Engineering Cryptographic Software

Scalar Multiplication

Peter Schwabe

January 2026

New directions in cryptography

644

IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. IT-22, NO. 6, NOVEMBER 1976

New Directions in Cryptography

Invited Paper

WHITFIELD DIFFIE ANI._) MARTIN E. HELLMAN, MEMBER, IEEE

Abstract—Two kinds of contemporary developments in cryp-
tography are examined. Widening applications of teleprocessing
have given rise to a need for new types of eryptographic systems,
which minimize the need for secuve key distribution channels and
supply the equivalent of a written signature. This paper suggests
ways to solve these currently open problems. It also discusses how
the theories of ication and ion are beginning to
provide the tools to solve cryptographic problems of long stand-
ing.

I. INTRODUCTION

E STAND TODAY on the brink of a revolution in
cryptography. The development of cheap digital

The best known cryptographic problem is that of pri-
vacy: preventing the unauthorized extraction of informa-
tion from communications over an insecure channel. In
order to use cryptography to insure privacy, however, it is
currently necessary for the communicating parties to share
a key which is known to no one else. This is done by send-
ing the key in advance over some secure channel such as
private courier or registered mail. A private conversation
between two people with no prior acquaintance is a com-
mon occurrence in business, however, and it is unrealistic
to expect initial business contacts to be postponed long
enough for keys to be transmitted by some physical means.
The cost and delay imposed by this key distribution
problem is a major barrier to the transfer of business

Groups

A set S together with an operation o is called a group G = (S, o) if

> Foralla,be S:aobe S (closed under o)
> Foralla,b,c € S: (aob)oc=ao(boc) (associativity)
> There exists u € S such thatforanya € S: aou=uoa=a (identity element)

> Foreacha € S thereexists b € Ssuchthataob=boa=u (inverse)

Groups

A set S together with an operation o is called a group G = (S, o) if
> Foralla,be S:aobe S (closed under o)
> Foralla,b,ce S: (aob)oc=ao(boc) (associativity)
> There exists u € S such thatforanya € S: aou=uoa=a (identity element)
> Foreacha € S thereexists b € Ssuchthataob=boa=u (inverse))

> The operation o is typically written as + (additive group) or as - (multiplicative group)

Groups

@\ <
¢

A set S together with an operation o is called a group G = (S, o) if
> Foralla,be S:aobe S (closed under o)
> Foralla,b,ce S: (aob)oc=ao(boc) (associativity)
> There exists u € S such thatforanya € S: aou=uoa=a (identity element)
> Foreacha € S thereexists b € Ssuchthataob=boa=u (inverse))

The operation o is typically written as + (additive group) or as - (multiplicative group)
Groups whereaob = boaforall a,b € S are called commutative or Abelian

Groups

@\ <
¢

A set S together with an operation o is called a group G = (S, o) if
> Foralla,be S:aobe S (closed under o)
> Foralla,b,ce S: (aob)oc=ao(boc) (associativity)
> There exists u € S such thatforanya € S: aou=uoa=a (identity element)
> Foreacha € S thereexists b € Ssuchthataob=boa=u (inverse))

v

The operation o is typically written as + (additive group) or as - (multiplicative group)
Groups whereaob = boaforall a,b € S are called commutative or Abelian
The group order is | S|, the number of elements in S

Groups

@\ <
¢

A set S together with an operation o is called a group G = (S, o) if
> Foralla,be S:aobe S (closed under o)
> Foralla,b,ce S: (aob)oc=ao(boc) (associativity)
> There exists u € S such thatforanya € S: aou=uoa=a (identity element)
> Foreacha € S thereexists b € Ssuchthataob=boa=u (inverse))

vvyyvyy

The operation o is typically written as + (additive group) or as - (multiplicative group)
Groups whereaob = boaforall a,b € S are called commutative or Abelian
The group order is | S|, the number of elements in S

We call g € S a generator of the group if all elements of S can be written as multiples
(additive group) or powers (multiplicative group) of g.

Groups

@\ <
¢

A set S together with an operation o is called a group G = (S, o) if
> Foralla,be S:aobe S (closed under o)
> Foralla,b,ce S: (aob)oc=ao(boc) (associativity)
> There exists u € S such thatforanya € S: aou=uoa=a (identity element)
> Foreacha € S thereexists b € Ssuchthataob=boa=u (inverse))

The operation o is typically written as + (additive group) or as - (multiplicative group)
Groups whereaob = boaforall a,b € S are called commutative or Abelian
The group order is | S|, the number of elements in S

We call g € S a generator of the group if all elements of S can be written as multiples
(additive group) or powers (multiplicative group) of g.

> A group generated by a single element is called cyclic

vvyyvyy

Examples

> The integers with addition (Z, +) are a (commutative) group
» Closed, associative v/
> |dentity element 0
> Inverseof ais —a
> The group is cyclic with generator 1

Examples

> The integers with addition (Z, +) are a (commutative) group
> Closed, associative v/
> |dentity element 0
> Inverseof ais —a
> The group is cyclic with generator 1
> The integers without zero with multiplication (Z, -) are not a group
» Closed, associative v/
> |dentity element is 1
» We cannot invert 0
> More generally we lack inverses, e.g., 1 ¢ Z

Ny

> The integers with addition (Z, +) are a (commutative) group
> Closed, associative v/
> |dentity element 0
> Inverseof ais —a
> The group is cyclic with generator 1
> The integers without zero with multiplication (Z, -) are not a group
» Closed, associative v/
> |dentity element is 1
» We cannot invert 0
> More generally we lack inverses, e.g., 1 ¢ Z

