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New directions in cryptography
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Groups

Definition
A set S together with an operation ◦ is called a group G = (S, ◦) if
▶ For all a, b ∈ S: a ◦ b ∈ S (closed under ◦)
▶ For all a, b, c ∈ S: (a ◦ b) ◦ c = a ◦ (b ◦ c) (associativity)
▶ There exists u ∈ S such that for any a ∈ S: a ◦ u = u ◦ a = a (identity element)
▶ For each a ∈ S there exists b ∈ S such that a ◦ b = b ◦ a = u (inverse)

▶ The operation ◦ is typically written as + (additive group) or as · (multiplicative group)
▶ Groups where a ◦ b = b ◦ a for all a, b ∈ S are called commutative or Abelian
▶ The group order is |S|, the number of elements in S

▶ We call g ∈ S a generator of the group if all elements of S can be written as multiples
(additive group) or powers (multiplicative group) of g.

▶ A group generated by a single element is called cyclic
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Examples

▶ The integers with addition (Z,+) are a (commutative) group
▶ Closed, associative✓
▶ Identity element 0
▶ Inverse of a is −a
▶ The group is cyclic with generator 1

▶ The integers without zero with multiplication (Z, ·) are not a group
▶ Closed, associative✓
▶ Identity element is 1
▶ We cannot invert 0
▶ More generally we lack inverses, e.g., 1

2
̸∈ Z

▶ The rationals without zero with multiplication (Q \ {0}, ·) are a (commutative) group
▶ Closed, associative✓
▶ Identity element is 1
▶ Inverse of a is 1

a
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Examples

▶ For an integer q > 1, the set {0, . . . , q − 1} together with addition modulo q is a
(commutative) group
▶ Closed, associative✓
▶ Identity element 0
▶ Inverse of a is q − a

▶ For a prime q, the set {1, . . . , q − 1} together with multiplication modulo q is a
(commutative) group
▶ Closed, associative✓
▶ Identity element is 1
▶ More about inverses later
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The discrete logarithm problem

Definition
Let G be a finite, Abelian, cyclic group of order ℓ with generator g. Let a be an element of G. The
(computational) discrete-logarithm problem (DLP) is
▶ to find an integer k such that gk = a (for a multiplicatively written group)
▶ to find an integer k such that kg = a (for an additively written group)

▶ gk means g · g · g · · · · · g︸ ︷︷ ︸
k times

▶ kg means g + g + g + · · ·+ g︸ ︷︷ ︸
k times

▶ In many groups the DLP is easy to solve (e.g., {0, . . . , q − 1} with addition modulo q)
▶ In some groups the DLP is believed to be hard (e.g., {1, . . . , q − 1} with multiplication

modulo q), for certain primes q
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Some notation

For the remainder of today’s lecture
▶ consider an finite, cyclic group G, written additively,
▶ the generator of G is called P ,
▶ the group order of G is ℓ,
▶ other elements are denoted by capital letters (e.g., P , R), and
▶ we assume that the DLP is hard in G.
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Diffie-Hellman (DH) key exchange

Alice Bob

Choose a← {0, . . . , ℓ− 1} Choose b← {0, . . . , ℓ− 1}

A← aP B ← bP

A

B

K ← aB = a(bP ) = (ab)P K ← bA = b(aP ) = (ba)P
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Somes notes about DH

▶ Clearly insecure of DLP is not hard

▶ Also secure only against passive adversaries
▶ Active “man-in-the-middle” (MitM) attack:

▶ Eve chooses her own keypair (e, E)
▶ replaces A on the channel by E
▶ replaces B on the channel by E

▶ Gets shared secret (ae)P with Alice
▶ Gets shared secret (be)P with Bob
▶ Afterwards decrypts and re-encrypts communication

▶ DH is an unauthenticated key exchange
▶ Consider DH a building block for protocols
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How about authentication?

▶ Can build authenticated key exchange just from DH (plus symmetric primitives)
▶ Examples:

▶ X3DH used by Signal (https://signal.org/docs/specifications/x3dh/)
▶ Noise protocol framework (https://noiseprotocol.org/)

▶ Typical alternative: cryptographic signatures:

▶ (sk, vk)← KeyGen() (probabilistic)
▶ sig← Sign(msg, sk) (probabilistic)
▶ accept/reject← Verify(msg, sig, vk) (deterministic)

https://signal.org/docs/specifications/x3dh/
https://noiseprotocol.org/
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Properties of a signature scheme

Correctness
For (sk, vk) generated by KeyGen and sig generated by Sign(msg, sk), we want
Verify(msg, sig, vk) to return accept (with overwhelming probability).

