gfe_square_inline(t); }
/* 27250 - 270 */ t = gfe_mul_inline(t,z2_50_0);

/* 27251 - 271 x/ t = gfe_square_inline(t);

/* 27252 - 272 *x/ t = gfe_square_inline(t);

/* 27263 - 273 */ t = gfe_square_inline(t);

/* 27254 - 274 x/ t = gfe_square_inline(t);

/* 27255 - 275 */ t = gfe_square_inline(t);

/* 27255 - 21 */ r = gfe_mul(r,t,z11);

return r;



While we're at it: square roots

> We can compress a point (z, y) before sending
» Usually send only z and one bit of ¢

» When receiving such a compressed point we need to solve recompute y as va? + ax + b
(Weierstrass curve)

> Similar for twisted Edwards curves (see https://cryptojedi.org/papers/#ed25519)
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> We can compress a point (z, y) before sending
» Usually send only z and one bit of y

» When receiving such a compressed point we need to solve recompute y as va? + ax + b
(Weierstrass curve)

> Similar for twisted Edwards curves (see https://cryptojedi.org/papers/#ed25519)
> If p =3 (mod 4): compute square root of a as a(P+1)/4

> If p=>5 (mod 8): compute 3, such that 3* = a? as a(P+3)/8

> If 32 = —a: multiply by /=1


https://cryptojedi.org/papers/#ed25519

While we're at it: square roots @@2

Ny

> We can compress a point (z,y) before sending
Usually send only = and one bit of y

When receiving such a compressed point we need to solve recompute y as Va3 + ax + b
(Weierstrass curve)

Similar for twisted Edwards curves (see https://cryptojedi.org/papers/#ed25519)
If p=3 (mod 4): compute square root of a as a(P+1)/4

If p=>5 (mod 8): compute g, such that * = a2 as a(P+3)/8

If 32 = —a: multiply by /=1

Computing square roots is (typically) about as expensive as an inversion

vy
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> Multiprecision integers are represented as tuples of smaller integers
> Different representations possible

> Saturated representation often most efficient
> Unsaturated representation have easier carry handling

> Multiprecision arithmetic is similar to polynomial arithmetic
» Difference is carries
» For ECC, dominating cost is typically multiplications
» Different approaches with quadratic complexity
» Karatsuba (or Toom) may be worth considering
» Modular reduction often for special primes

» For General primes typically use Montgomery reduction
» Two main options for inversion:

» Extended Euclidean algorithm (careful about timing attacks!)
> Fermat'’s little theorem (less efficient, but trivially constant-time)