> The rationals without zero with multiplication (Q \ {0},) are a (commutative) group

> Closed, associative v/
> |dentity elementis 1
> Inverseof ais 1

Examples

> For aninteger g > 1,the set {0,..., ¢ — 1} together with addition modulo ¢ is a
(commutative) group
» Closed, associative v/
> |dentity element 0
» Inverseofaisqg—a

Examples

> For aninteger g > 1,the set {0,..., ¢ — 1} together with addition modulo ¢ is a
(commutative) group
» Closed, associative v/
> |dentity element 0
» Inverseofaisqg—a

> Foraprime ¢, the set {1,...,q — 1} together with multiplication modulo ¢ is a
(commutative) group
> Closed, associative v/
> |dentity element is 1
> More about inverses later

The discrete logarithm problem @\

Ny

Let G be a finite, Abelian, cyclic group of order ¢ with generator g. Let a be an element of G. The
(computational) discrete-logarithm problem (DLP) is

» to find an integer k such that ¢g* = a (for a multiplicatively written group)
> to find an integer k such that kg = a (for an additively written group)

bgkmeansg.g.g g
—_—
k times

> kgmeansg+g+g+---+g

k times

The discrete logarithm problem @\

Ay

Let G be a finite, Abelian, cyclic group of order ¢ with generator g. Let a be an element of G. The
(computational) discrete-logarithm problem (DLP) is

» to find an integer k such that ¢g* = a (for a multiplicatively written group)
> to find an integer k such that kg = a (for an additively written group)

bgkmeansg.g.g g
k times
> kgmeansg+g+g+---+g
k times
> In many groups the DLP is easy to solve (e.g,, {0,...,q — 1} with addition modulo q)

> In some groups the DLP is believed to be hard (e.g., {1,...,q — 1} with multiplication
modulo g), for certain primes ¢

Some notation

For the remainder of today’s lecture
» consider an finite, cyclic group G, written additively,
the generator of G is called P,
the group order of G is ¢,
other elements are denoted by capital letters (e.g., P, R), and

>
>
>
> we assume that the DLP is hard in G.

Diffie-Hellman (DH) key exchange

Alice Bob

Choose a < {0,...,¢— 1} Choose b < {0,...,4—1}

A<+ aP B« bP
A -
B

A

K < aB = a(bP) = (ab)P K <+ bA = b(aP) = (ba)P

Somes notes about DH

» Clearly insecure of DLP is not hard

Somes notes about DH

» Clearly insecure of DLP is not hard
> Also secure only against passive adversaries
> Active ‘man-in-the-middle” (MitM) attack:

> Eve chooses her own keypair (e, E)

> replaces A on the channel by E
» replaces B on the channel by E

Somes notes about DH

» Clearly insecure of DLP is not hard
> Also secure only against passive adversaries
> Active ‘man-in-the-middle” (MitM) attack:

> Eve chooses her own keypair (e, E)

> replaces A on the channel by E
» replaces B on the channel by E
>
>

Gets shared secret (ae) P with Alice
Gets shared secret (be) P with Bob

Somes notes about DH

» Clearly insecure of DLP is not hard
> Also secure only against passive adversaries
> Active ‘man-in-the-middle” (MitM) attack:

>

vVVyVYVYY

Eve chooses her own keypair (e, E)

replaces A on the channel by E

replaces B on the channel by E

Gets shared secret (ae) P with Alice

Gets shared secret (be) P with Bob

Afterwards decrypts and re-encrypts communication

Somes notes about DH @@\\

» Clearly insecure of DLP is not hard
> Also secure only against passive adversaries
> Active ‘man-in-the-middle” (MitM) attack:
> Eve chooses her own keypair (e, E)
replaces A on the channel by E
replaces B on the channel by E
Gets shared secret (ae) P with Alice
Gets shared secret (be) P with Bob
Afterwards decrypts and re-encrypts communication

» DH is an unauthenticated key exchange

vVVyVYVYY

Somes notes about DH @@\\

Ny

» Clearly insecure of DLP is not hard
> Also secure only against passive adversaries
> Active ‘man-in-the-middle” (MitM) attack:
> Eve chooses her own keypair (e, E)
replaces A on the channel by E
replaces B on the channel by E
Gets shared secret (ae) P with Alice
Gets shared secret (be) P with Bob
> Afterwards decrypts and re-encrypts communication

» DH is an unauthenticated key exchange
Consider DH a building block for protocols

vvyyvyy

v

How about authentication?

» Can build authenticated key exchange just from DH (plus symmetric primitives)
» Examples:

> X3DH used by Signal (https://signal.org/docs/specifications/x3dh/)
> Noise protocol framework (https://noiseprotocol.org/)

https://signal.org/docs/specifications/x3dh/
https://noiseprotocol.org/

How about authentication?

» Can build authenticated key exchange just from DH (plus symmetric primitives)
» Examples:

> X3DH used by Signal (https://signal.org/docs/specifications/x3dh/)
> Noise protocol framework (https://noiseprotocol.org/)

> Typical alternative: cryptographic signatures:

https://signal.org/docs/specifications/x3dh/
https://noiseprotocol.org/

How about authentication?

» Can build authenticated key exchange just from DH (plus symmetric primitives)
> Examples:

> X3DH used by Signal (https://signal.org/docs/specifications/x3dh/)

> Noise protocol framework (https://noiseprotocol.org/)
> Typical alternative: cryptographic signatures:

> (sk,vk) + KeyGen() (probabilistic)

https://signal.org/docs/specifications/x3dh/
https://noiseprotocol.org/

How about authentication?