Security (intuition)
▶ Challenger generates (sk, vk)← KeyGen()

▶ Attacker gets vk and access to signing oracle for sk
▶ Can adaptively query signatures on arbitrary messages msg1, . . . ,msgn
▶ Now oracle access is taken away
▶ Attacker needs to produce siga on arbitrary msga, such that

▶ Verify(msga, siga, vk) returns accept
▶ msga ̸= msgi for all i ∈ {1, . . . , n}

▶ Scheme is secure if the attacker succeeds only with negligible probability
▶ This is called existential unforgeability under chosen-message attacks (EUF-CMA)
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Schnorr signatures

(a,A)← KeyGen()
▶ Choose a uniformly random in {0, . . . , ℓ}
▶ Compute A← aP

(s, e)← Sign(msg, sk = a)

▶ Choose r uniformly random in {0, . . . , ℓ}
▶ Compute R← rP

▶ Compute e = H(R,msg)
▶ Compute s = (r − a · e) mod ℓ

Verify(msg, sig = (R,S), vk = A)

▶ Compute R← sP + eA

▶ Return accept if and only ifH(R,msg) = e
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Scalar multiplication

▶ Looks like all these schemes need computation of kP .

▶ Let’s take a closer look:

▶ For key generation, the point P is fixed at compile time
▶ For Diffie-Hellman joint-key computation the point is received at runtime
▶ Key generation and Diffie-Hellman need one scalar multiplication kP
▶ Schnorr signature verification needs double-scalar multiplication k1P1 + k2P2

▶ In key generation and Diffie-Hellman joint-key computation, k is secret
▶ The scalars in Schnorr signature verification are public

▶ In the following: Distinguish these cases
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A first approach

▶ Let’s compute 105 · P .

▶ Obvious: Can do that with 104 additions P + P + P + · · ·+ P

▶ Problem: 105 has 7 bits, we need roughly 27 additions, cryptographic scalars have ≈ 256
bits, we would need roughly 2256 additions (more expensive than solving the ECDLP!)

▶ Conclusion: we need algorithms that run in polynomial time (in the size of the scalar)
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Rewriting the scalar

▶ 105 = 64 + 32 + 8 + 1 = 26 + 25 + 23 + 20

▶ 105 = 1 · 26 + 1 · 25 + 0 · 24 + 1 · 23 + 0 · 22 + 0 · 21 + 1 · 20

▶ 105 = ((((((((((1 · 2 + 1) · 2) + 0) · 2) + 1) · 2) + 0) · 2) + 0) · 2) + 1 (Horner’s rule)
▶ 105 · P = ((((((((((P · 2 + P ) · 2) + 0) · 2) + P ) · 2) + 0) · 2) + 0) · 2) + P

▶ Cost: 6 doublings, 3 additions
▶ General algorithm: “Double and add”

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
end if

end for
return R
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Analysis of double-and-add

▶ Let n be the number of bits in the exponent
▶ Double-and-add takes n− 1 doublings

▶ Letm be the number of 1 bits in the exponent
▶ Double-and-add takesm− 1 additions
▶ On average: ≈ n/2 additions
▶ P does not need to be known in advance, no precomputation depending on P

▶ Handles single-scalar multiplication
▶ Running time clearly depends on the scalar: insecure for secret scalars!
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Double-scalar double-and-add
▶ Let’s modify the algorithm to compute k1P1 + k2P2

▶ Obvious solution:
▶ Compute k1P1 (n1 − 1 doublings,m1 − 1 additions)
▶ Compute k2P2 (n2 − 1 doublings,m2 − 1 additions)
▶ Add the results (1 addition)

▶ We can do better (O denotes the neutral element):
R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 then

R← R+ P1

end if
if (k2)2[i] = 1 then

R← R+ P2

end if
end for
return R

▶ max(n1, n2) doublings,m1 +m2 additions
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Some precomputation helps

▶ Whenever k1 and k2 have a 1 bit at the same position, we first add P1 and then P2 (on
average for 1/4 of the bits)

▶ Let’s just precompute T = P1 + P2

▶ Modified algorithm (Shamir’s trick, special case of Strauss’ algorithm):
R← O
for i← max(n1, n2)− 1 downto 0 do

R← 2R
if (k1)2[i] = 1 AND (k2)2[i] = 1 then

R← R+ T
else if (k1)2[i] = 1 then

R← R+ P1

else if (k2)2[i] = 1 then
R← R+ P2

end if
end for
return R
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Even more (offline) precomputation

▶ What if precomputation is free (fixed basepoint, offline precomputation)?