» Can build authenticated key exchange just from DH (plus symmetric primitives)
> Examples:

> X3DH used by Signal (https://signal.org/docs/specifications/x3dh/)

> Noise protocol framework (https://noiseprotocol.org/)
> Typical alternative: cryptographic signatures:

> (sk,vk) + KeyGen() (probabilistic)

> sig < Sign(msg, sk) (probabilistic)

https://signal.org/docs/specifications/x3dh/
https://noiseprotocol.org/

How about authentication?

» Can build authenticated key exchange just from DH (plus symmetric primitives)
> Examples:

> X3DH used by Signal (https://signal.org/docs/specifications/x3dh/)

> Noise protocol framework (https://noiseprotocol.org/)
> Typical alternative: cryptographic signatures:

> (sk,vk) + KeyGen() (probabilistic)

> sig < Sign(msg, sk) (probabilistic)

> accept/reject « Verify(msg, sig, vk) (deterministic)

https://signal.org/docs/specifications/x3dh/
https://noiseprotocol.org/

Properties of a signature scheme

For (sk, vk) generated by KeyGen and sig generated by Sign(msg, sk), we want
Verify(msg, sig, vk) to return accept (with overwhelming probability).

Properties of a signature scheme @

T

For (sk, vk) generated by KeyGen and sig generated by Sign(msg, sk), we want
Verify(msg, sig, vk) to return accept (with overwhelming probability).

Secuirity (intuition)
» Challenger generates (sk, vk) < KeyGen()

Properties of a signature scheme @

T

For (sk, vk) generated by KeyGen and sig generated by Sign(msg, sk), we want
Verify(msg, sig, vk) to return accept (with overwhelming probability).

Secuirity (intuition)
» Challenger generates (sk, vk) < KeyGen()
> Attacker gets vk and access to signing oracle for sk
» Can adaptively query signatures on arbitrary messages msgy, ..., msg,,

Properties of a signature scheme @

T

For (sk, vk) generated by KeyGen and sig generated by Sign(msg, sk), we want
Verify(msg, sig, vk) to return accept (with overwhelming probability).

Secuirity (intuition)
» Challenger generates (sk, vk) < KeyGen()
> Attacker gets vk and access to signing oracle for sk
» Can adaptively query signatures on arbitrary messages msgy, ..., msg,,
» Now oracle access is taken away

Properties of a signature scheme

For (sk, vk) generated by KeyGen and sig generated by Sign(msg, sk), we want
Verify(msg, sig, vk) to return accept (with overwhelming probability).

Secuirity (intuition)
» Challenger generates (sk, vk) < KeyGen()
> Attacker gets vk and access to signing oracle for sk
» Can adaptively query signatures on arbitrary messages msgy, ..., msg,,
» Now oracle access is taken away

> Attacker needs to produce sig, on arbitrary msg,, such that

> Verify(msg,, Sig,, VK) returns accept
> msg, # msg, foralli € {1,...,n}

Properties of a signature scheme

For (sk, vk) generated by KeyGen and sig generated by Sign(msg, sk), we want
Verify(msg, sig, vk) to return accept (with overwhelming probability).

Secuirity (intuition)
» Challenger generates (sk, vk) < KeyGen()
Attacker gets vk and access to signing oracle for sk
Can adaptively query signatures on arbitrary messages msgy, . .., msg,,
Now oracle access is taken away

Attacker needs to produce sig, on arbitrary msg,, such that

> Verify(msg,, Sig,, VK) returns accept
> msg, # msg, foralli € {1,...,n}

» Scheme is secure if the attacker succeeds only with negligible probability

>
>
>
>

Properties of a signature scheme

For (sk, vk) generated by KeyGen and sig generated by Sign(msg, sk), we want
Verify(msg, sig, vk) to return accept (with overwhelming probability).

Security (intuition)

>

>
>
>
>

vy

Challenger generates (sk, vk) < KeyGen()

Attacker gets vk and access to signing oracle for sk

Can adaptively query signatures on arbitrary messages msgy, . .., msg,,
Now oracle access is taken away

Attacker needs to produce sig, on arbitrary msg,, such that

> Verify(msg,, Sig,, VK) returns accept
> msg, # msg, foralli € {1,...,n}

Scheme is secure if the attacker succeeds only with negligible probability
This is called existential unforgeability under chosen-message attacks (EUF-CMA)

Schnorr signatures

» Choose a uniformly randomin {0, ..., ¢}
» Compute A < aP

Schnorr signatures

(a, A) < KeyGen()
» Choose a uniformly randomin {0, ..., ¢}
» Compute A < aP

(s,e) « Sign(msg, sk = a)

» Choose r uniformly random in {0, ..., ¢}
» Compute R < rP

» Compute e = H(R, msg)

» Compute s=(r —a-e) mod ¢

Schnorr signatures

(a, A) < KeyGen()
» Choose a uniformly random in {0, ..., ¢}
» Compute A < aP

A\

(s,e) « Sign(msg, sk = a)
» Choose r uniformly randomin {0, ..., ¢}
» Compute R <+ rP
» Compute e = H(R, msQ)
» Computes= (r—a-e) mod ¢

Verify(msg, sig = (R, S),vk = A)

» Compute R < sP +eA
» Return accept if and only if H(R, msg) = e

Scalar multiplication

> Looks like all these schemes need computation of kP.

Scalar multiplication

> Looks like all these schemes need computation of kP.
> |et's take a closer look:

» For key generation, the point P is fixed at compile time
» For Diffie-Hellman joint-key computation the point is received at runtime

Scalar multiplication @

> Looks like all these schemes need computation of kP.
> |et's take a closer look:

» For key generation, the point P is fixed at compile time

» For Diffie-Hellman joint-key computation the point is received at runtime

> Key generation and Diffie-Hellman need one scalar multiplication kP

» Schnorr signature verification needs double-scalar multiplication k1 Py + ko P2

Scalar multiplication g@@

Ny

> Looks like all these schemes need computation of kP.

> |et's take a closer look:
» For key generation, the point P is fixed at compile time
» For Diffie-Hellman joint-key computation the point is received at runtime
> Key generation and Diffie-Hellman need one scalar multiplication kP
» Schnorr signature verification needs double-scalar multiplication k1 Py + ko P2
> In key generation and Diffie-Hellman joint-key computation, & is secret
» The scalars in Schnorr signature verification are public

Scalar multiplication g@@

Ny

> Looks like all these schemes need computation of kP.

> |et's take a closer look:
» For key generation, the point P is fixed at compile time
» For Diffie-Hellman joint-key computation the point is received at runtime
> Key generation and Diffie-Hellman need one scalar multiplication kP
» Schnorr signature verification needs double-scalar multiplication k1 Py + ko P2
> In key generation and Diffie-Hellman joint-key computation, & is secret
The scalars in Schnorr signature verification are public

» |n the following: Distinguish these cases

v

A first approach

> |et's compute 105 - P.

A first approach

> |et's compute 105 - P.
» Obvious: Can do that with 104 additons P4+ P +P +---+ P

A first approach

> |et's compute 105 - P.
» Obvious: Can do that with 104 additons P4+ P +P +---+ P

» Problem: 105 has 7 bits, we need roughly 27 additions, cryptographic scalars have ~ 256
bits, we would need roughly 2256 additions (more expensive than solving the ECDLP!)

@12

> |et's compute 105 - P.
» Obvious: Can do that with 104 additons P4+ P +P +---+ P

» Problem: 105 has 7 bits, we need roughly 27 additions, cryptographic scalars have ~ 256
bits, we would need roughly 2256 additions (more expensive than solving the ECDLP!)

» Conclusion: we need algorithms that run in polynomial time (in the size of the scalar)

Rewriting the scalar

> 105=64+324+8+1=206425423 420

Rewriting the scalar

> 105=64+324+8+1=206425423 420
> 105=1-264+1-2240-224+1-2540-224+0-214+1-20

Rewriting the scalar

> 105=64+32+8+1=20425423420
> 105=1-264+1-2240-2441-2240-2240-2' +1-2°
> 105 = ((((((((((1-2+1)-2)40)-2)+1)-2)+0)-2)+0) - 2) + 1 (Horner's rule)

Rewriting the scalar

> 105=64+32+8+1=20425423420

> 105=1-264+1-2240-2441-2240-2240-2' +1-2°

> 105 = ((((((((((1-2+1)-2)40)-2)+1)-2)+0)-2)+0) - 2) + 1 (Horner's rule)
> 105- P = ((((((P-24+P)-2)4+0)-2)+P)-2)4+0)-2)+0)-2)+ P

Rewriting the scalar

105=64+32+8+1=26+2%4+23420
1056=1-204+1-2°4+0-2*+1-234+0-22+4+0-2' +1.2°

105 = ((((((((((1-241)-2)+0)-2)+1)-2)+0)-2) +0) - 2) + 1 (Horner's rule)
105- P = (((((((P-24P)-2)+0)-2) + P)-2) +0)-2) +0) - 2) + P

Cost: 6 doublings, 3 additions

vVvyyVvyvVvyy

Rewriting the scalar @@@

105=64+32+8+1=26+2%4+23420
105=1-26+1-2540-244+1-2240-224+0-2t +1.2°

105 = ((((((((((1-241)-2)+0)-2)+1)-2)4+0)-2) +0) - 2) + 1 (Horner's rule)
105-P = (((((((P-24P)-2) +0)-2) + P)-2) +0)-2) +0) - 2) + P

Cost: 6 doublings, 3 additions

General algorithm: “Double and add”

R+ P

fori < n — 2 downto 0 do
R <+ 2R
if (k)2[¢] =1 then

R+~ R+P

end if

end for

return R

vVVvyVvyVvyYVvyy

Analysis of double-and-add

> | et n be the number of bits in the exponent
» Double-and-add takes n — 1 doublings

Analysis of double-and-add

> | et n be the number of bits in the exponent

» Double-and-add takes n — 1 doublings

> Let m be the number of 1 bits in the exponent
» Double-and-add takes m — 1 additions

> On average: ~ n/2 additions

Analysis of double-and-add

Let n be the number of bits in the exponent

Double-and-add takes n — 1 doublings

Let m be the number of 1 bits in the exponent

Double-and-add takes m — 1 additions

On average: ~ n/2 additions

P does not need to be known in advance, no precomputation depending on P

vVvyYVvyVvyyvyy

@14

Let n be the number of bits in the exponent

Double-and-add takes n — 1 doublings

Let m be the number of 1 bits in the exponent

Double-and-add takes m — 1 additions

On average: ~ n/2 additions

P does not need to be known in advance, no precomputation depending on P
Handles single-scalar multiplication

vVVvyVvyVvyVvYyVvyy

@14

Ny

Let n be the number of bits in the exponent

Double-and-add takes n — 1 doublings

Let m be the number of 1 bits in the exponent

Double-and-add takes m — 1 additions

On average: ~ n/2 additions

P does not need to be known in advance, no precomputation depending on P
Handles single-scalar multiplication

Running time clearly depends on the scalar: insecure for secret scalars!