▶ First idea: Let’s precompute a table containing 0P, P, 2P, 3P, . . . , when we receive k, simply
look up kP .

▶ Problem: k is large. For a 256-bit k we would need a table of size
3369993333393829974333376885877453834204643052817571560137951281152TB

▶ How about, for example, precompute P, 2P, 4P, 8P, . . . , 2n−1P

▶ This needs only about 16KB of storage for n = 256 and 64-byte group elements
▶ Modified scalar-multiplication algorithm:

R← O
for i← 0 to n− 1 do

if (k)2[i] = 1 then
R← R+ 2iP

end if
end for
return R

▶ Eliminated all doublings in fixed-basepoint scalar multiplication!
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Double-and-add always

▶ All algorithms so far perform conditional addition where the condition is secret
▶ For secret scalars (most common case!) we need something else

▶ Idea: Always perform addition, discard result:
▶ Or simply add the neutral element O
▶ Still not constant time, more later. . .



18

Double-and-add always

▶ All algorithms so far perform conditional addition where the condition is secret
▶ For secret scalars (most common case!) we need something else
▶ Idea: Always perform addition, discard result:

R← P
for i← n− 2 downto 0 do

R← 2R
Rt ← R+ P
if (k)2[i] = 1 then

R← Rt

end if
end for

▶ Or simply add the neutral element O
▶ Still not constant time, more later. . .



18

Double-and-add always

▶ All algorithms so far perform conditional addition where the condition is secret
▶ For secret scalars (most common case!) we need something else
▶ Idea: Always perform addition, discard result:
▶ Or simply add the neutral element O

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
else

R← R+O
end if

end for
return R

▶ Still not constant time, more later. . .



18

Double-and-add always

▶ All algorithms so far perform conditional addition where the condition is secret
▶ For secret scalars (most common case!) we need something else
▶ Idea: Always perform addition, discard result:
▶ Or simply add the neutral element O

R← P
for i← n− 2 downto 0 do

R← 2R
if (k)2[i] = 1 then

R← R+ P
else

R← R+O
end if

end for
return R

▶ Still not constant time, more later. . .



19

Let’s rewrite that a bit . . .

▶ We have a table T = (O, P )

▶ Notation T [0] = O, T [1] = P

▶ Scalar multiplication is
R← P
for i← n− 2 downto 0 do

R← 2R
R← R+ T [(k)2[i]]

end for



20

Changing the scalar radix

▶ So far we considered a scalar written in radix 2
▶ How about radix 3?

▶ We precompute a Table T = (O, P, 2P )

▶ Write scalar k as (kn−1, . . . , k0)3
▶ Compute scalar multiplication as

R← T [(k)3[n− 1]]
for i← n− 2 downto 0 do

R← 3R
R← R+ T [(k)3[i]]

end for
▶ Advantage: The scalar is shorter, fewer additions
▶ Disadvantage: 3 is just not nice (needs triplings)
▶ How about some nice numbers, like 4, 8, 16?
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Fixed-window scalar multiplication

▶ Fix a window width w

▶ Precompute T = (O, P, 2P, . . . , (2w − 1)P )

▶ Write scalar k as (km−1, . . . , k0)2w

▶ This is the same as chopping the binary scalar into “windows” of fixed length w

▶ Compute scalar multiplication as
R← T [(k)2w [m− 1]]
for i← m− 2 downto 0 do

for j ← 1 to w do
R← 2R

end for
R← R+ T [(k)2w [i]]

end for
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Analysis of fixed window

▶ For an n-bit scalar we still have n− 1 doublings

▶ Precomputation costs us 2w/2− 1 additions and 2w/2− 1 doublings
▶ Number of additions in the loop is ⌈n/w⌉ − 1

▶ Larger w: More precomputation
▶ Smaller w: More additions inside the loop
▶ For ≈ 256-bit scalars choose w = 4 or w = 5
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Is fixed-window constant time?

▶ For each window of the scalar perform w doublings and one addition, sounds good.

▶ The devil is in the detail:
▶ Is addition running in constant time? Also forO? (more tomorrow)

▶ Remember that table lookups are generally not constant time!
▶ Need to scan through the whole table
▶ Need to “select” in constant time (remove if statement)

▶ See assignment2-ecdh25519
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More offline precomputation

▶ Let’s get back to fixed-basepoint multiplication
▶ So far we precomputed P, 2P, 4P, 8P, . . .