VVvyVvVVVYyVYYVYY

Double-scalar double-and-add

> Let's modify the algorithm to compute k1 Py + ko Ps

Double-scalar double-and-add

> Let's modify the algorithm to compute k1 Py + ko Ps
» Obvious solution:
» Compute k1 Py (n1 — 1 doublings, m1 — 1 additions)
» Compute ko P> (ne — 1 doublings, me — 1 additions)
> Add the results (1 addition)

@15

> Let's modify the algorithm to compute k1 Py + ko Ps

» Obvious solution:
» Compute k1 Py (n1 — 1 doublings, m1 — 1 additions)
» Compute ko P> (ne — 1 doublings, me — 1 additions)
> Add the results (1 addition)

> We can do better (O denotes the neutral element):

R+ O
for ¢ < max(ni,n2) — 1 downto 0 do
R+ 2R
if (k1)2[¢] = 1 then
R+ R+ P1
end if
if (kg)g[’t] = 1then
R+ R+ PQ
end if
end for

return R

@15

Ny

> Let's modify the algorithm to compute k1 Py + ko Ps

» Obvious solution:
» Compute k1 Py (n1 — 1 doublings, m1 — 1 additions)
» Compute ko P> (ne — 1 doublings, me — 1 additions)
> Add the results (1 addition)

> We can do better (O denotes the neutral element):

R+ O
for ¢ < max(ni,n2) — 1 downto 0 do
R <+ 2R
if (k1)2[¢] = 1 then
R+ R+ P1
end if
if (]{32)2[2] = 1then
R+ R+ PQ
end if
end for
return R

» max(ny,ny) doublings, m; + my additions

Some precomputation helps

» Whenever k; and k, have a 1 bit at the same position, we first add P; and then P, (on
average for 1/4 of the bits)

Some precomputation helps

» Whenever k; and k, have a 1 bit at the same position, we first add P; and then P, (on
average for 1/4 of the bits)

> |et'sjust precompute T = P, + P

Some precomputation helps @@2

Ny

» Whenever k; and k, have a 1 bit at the same position, we first add P; and then P, (on
average for 1/4 of the bits)

> |et'sjust precompute T = P, + P

> Modified algorithm (Shamir’s trick, special case of Strauss’ algorithm):
R+ O
for i « max(ny,n2) — 1 downto 0 do
R+ 2R
R+~ R+T
else if (k1)2[i] = 1 then
R+ R + P1
else if (k2)2[i] = 1 then
R+ R+ PQ
end if
end for
return R

Even more (offline) precomputation

» What if precomputation is free (fixed basepoint, offline precomputation)?

Even more (offline) precomputation

» What if precomputation is free (fixed basepoint, offline precomputation)?

> Firstidea: Let's precompute a table containing 0P, P,2P, 3P, ..., when we receive k, simply
look up kP.

Even more (offline) precomputation

» What if precomputation is free (fixed basepoint, offline precomputation)?

> Firstidea: Let's precompute a table containing 0P, P,2P, 3P, ..., when we receive k, simply
look up kP.

> Problem: k is large. For a 256-bit k& we would need a table of size
3369993333393820974333376885877453834204643052817571560137951281152TB

Even more (offline) precomputation

@
» What if precomputation is free (fixed basepoint, offline precomputation)? =

> Firstidea: Let's precompute a table containing 0P, P,2P, 3P, ..., when we receive k, simply
look up kP.

> Problem: k is large. For a 256-bit k& we would need a table of size
3369993333393820974333376885877453834204643052817571560137951281152TB

» How about, for example, precompute P,2P,4P,8P,...,2" 'P

> This needs only about 16KB of storage for n = 256 and 64-byte group elements

Even more (offline) precomputation

@
What if precomputation is free (fixed basepoint, offline precomputation)? =

> Firstidea: Let's precompute a table containing 0P, P,2P, 3P, ..., when we receive k, simply
look up kP.

> Problem: k is large. For a 256-bit k& we would need a table of size
3369993333393820974333376885877453834204643052817571560137951281152TB

v

» How about, for example, precompute P,2P,4P,8P,...,2" 'P
This needs only about 16KB of storage for n = 256 and 64-byte group elements
» Modified scalar-multiplication algorithm:
R+ O
fori + 0ton—1do
if (k)2[¢] = 1 then
R+ R+2P
end if
end for
return R

v

Even more (offline) precomputation

@
» What if precomputation is free (fixed basepoint, offline precomputation)? =

> Firstidea: Let's precompute a table containing 0P, P,2P, 3P, ..., when we receive k, simply
look up kP.

> Problem: k is large. For a 256-bit k& we would need a table of size
3369993333393820974333376885877453834204643052817571560137951281152TB

» How about, for example, precompute P,2P,4P,8P,...,2" 'P
> This needs only about 16KB of storage for n = 256 and 64-byte group elements
» Modified scalar-multiplication algorithm:
R+ O
fori + 0ton—1do
if (k)2[¢] = 1 then
R+ R+2P
end if
end for
return R

» Eliminated all doublings in fixed-basepoint scalar multiplication!

Double-and-add always

» All algorithms so far perform conditional addition where the condition is secret
> For secret scalars (most common case!) we need something else

Double-and-add always @@2

> All algorithms so far perform conditional addition where the condition is secret
> For secret scalars (most common case!) we need something else
> |dea: Always perform addition, discard result:
R+ P
for i < n — 2 downto 0 do
R+ 2R
Rt «~ R+ P
if (k)2[¢] =1 then
R <+ R;
end if
end for

Double-and-add always @@2

> All algorithms so far perform conditional addition where the condition is secret
> For secret scalars (most common case!) we need something else
> |dea: Always perform addition, discard result:
> Or simply add the neutral element O
R+ P
fori + n — 2 downto 0 do
R+ 2R
if (k)2[¢] = 1then
R+ R+P
else
R+~ R+0O
end if
end for
return R

Double-and-add always @@2

Ny

> All algorithms so far perform conditional addition where the condition is secret
> For secret scalars (most common case!) we need something else
> |dea: Always perform addition, discard result:
> Or simply add the neutral element O
R+ P
fori + n — 2 downto 0 do
R+ 2R
if (k)2[¢] = 1then
R+ R+P
else
R+~ R+0O
end if
end for
return R

» Still not constant time, more later. . .

Let's rewrite that a bit . ..

> We have atable T = (O, P)
> NotationT[0] = O, T[1] = P
» Scalar multiplication is
R+ P
fori « n — 2 downto 0 do
R+ 2R
R« R+ T[(k)2[i]]
end for

Changing the scalar radix

» So far we considered a scalar written in radix 2
» How about radix 3?

Changing the scalar radix

» So far we considered a scalar written in radix 2
» How about radix 37

> We precompute a Table T = (O, P,2P)

> Write scalark as (kn—1,...,ko0)3

Changing the scalar radix

» So far we considered a scalar written in radix 2
» How about radix 37
> We precompute a Table T = (O, P,2P)
> Write scalark as (kn—1,...,ko0)3
» Compute scalar multiplication as
R+ T((k)sln — 1]
fori < n — 2 downto 0 do
R+ 3R
R <+ R+ T[(k)s]i]]
end for

Changing the scalar radix @@?

So far we considered a scalar written in radix 2
How about radix 37
We precompute a Table T' = (O, P, 2P)
Write scalar k as (kp—1,...,k0)3
Compute scalar multiplication as
R+ T((k)sln — 1]
fori < n — 2 downto 0 do
R+ 3R
R <+ R+ T[(k)s]i]]
end for

» Advantage: The scalar is shorter, fewer additions
» Disadvantage: 3 is just not nice (needs triplings)

vvyyVvyVvyy

Changing the scalar radix @@2

Ny

So far we considered a scalar written in radix 2
How about radix 37
We precompute a Table T' = (O, P, 2P)
Write scalar k as (kp—1,...,k0)3
Compute scalar multiplication as
R+ T((k)sln — 1]
fori < n — 2 downto 0 do
R+ 3R
R <+ R+ T[(k)s]i]]
end for

» Advantage: The scalar is shorter, fewer additions
Disadvantage: 3 is just not nice (needs triplings)
» How about some nice numbers, like 4, 8, 167

vvyyVvyVvyy

v

Fixed-window scalar multiplication

> Fix a window width w
» Precompute T = (O, P,2P,...,(2* — 1)P)

Fixed-window scalar multiplication

> Fix a window width w

» Precompute T = (O, P,2P,...,(2* — 1)P)

> Write scalark as (km—1,...,ko)2w

> This is the same as chopping the binary scalar into “windows” of fixed length w

Fixed-window scalar multiplication @

> Fix a window width w

» Precompute T = (O, P,2P,...,(2* — 1)P)

> Write scalark as (km—1,...,ko)2w

» This is the same as chopping the binary scalar into “windows” of fixed length w
>

Compute scalar multiplication as
R ¢ T[(k)zu[m — 1]
fori + m — 2 downto 0 do
forj < 1tow do
R+ 2R
end for
R« R+ T[(k)aw][d]]
end for

Analysis of fixed window

» For an n-bit scalar we still have n — 1 doublings

Analysis of fixed window

» For an n-bit scalar we still have n — 1 doublings
> Precomputation costs us 2% /2 — 1 additions and 2*/2 — 1 doublings

Analysis of fixed window

» For an n-bit scalar we still have n — 1 doublings
> Precomputation costs us 2% /2 — 1 additions and 2*/2 — 1 doublings
> Number of additions in the loop is [n/w] — 1

Analysis of fixed window

» For an n-bit scalar we still have n — 1 doublings

> Precomputation costs us 2% /2 — 1 additions and 2*/2 — 1 doublings
> Number of additions in the loop is [n/w] — 1

» Larger w: More precomputation

» Smaller w: More additions inside the loop

Analysis of fixed window

For an n-bit scalar we still have n — 1 doublings

Precomputation costs us 2% /2 — 1 additions and 2*/2 — 1 doublings
Number of additions in the loop is [n/w] — 1

Larger w: More precomputation

Smaller w: More additions inside the loop

For ~ 256-bit scalars choose w =4 orw =25

Is fixed-window constant time?

» For each window of the scalar perform w doublings and one addition, sounds good.

Is fixed-window constant time?

» For each window of the scalar perform w doublings and one addition, sounds good.
» The devil is in the detail:
» Is addition running in constant time? Also for ©? (more tomorrow)

Is fixed-window constant time?

» For each window of the scalar perform w doublings and one addition, sounds good.
» The devil is in the detail:

» Is addition running in constant time? Also for ©? (more tomorrow)
» Remember that table lookups are generally not constant time!
»> Need to scan through the whole table

Is fixed-window constant time?

» For each window of the scalar perform w doublings and one addition, sounds good.
> The devil is in the detail:

» Is addition running in constant time? Also for ©? (more tomorrow)

» Remember that table lookups are generally not constant time!