▶ We can combine that with fixed-window scalar multiplication
▶ Precompute Ti = (O, P, 2P, 3P, . . . , (2w − 1)P ) · 2i for i = 0, w, 2w, 3w, ⌈n/w⌉ − 1

▶ Perform scalar multiplication as
R← T0[(k)2w [0]]
for i← 1 to ⌈n/w⌉ − 1 do

R← R+ Tiw[(k)2w [i]]
end for

▶ No doublings, only ⌈n/w⌉ − 1 additions
▶ Can use huge w, but:

▶ at some point the precomputed tables don’t fit into cache anymore.
▶ constant-time loads get slow for large w
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Fixed-window limitations

▶ Consider the scalar 22 = (1 01 10)2 and window size 2
▶ Initialize R with P
▶ Double, double, add P
▶ Double, double, add 2P

▶ More efficient:
▶ Initialize R with P
▶ Double, double, double, add 3P
▶ Double

▶ Problem with fixed window: it’s fixed.
▶ Idea: “slide” the window over the scalar
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Sliding window scalar multiplication

▶ Choose window size w

▶ Rewrite scalar k as k = (k0, . . . , km) with ki in {0, 1, 3, 5, . . . , 2w − 1} with at most one
non-zero entry in each window of length w

▶ Do this by scanning k from right to left, expand window from each 1-bit
▶ Precompute P, 3P, 5P, . . . , (2w − 1)P

▶ Perform scalar multiplication
R← O
for i← m to 0 do

R← 2R
if ki ̸= 0 then

R← R+ kiP
end if

end for
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Analysis of sliding window

▶ We still do n− 1 doublings for an n-bit scalar
▶ Precomputation needs 2w−1 − 1 additions
▶ Expected number of additions in the main loop: n/(w + 1)

▶ For the same w only half the precomputation compared to fixed-window scalar
multiplication

▶ For the same w fewer additions in the main loop
▶ But: It’s not running in constant time!
▶ Still nice (in double-scalar version) for signature verification
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Multi-scalar multiplication

▶ Consider computation Q =
∑n

1 kiPi

▶ We looked at n = 2 before, how about n = 128?

De-Rooij algorithm
▶ Assume k1 > k2 > · · · > kn.
▶ Use that k1P1 + k2P2 = (k1 − k2)P1 + k2(P1 + P2)

▶ Replace:
▶ (k1P1) and (k2P2), with
▶ (k1 − k2)P1 and k2(P1 + P2)

▶ Each step requires one scalar subtraction and one point addition
▶ Each step typically “eliminates” multiple scalar bits
▶ Can be very fast (but not constant-time)

▶ Requires fast access to the two largest scalars: put scalars into a heap
▶ Crucial for good performance: fast heap implementation
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A fast heap

▶ Heap is a binary tree, each parent node is larger than the two child nodes
▶ Data structure is stored as a simple array, positions in the array determine positions in the

tree
▶ Root is at position 0, left child node at position 1, right child node at position 2 etc.
▶ For node at position i, child nodes are at position 2 · i+ 1 and 2 · i+ 2, parent node is at

position ⌊(i− 1)/2⌋

▶ Typical heap root replacement (pop operation): start at the root, swap down for a variable
amount of times

▶ Floyd’s heap: swap down to the bottom, swap up for a variable amount of times,
advantages:
▶ Each swap-down step needs only one comparison (instead of two)
▶ Swap-down loop is more friendly to branch predictors
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How about fixed scalar

▶ So far we have considered:
▶ variable point, variable scalar
▶ fixed point, variable scalar

▶ How about variable point, fixed scalar?
▶ Optimizing for the scalar means that the scalar has to be public
▶ Not what we have in DH or Schnorr
▶ Some applications:

▶ Inversion in finite fields (later in this course)
▶ Elliptic-curve factorization method (not in this lecture)
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Addition chains

Definition
For an integer k > 1 a sequence s1, s2, . . . , sm is called an addition chain of lengthm for k if
▶ s1 = 1

▶ sm = k

▶ for each si with i > 1 it holds that si = sj + sℓ for some j, ℓ < i

▶ An addition chain immediately translates into a scalar-multiplication algorithm:
▶ Start with s1P = P
▶ Compute siP = sjP + sℓP for i = 2, . . . ,m

▶ All algorithms so far just computed additions chains “on the fly”
▶ Signed-scalar representations are “addition-subtraction chains”
▶ For fixed scalar we can spend a lot of time to find a good addition chain at compile time
▶ Computing good addition chains? See https://github.com/mmcloughlin/addchain

https://github.com/mmcloughlin/addchain
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