»> Need to scan through the whole table

> Need to “select” in constant time (remove if statement)

Is fixed-window constant time? @@a

» For each window of the scalar perform w doublings and one addition, sounds good.
» The devil is in the detail:

» Is addition running in constant time? Also for ©? (more tomorrow)
» Remember that table lookups are generally not constant time!

»> Need to scan through the whole table

> Need to “select” in constant time (remove if statement)

> See assignment2-ecdh25519

More offline precomputation

> |et's get back to fixed-basepoint multiplication
» So far we precomputed P, 2P, 4P, 8P, ...

More offline precomputation

> |et's get back to fixed-basepoint multiplication

» So far we precomputed P, 2P, 4P, 8P, ...

> We can combine that with fixed-window scalar multiplication

» Precompute T; = (O, P,2P,3P,..., (2% — 1)P) - 2! fori = 0, w, 2w, 3w, [n/w] — 1

More offline precomputation @

> |et's get back to fixed-basepoint multiplication
» So far we precomputed P, 2P, 4P, 8P, ...
> We can combine that with fixed-window scalar multiplication
» Precompute T; = (O, P,2P,3P,..., (2% — 1)P) - 2! fori = 0, w, 2w, 3w, [n/w] — 1
» Perform scalar multiplication as

R« To[(k)2 [0]]

fori+ 1to [n/w] —1do

R R+ Ty |(k)2w[i]]
end for

More offline precomputation @

> |et's get back to fixed-basepoint multiplication
» So far we precomputed P, 2P, 4P, 8P, ...
> We can combine that with fixed-window scalar multiplication
» Precompute T; = (O, P,2P,3P,..., (2% — 1)P) - 2! fori = 0, w, 2w, 3w, [n/w] — 1
» Perform scalar multiplication as

R« To[(k)2 [0]]

fori+ 1to [n/w] —1do

R R+ Ty |(k)2w[i]]

end for

» No doublings, only [n/w] — 1 additions

More offline precomputation @@2

Ny

Let's get back to fixed-basepoint multiplication
So far we precomputed P, 2P, 4P, 8P, ...
We can combine that with fixed-window scalar multiplication
Precompute T; = (O, P,2P,3P, ..., (2% — 1)P) - 2! fori = 0, w, 2w, 3w, [n/w] — 1
Perform scalar multiplication as

R« To[(k)2 [0]]

fori+ 1to [n/w] —1do

R R+ Ty |(k)2w[i]]

end for
» No doublings, only [n/w] — 1 additions
» Can use huge w, but:

> at some point the precomputed tables don't fit into cache anymore.
» constant-time loads get slow for large w

vVvyYVvyVvVvyy

Fixed-window limitations

> Consider the scalar 22 = (101 10), and window size 2
> Initialize R with P
> Double, double, add P
» Double, double, add 2P

Fixed-window limitations

> Consider the scalar 22 = (101 10), and window size 2
> |nitialize R with P
» Double, double, add P
» Double, double, add 2P
» More efficient:
» |nitialize R with P
» Double, double, double, add 3P
» Double

Fixed-window limitations

> Consider the scalar 22 = (101 10), and window size 2
> |nitialize R with P
» Double, double, add P
» Double, double, add 2P
» More efficient:
» |nitialize R with P
» Double, double, double, add 3P
» Double

» Problem with fixed window: it's fixed.

Fixed-window limitations

> Consider the scalar 22 = (101 10), and window size 2
> |nitialize R with P
» Double, double, add P
» Double, double, add 2P

» More efficient:

» |nitialize R with P
» Double, double, double, add 3P
» Double

» Problem with fixed window: it's fixed.
» |dea: “slide” the window over the scalar

Sliding window scalar multiplication

» Choose window size w

» Rewrite scalar k as k = (ko, ..., km) With k; in {0,1,3,5,...,2% — 1} with at most one
non-zero entry in each window of length w

Sliding window scalar multiplication

» Choose window size w

» Rewrite scalar k as k = (ko, ..., km) With k; in {0,1,3,5,...,2% — 1} with at most one
non-zero entry in each window of length w

» Do this by scanning k from right to left, expand window from each 1-bit

Sliding window scalar multiplication

» Choose window size w

» Rewrite scalar k as k = (ko, ..., km) With k; in {0,1,3,5,...,2% — 1} with at most one
non-zero entry in each window of length w

» Do this by scanning k from right to left, expand window from each 1-bit

» Precompute P,3P,5P,..., (2% —1)P

Sliding window scalar multiplication 6@@@

» Choose window size w

» Rewrite scalar k as k = (ko, ..., km) With k; in {0,1,3,5,...,2% — 1} with at most one
non-zero entry in each window of length w
» Do this by scanning k from right to left, expand window from each 1-bit
» Precompute P,3P,5P,..., (2% —1)P
» Perform scalar multiplication
R+ O
fori+ mto0do
R+ 2R
if k; # 0then
end if
end for

Analysis of sliding window

» We still do n — 1 doublings for an n-bit scalar
» Precomputation needs 2@~ — 1 additions
> Expected number of additions in the main loop: n/(w + 1)

Analysis of sliding window

We still do n — 1 doublings for an n-bit scalar
Precomputation needs 2%~! — 1 additions
Expected number of additions in the main loop: n/(w + 1)

For the same w only half the precomputation compared to fixed-window scalar
multiplication

For the same w fewer additions in the main loop

vvyyvyy

v

Analysis of sliding window @@2

Ny

We still do n — 1 doublings for an n-bit scalar
Precomputation needs 2%~! — 1 additions
Expected number of additions in the main loop: n/(w + 1)

For the same w only half the precomputation compared to fixed-window scalar
multiplication

vvyyvyy

v

For the same w fewer additions in the main loop
But: It's not running in constant timel!
> Still nice (in double-scalar version) for signature verification

v

Multi-scalar multiplication

» Consider computation @ = >} k; P,
» We looked at n = 2 before, how about n = 128?

De-Rooij algorithm

> Assume ki > ko > - > k.
» Usethat k1P + ko P = (kl = kg)Pl + k‘g(Pl aF P2)
> Replace:

> (klpl) and (k2P2), with
> (kl = kg)Pl and kQ(Pl —+ Pg)

» Each step requires one scalar subtraction and one point addition
> Each step typically “eliminates” multiple scalar bits
> Can be very fast (but not constant-time)

Multi-scalar multiplication @

T

» Consider computation @ = >} k; P,
» We looked at n = 2 before, how about n = 128?

De-Rooij algorithm

> Assume ki > ko > - > k.
» Usethat k1P + ko P = (kl = kg)Pl + k‘g(Pl aF P2)
> Replace:

> (klpl) and (k2P2), with
> (kl = kg)Pl and kQ(Pl —+ Pg)

Each step requires one scalar subtraction and one point addition

Each step typically “eliminates” multiple scalar bits

Can be very fast (but not constant-time)

Requires fast access to the two largest scalars: put scalars into a heap
Crucial for good performance: fast heap implementation

vVvyVYyVvyy

» Heap is a binary tree, each parent node is larger than the two child nodes

> Data structure is stored as a simple array, positions in the array determine positions in the
tree

> Root is at position 0, left child node at position 1, right child node at position 2 etc.

» For node at position 4, child nodes are at position 2 -7+ 1 and 2 - i + 2, parent node is at
position [(: — 1)/2]

Ny

» Heap is a binary tree, each parent node is larger than the two child nodes

> Data structure is stored as a simple array, positions in the array determine positions in the
tree

> Root is at position 0, left child node at position 1, right child node at position 2 etc.

> For node at position 4, child nodes are at position 2 - i+ 1 and 2 - i 4 2, parent node is at
position [(: — 1)/2]

» Typical heap root replacement (pop operation): start at the root, swap down for a variable
amount of times

Ny

» Heap is a binary tree, each parent node is larger than the two child nodes

> Data structure is stored as a simple array, positions in the array determine positions in the
tree

> Root is at position 0, left child node at position 1, right child node at position 2 etc.

> For node at position 4, child nodes are at position 2 - i+ 1 and 2 - i 4 2, parent node is at
position [(: — 1)/2]

» Typical heap root replacement (pop operation): start at the root, swap down for a variable
amount of times

> Floyd's heap: swap down to the bottom, swap up for a variable amount of times,
advantages:
» Each swap-down step needs only one comparison (instead of two)
» Swap-down loop is more friendly to branch predictors

How about fixed scalar

» So far we have considered:

» variable point, variable scalar
> fixed point, variable scalar

How about fixed scalar

» So far we have considered:

» variable point, variable scalar
> fixed point, variable scalar

» How about variable point, fixed scalar?

How about fixed scalar

» So far we have considered:

» variable point, variable scalar
> fixed point, variable scalar

» How about variable point, fixed scalar?
» Optimizing for the scalar means that the scalar has to be public
» Not what we have in DH or Schnorr

How about fixed scalar @@@

» So far we have considered:

» variable point, variable scalar
> fixed point, variable scalar

» How about variable point, fixed scalar?

» Optimizing for the scalar means that the scalar has to be public
» Not what we have in DH or Schnorr

» Some applications:

> Inversion in finite fields (later in this course)
» Elliptic-curve factorization method (not in this lecture)

@3‘\

Ny

For an integer & > 1 a sequence sy, s, . . ., S, IS called an addition chain of length m for k if
> s = 1
> s, = k

» for each s; withi > 1 it holds that s; = s; + s, for some j, ¢ < i

https://github.com/mmcloughlin/addchain

@;

Ny

For an integer & > 1 a sequence sy, s, . . ., S, IS called an addition chain of length m for k if
> s = 1
> s, = k

» for each s; withi > 1 it holds that s; = s; + s, for some j, ¢ < i

> An addition chain immediately translates into a scalar-multiplication algorithm:

» Start withsiP =P
> Compute s,P =s;P+s,Pfori=2,...,m

https://github.com/mmcloughlin/addchain

@;

Ay

For an integer & > 1 a sequence sy, s, . . ., S, IS called an addition chain of length m for k if
> s = 1
> s, = k

» for each s; withi > 1 it holds that s; = s; + s, for some j, ¢ < i

> An addition chain immediately translates into a scalar-multiplication algorithm:
> Start with s P = P
> Compute s,P =s;P+s,Pfori=2,...,m

> All algorithms so far just computed additions chains “on the fly”
> Signed-scalar representations are “addition-subtraction chains”

https://github.com/mmcloughlin/addchain

Addition chains @

Ay

For an integer & > 1 a sequence sy, s, . . ., S, IS called an addition chain of length m for k if
> s = 1
> s, = k

» for each s; withi > 1 it holds that s; = s; + s, for some j, ¢ < i

> An addition chain immediately translates into a scalar-multiplication algorithm:
> Start with s P = P
> Compute s,P =s;P+s,Pfori=2,...,m

All algorithms so far just computed additions chains “on the fly”

Signed-scalar representations are “addition-subtraction chains”

For fixed scalar we can spend a lot of time to find a good addition chain at compile time
Computing good addition chains? See https://github.com/mmcloughlin/addchain

vvyyvyy

https://github.com/mmcloughlin/addchain

